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Preface

The ever-increasing demand on engineers to lower production costs to withstand
global competition has prompted engineers to look for rigorous methods of decision
making, such as optimization methods, to design and produce products and systems
both economically and efficiently. Optimization techniques, having reached a degree
of maturity by now, are being used in a wide spectrum of industries, including
aerospace, automotive, chemical, electrical, construction, and manufacturing indus-
tries. With rapidly advancing computer technology, computers are becoming more
powerful, and correspondingly, the size and the complexity of the problems that
can be solved using optimization techniques are also increasing. Optimization
methods, coupled with modern tools of computer-aided design, are also being used
to enhance the creative process of conceptual and detailed design of engineering
systems.

The purpose of this textbook is to present the techniques and applications of
engineering optimization in a comprehensive manner. The style of prior editions has
been retained, with the theory, computational aspects, and applications of engineering
optimization presented with detailed explanations. As in previous editions, essential
proofs and developments of the various techniques are given in a simple manner
without sacrificing accuracy. New concepts are illustrated with the help of numerical
examples. Although most engineering design problems can be solved using non-
linear programming techniques, there are a variety of engineering applications for
which other optimization methods, such as linear, geometric, dynamic, integer, and
stochastic programming techniques, are most suitable. The theory and applications
of all these techniques are also presented in the book. Some of the recently developed
optimization methods, such as genetic algorithms, simulated annealing, particle
swarm optimization, ant colony optimization, neural-network-based methods, and
fuzzy optimization, do not belong to the traditional mathematical programming
approaches. These methods are presented as modern methods of optimization. More
recently, a class of optimization methods termed the metaheuristic optimization
methods, have been evolving in the literature. The metaheuristic methods are also
included in this edition. Favorable reactions and encouragement from professors,
students, and other users of the book have provided me with the impetus to prepare
this fifth edition of the book. The following changes have been made from the previous
edition:

* Some less-important sections were condensed or deleted.

* Some sections were rewritten for better clarity.

* Some sections were expanded.

* Some of the recently-developed methods are reorganized in the form of a new
chapter titled, Modern methods of optimization.

e A new chapter titled, Metaheuristic Optimization Methods, is added by
including details of crow search, firefly, harmony search, teaching-learning,
and honey bee swarm optimization algorithms.

* A new chapter titled, Solution of optimization problems using MATLAB, is
added to illustrate the use of MATLAB for the solution of different types of
optimization problems.

xvii



xviii Preface

Features

Contents

Each topic in Engineering Optimization: Theory and Practice is self-contained, with
all concepts explained fully and the derivations presented with complete details. The
computational aspects are emphasized throughout with design examples and prob-
lems taken from several fields of engineering to make the subject appealing to all
branches of engineering. A large number of solved examples, review questions, prob-
lems, project-type problems, figures, and references are included to enhance the pre-
sentation of the material.
Specific features of the book include:

* More than 155 illustrative examples accompanying most topics.

* More than 540 references to the literature of engineering optimization theory
and applications.

* More than 485 review questions to help students in reviewing and testing their
understanding of the text material.

* More than 600 problems, with solutions to most problems in the instructor’s
manual.

* More than 12 examples to illustrate the use of Matlab for the numerical solution
of optimization problems.

* Answers to review questions at the web site of the book, http://www.wiley.com/
rao.

* Answers to selected problems are given at the end of the book.

I used different parts of the book to teach optimum design and engineering opti-
mization courses at the junior/senior level as well as first-year-graduate-level at Indian
Institute of Technology, Kanpur, India; Purdue University, West Lafayette, Indiana;
and University of Miami, Coral Gables, Florida. At University of Miami, I cover
Chapter 1 and parts of Chapters 2, 3, 5, 6, 7, and 13 in a dual-level course entitled
Optimization in Design. In this course, a design project is also assigned to each student
in which the student identifies, formulates, and solves a practical engineering problem
of his/her interest by applying or modifying an optimization technique. This design
project gives the student a feeling for ways that optimization methods work in practice.
In addition, I teach a graduate level course titled Mechanical System Optimization in
which I cover Chapters 1-7, and parts of Chapters 9, 10, 11, 13, and 17. The book can
also be used, with some supplementary material, for courses with different emphasis
such as Structural Optimization, System Optimization and Optimization Theory and
Practice. The relative simplicity with which the various topics are presented makes the
book useful both to students and to practicing engineers for purposes of self-study. The
book also serves as a reference source for different engineering optimization applica-
tions. Although the emphasis of the book is on engineering applications, it would also
be useful to other areas, such as operations research and economics. A knowledge of
matrix theory and differential calculus is assumed on the part of the reader.

The book consists of 17 chapters and 3 appendixes. Chapter 1 provides an introduc-
tion to engineering optimization and optimum design and an overview of optimization
methods. The concepts of design space, constraint surfaces, and contours of objective
function are introduced here. In addition, the formulation of various types of optimiza-
tion problems is illustrated through a variety of examples taken from various fields of
engineering. Chapter 2 reviews the essentials of differential calculus useful in finding
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Preface  Xix

the maxima and minima of functions of several variables. The methods of constrained
variation and Lagrange multipliers are presented for solving problems with equal-
ity constraints. The Kuhn—Tucker conditions for inequality-constrained problems are
given along with a discussion of convex programming problems.

Chapters 3 and 4 deal with the solution of linear programming problems. The
characteristics of a general linear programming problem and the development of the
simplex method of solution are given in Chapter 3. Some advanced topics in linear
programming, such as the revised simplex method, duality theory, the decomposition
principle, and post-optimality analysis, are discussed in Chapter 4. The extension of
linear programming to solve quadratic programming problems is also considered in
Chapter 4.

Chapters 5-7 deal with the solution of nonlinear programming problems. In
Chapter 5, numerical methods of finding the optimum solution of a function of
a single variable are given. Chapter 6 deals with the methods of unconstrained
optimization. The algorithms for various zeroth-, first-, and second-order techniques
are discussed along with their computational aspects. Chapter 7 is concerned with the
solution of nonlinear optimization problems in the presence of inequality and equality
constraints. Both the direct and indirect methods of optimization are discussed. The
methods presented in this chapter can be treated as the most general techniques for
the solution of any optimization problem.

Chapter 8 presents the techniques of geometric programming. The solution tech-
niques for problems of mixed inequality constraints and complementary geometric
programming are also considered. In Chapter 9, computational procedures for solving
discrete and continuous dynamic programming problems are presented. The prob-
lem of dimensionality is also discussed. Chapter 10 introduces integer programming
and gives several algorithms for solving integer and discrete linear and nonlinear
optimization problems. Chapter 11 reviews the basic probability theory and presents
techniques of stochastic linear, nonlinear, and geometric programming. The theory and
applications of calculus of variations, optimal control theory, and optimality criteria
methods are discussed briefly in Chapter 12. Chapter 13 presents several modern meth-
ods of optimization including genetic algorithms, simulated annealing, particle swarm
optimization, ant colony optimization, neural-network-based methods, and fuzzy sys-
tem optimization. Chapter 14 deals with metaheuristic optimization algorithms and
introduces nearly 20 algorithms with emphasis on Crow search, Firefly, Harmony
search, Teaching-Learning and Honey bee swarm optimization algorithms. The prac-
tical aspects of optimization, including reduction of size of problem, fast reanalysis
techniques and sensitivity of optimum solutions are discussed in Chapter 15. The mul-
tilevel and multiobjective optimization methods are covered in Chapter 16. Finally,
Chapter 17 presents the solution of different types of optimization problems using the
MATLAB software.

Appendix A presents the definitions and properties of convex and concave func-
tions. A brief discussion of the computational aspects and some of the commercial
optimization programs is given in Appendix B. Finally, Appendix C presents a brief
introduction to Matlab, optimization toolbox, and use of MATLAB programs for
the solution of optimization problems. Answers to selected problems are given after
Appendix C.
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Introduction to Optimization

1.1 INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances. In
design, construction, and maintenance of any engineering system, engineers have to
take many technological and managerial decisions at several stages. The ultimate goal
of all such decisions is either to minimize the effort required or to maximize the desired
benefit. Since the effort required or the benefit desired in any practical situation can
be expressed as a function of certain decision variables, optimization can be defined
as the process of finding the conditions that give the maximum or minimum value of
a function. It can be seen from Figure 1.1 that if a point x* corresponds to the mini-
mum value of function f (x), the same point also corresponds to the maximum value
of the negative of the function, —f (x). Thus, without loss of generality, optimization
can be taken to mean minimization, since the maximum of a function can be found by
seeking the minimum of the negative of the same function.

In addition, the following operations on the objective function will not change the
optimum solution x* (see Figure 1.2):

1. Multiplication (or division) of f (x) by a positive constant c.
2. Addition (or subtraction) of a positive constant c to (or from) f (x).

There is no single method available for solving all optimization problems effi-
ciently. Hence a number of optimization methods have been developed for solving dif-
ferent types of optimization problems. The optimum seeking methods are also known
as mathematical programming techniques and are generally studied as a part of oper-
ations research. Operations research is a branch of mathematics concerned with the
application of scientific methods and techniques to decision-making problems and
with establishing the best or optimal solutions. The beginnings of the subject of oper-
ations research can be traced to the early period of World War II. During the war, the
British military faced the problem of allocating very scarce and limited resources (such
as fighter airplanes, radar, and submarines) to several activities (deployment to numer-
ous targets and destinations). Because there were no systematic methods available to
solve resource allocation problems, the military called upon a team of mathemati-
cians to develop methods for solving the problem in a scientific manner. The methods
developed by the team were instrumental in the winning of the Air Battle by Britain.
These methods, such as linear programming (LP), which were developed as a result
of research on (military) operations, subsequently became known as the methods of
operations research.

In recent years several new optimization methods that do not fall in the area of
traditional mathematical programming have been and are being developed. Most of
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these new methods can be labeled as metaheuristic optimization methods. All the
metaheuristic optimization methods have the following features: (i) they use stochas-
tic or probabilistic ideas in various steps; (ii) they are intuitive or trial and error based,
or heuristic in nature; (iii) they all use strategies that imitate the behavior or character-
istics of some species such as bees, bats, birds, cuckoos, and fireflies; (iv) they all tend
to find the global optimum solution; and (v) they are most likely to find an optimum
solution, but not necessarily all the time.

Table 1.1 lists various mathematical programming techniques together with
other well-defined areas of operations research, including the new class of methods
termed metaheuristic optimization methods. The classification given in Table 1.1 is
not unique; it is given mainly for convenience.

Mathematical programming techniques are useful in finding the minimum of a
function of several variables under a prescribed set of constraints. Stochastic process
techniques can be used to analyze problems described by a set of random variables



Table 1.1 Methods of Operations Research.

1.2 Historical Development 3

Mathematical programming
or optimization techniques

Stochastic process
techniques

Statistical methods

Calculus methods
Calculus of variations
Nonlinear programming
Geometric programming
Quadratic programming
Linear programming
Dynamic programming
Integer programming
Stochastic programming
Separable programming

Multiobjective programming

Network methods: Critical
Path Method (CPM) and
Program (Project)
Management and Review
Technique (PERT)

Game theory

Statistical decision theory
Markov processes
Queueing theory
Renewal theory
Simulation methods
Reliability theory

Regression analysis

Cluster analysis, pattern
recognition

Design of experiments

Discriminate analysis
(factor analysis)

Modern or nontraditional optimization techniques (including Metaheuristic

optimization methods)
Genetic algorithms
Simulated annealing
Ant colony optimization

Particle swarm optimization

Bat algorithm
Honey Bee algorithm
Crow search algorithm

Firefly algorithm

Salp swarm algorithm

Cuckoo algorithm

Water evaporation
algorithm

Passing vehicle search

algorithm

Runner-root algorithm

Artificial immune system
algorithm

Neural network-based
optimization

Fuzzy optimization

Tabu search method Harmony search algorithm

Teaching-learning algorithm

Fruitfly algorithm

having known probability distributions. Statistical methods enable one to analyze the
experimental data and build empirical models to obtain the most accurate represen-
tation of the physical situation. This book deals with the theory and application of
mathematical programming techniques suitable for the solution of engineering design
problems. A separate chapter is devoted to the metaheuristic optimization methods.

HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton, Lagrange,
and Cauchy. The development of differential calculus methods of optimization was
possible because of the contributions of Newton and Leibnitz to calculus. The
foundations of calculus of variations, which deals with the minimization of func-
tionals, were laid by Bernoulli, Euler, Lagrange, and Weierstrass. The method of
optimization for constrained problems, which involves the addition of unknown
multipliers, became known by the name of its inventor, Lagrange. Cauchy made the
first application of the steepest descent method to solve unconstrained minimization
problems. Despite these early contributions, very little progress was made until the
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middle of the twentieth century, when high-speed digital computers made imple-
mentation of the optimization procedures possible and stimulated further research
on new methods. Spectacular advances followed, producing a massive literature on
optimization techniques. This advancement also resulted in the emergence of several
well-defined new areas in optimization theory.

It is interesting to note that the major developments in the area of numerical meth-
ods of unconstrained optimization have been made in the United Kingdom only in the
1960s. The development of the simplex method by Dantzig in 1947 for linear pro-
gramming problems and the annunciation of the principle of optimality in 1957 by
Bellman for dynamic programming problems paved the way for development of the
methods of constrained optimization. Work by Kuhn and Tucker in 1951 on the nec-
essary and sufficiency conditions for the optimal solution of programming problems
laid the foundations for a great deal of later research in nonlinear programming (NLP).
The contributions of Zoutendijk and Rosen to NLP during the early 1960s have been
significant. Although no single technique has been found to be universally applicable
for NLP problems, work of Carroll and Fiacco and McCormick allowed many difficult
problems to be solved by using the well-known techniques of unconstrained optimiza-
tion. Geometric programming (GMP) was developed in the 1960s by Duffin, Zener,
and Peterson. Gomory did pioneering work in integer programming, one of the most
exciting and rapidly developing areas of optimization. The reason for this is that most
real-world applications fall under this category of problems. Dantzig and Charnes and
Cooper developed stochastic programming techniques and solved problems by assum-
ing design parameters to be independent and normally distributed.

The desire to optimize more than one objective or goal while satisfying the phys-
ical limitations led to the development of multiobjective programming methods. Goal
programming is a well-known technique for solving specific types of multiobjec-
tive optimization problems. The goal programming was originally proposed for linear
problems by Charnes and Cooper in 1961. The foundations of game theory were laid
by von Neumann in 1928, and since then the technique has been applied to solve sev-
eral mathematical economics and military problems. Only during the last few years
has game theory been applied to solve engineering design problems.

Modern Methods of Optimization

The modern optimization methods, also sometimes called nontraditional optimization
methods, have emerged as powerful and popular methods for solving complex engi-
neering optimization problems in recent years. These methods include genetic algo-
rithms, simulated annealing, particle swarm optimization, ant colony optimization,
neural network-based optimization, and fuzzy optimization. The genetic algorithms
are computerized search and optimization algorithms based on the mechanics of natu-
ral genetics and natural selection. The genetic algorithms were originally proposed by
John Holland in 1975. The simulated annealing method is based on the mechanics of
the cooling process of molten metals through annealing. The method was originally
developed by Kirkpatrick, Gelatt, and Vecchi.

The particle swarm optimization algorithm mimics the behavior of social organ-
isms such as a colony or swarm of insects (for example, ants, termites, bees, and
wasps), a flock of birds, and a school of fish. The algorithm was originally proposed
by Kennedy and Eberhart in 1995. The ant colony optimization is based on the coop-
erative behavior of ant colonies, which are able to find the shortest path from their
nest to a food source. The method was first developed by Marco Dorigo in 1992. In
recent years, a class of methods, termed metaheuristic algorithms, are being devel-
oped for the solution of optimization problems. These include techniques such as the
firefly, harmony search, bee, cuckoo, bat, crow, teaching-learning, passing-vehicle,
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and salp swarm algorithms. The neural network methods are based on the immense
computational power of the nervous system to solve perceptional problems in the pres-
ence of a massive amount of sensory data through its parallel processing capability.
The method was originally used for optimization by Hopfield and Tank in 1985. The
fuzzy optimization methods were developed to solve optimization problems involv-
ing design data, objective function, and constraints stated in imprecise form involving
vague and linguistic descriptions. The fuzzy approaches for single and multiobjective
optimization in engineering design were first presented by Rao in 1986.

1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering prob-
lem. Some typical applications from different engineering disciplines indicate the wide
scope of the subject:

1. Design of aircraft and aerospace structures for minimum weight

2. Finding the optimal trajectories of space vehicles

3. Design of civil engineering structures such as frames, foundations, bridges,

4

=

towers, chimneys, and dams for minimum cost

Minimum-weight design of structures for earthquake, wind, and other types
of random loading

Design of water resources systems for maximum benefit
Optimal plastic design of structures

. Optimum design of linkages, cams, gears, machine tools, and other mechan-

ical components

. Selection of machining conditions in metal-cutting processes for minimum

10.

11

12
13
14
15

16

.

.

.

17.

18
19

20
21

22

.

production cost

Design of material handling equipment, such as conveyors, trucks, and cranes,
for minimum cost

Design of pumps, turbines, and heat transfer equipment for maximum effi-
ciency

Optimum design of electrical machinery such as motors, generators, and
transformers

Optimum design of electrical networks

Shortest route taken by a salesperson visiting various cities during one tour
Optimal production planning, controlling, and scheduling

Analysis of statistical data and building empirical models from experimental
results to obtain the most accurate representation of the physical phenomenon

Optimum design of chemical processing equipment and plants
Design of optimum pipeline networks for process industries
Selection of a site for an industry

Planning of maintenance and replacement of equipment to reduce operating
costs

Inventory control

Allocation of resources or services among several activities to maximize the
benefit

Controlling the waiting and idle times and queueing in production lines to
reduce the costs
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23. Planning the best strategy to obtain maximum profit in the presence of a com-
petitor

24. Optimum design of control systems

1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as follows.

X1

Find X = {2} which minimizes £(X)

subject to the constraints
2, ...
32, oy D (1.1

where X is an n-dimensional vector called the design vector, f (X) is termed the objec-
tive function, and g; (X) and /; (X) are known as inequality and equality constraints,
respectively. The number of variables n and the number of constraints m and/or p need
not be related in any way. The problem stated in Eq. (1.1) is called a constrained opti-
mization problem." Some optimization problems do not involve any constraints and
can be stated as
X1
Find X = {2 & which minimizes f(X) (1.2)

xn

Such problems are called unconstrained optimization problems.

1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities, some of which
are viewed as variables during the design process. In general, certain quantities are
usually fixed at the outset and these are called preassigned parameters. All the other
quantities are treated as variables in the design process and are called design or deci-
sion variables x;,i =1, 2,..., n. The design variables are collectively represented as
a design vector X = {x;, X5,..., X, }T. As an example, consider the design of the gear
pair shown in Figure 1.3, characterized by its face width b, number of teeth 7', and 75,
center distance d, pressure angle y, tooth profile, and material. If center distance d,
pressure angle y, tooth profile, and material of the gears are fixed in advance, these
quantities can be called preassigned parameters. The remaining quantities can be col-
lectively represented by a design vector X = {x,, x,, x3}T = {b, T}, T, }". If there are
no restrictions on the choice of b, T, and T, any set of three numbers will constitute a
design for the gear pair. If an n-dimensional Cartesian space with each coordinate axis
representing a design variable x; (i =1, 2,. .., n) is considered, the space is called the
design variable space or simply design space. Each point in the n-dimensional design

'In the mathematical programming literature, the equality constraints lj(X) =0,7=1,2,..., p are often
neglected, for simplicity, in the statement of a constrained optimization problem, although several methods
are available for handling problems with equality constraints.
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space is called a design point and represents either a possible or an impossible solution
to the design problem. In the case of the design of a gear pair, the design point {1.0,
20, 40}T, for example, represents a possible solution, whereas the design point {1.0,
—20, 40.5}T represents an impossible solution since it is not possible to have either a
negative value or a fractional value for the number of teeth.

1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily; rather,
they have to satisfy certain specified functional and other requirements. The restric-
tions that must be satisfied to produce an acceptable design are collectively called
design constraints. Constraints that represent limitations on the behavior or perfor-
mance of the system are termed behavior or functional constraints. Constraints that
represent physical limitations on design variables, such as availability, fabricability,
and transportability, are known as geometric or side constraints. For example, for the
gear pair shown in Figure 1.3, the face width b cannot be taken smaller than a cer-
tain value, due to strength requirements. Similarly, the ratio of the numbers of teeth,
T,/T,, is dictated by the speeds of the input and output shafts, N, and N,. Since these
constraints depend on the performance of the gear pair, they are called behavior con-
straints. The values of 7| and 7, cannot be any real numbers but can only be integers.
Further, there can be upper and lower bounds on 7} and 7, due to manufacturing limi-
tations. Since these constraints depend on the physical limitations, they are called side
constraints.

1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality constraints
g;(X) <0. The set of values of X that satisfy the equation g;,(X) = 0 forms a hyper-
surface in the design space and is called a constraint surface. Note that this is an
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(n — 1)-dimensional subspace, where n is the number of design variables. The con-
straint surface divides the design space into two regions: one in which g;(X) <0 and
the other in which g;(X) > 0. Thus, the points lying on the hypersurface will satisfy the
constraint g;(X) critically, whereas the points lying in the region where g;(X) >0 are
infeasible or unacceptable, and the points lying in the region where g,(X) <0 are fea-
sible or acceptable. The collection of all the constraint surfaces gj(X) =0,j=1,2,...,
m, which separates the acceptable region is called the composite constraint surface.

Figure 1.4 shows a hypothetical two-dimensional design space where the infeasi-
ble region is indicated by hatched lines. A design point that lies on one or more than
one constraint surface is called a bound point, and the associated constraint is called an
active constraint. Design points that do not lie on any constraint surface are known as
free points. Depending on whether a particular design point belongs to the acceptable
or unacceptable region, it can be identified as one of the following four types:

1. Free and acceptable point

2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Figure 1.4.

1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate design
that merely satisfies the functional and other requirements of the problem. In gen-
eral, there will be more than one acceptable design, and the purpose of optimization
is to choose the best one of the many acceptable designs available. Thus, a criterion
has to be chosen for comparing the different alternative acceptable designs and for

Behavior constraint g, = 0

X Side constraint g5 = 0
e
/
/
24
/ . .
Infeasible region g Feasible region
A .
4 ® Free point Behavior
. 4 .
Behavior /é)/ 4 constraint
constraint f £, =0
/
84=0 A
Bound acceptable
V point
o Free f
unacceptable y ) )
point y Side constraint g5 =0
4 .
N y NN N
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/]
4 > - X
/
A /7777777>
/]

Figure 1.4 Constraint surfaces in a hypothetical two-dimensional design space.
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selecting the best one. The criterion with respect to which the design is optimized,
when expressed as a function of the design variables, is known as the criterion or
merit or objective function. The choice of objective function is governed by the nature
of problem. The objective function for minimization is generally taken as weight
in aircraft and aerospace structural design problems. In civil engineering structural
designs, the objective is usually taken as the minimization of cost. The maximization of
mechanical efficiency is the obvious choice of an objective in mechanical engineering
systems design. Thus, the choice of the objective function appears to be straightfor-
ward in most design problems. However, there may be cases where the optimization
with respect to a particular criterion may lead to results that may not be satisfac-
tory with respect to another criterion. For example, in mechanical design, a gearbox
transmitting the maximum power may not have the minimum weight. Similarly, in
structural design, the minimum weight design may not correspond to minimum stress
design, and the minimum stress design, again, may not correspond to maximum fre-
quency design. Thus, the selection of the objective function can be one of the most
important decisions in the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied simul-
taneously. For example, a gear pair may have to be designed for minimum weight
and maximum efficiency while transmitting a specified horsepower. An optimization
problem involving multiple objective functions is known as a multiobjective program-
ming problem. With multiple objectives there arises a possibility of conflict, and one
simple way to handle the problem is to construct an overall objective function as a
linear combination of the conflicting multiple objective functions. Thus, if f;(X) and
>(X) denote two objective functions, construct a new (overall) objective function for
optimization as

SX) = a1 /i(X) + o, ,(X) (1.3)

where @, and a, are constants whose values indicate the relative importance of one
objective function relative to the other.

1.4.5 Objective Function Surfaces

The locus of all points satisfying f (X) = C = constant forms a hypersurface in the
design space, and each value of C corresponds to a different member of a family of sur-
faces. These surfaces, called objective function surfaces, are shown in a hypothetical
two-dimensional design space in Figure 1.5.

Once the objective function surfaces are drawn along with the constraint surfaces,
the optimum point can be determined without much difficulty. But the main problem is
that as the number of design variables exceeds two or three, the constraint and objec-
tive function surfaces become complex even for visualization and the problem has to
be solved purely as a mathematical problem. The following example illustrates the
graphical optimization procedure.

Example 1.1 Design a uniform column of tubular section, with hinge joints at both
ends, (Figure 1.6) to carry a compressive load P =2500kg; for minimum cost. The
column is made up of a material that has a yield stress (o) of 500 kg/cm?, modulus
of elasticity (E) of 0.85 x 10° kg,/cm?, and weight density (p) of 0.0025 kg/cm?. The
length of the column is 250 cm. The stress induced in the column should be less than
the buckling stress as well as the yield stress. The mean diameter of the column is
restricted to lie between 2 and 14 cm, and columns with thicknesses outside the range
0.2-0.8 cm are not available in the market. The cost of the column includes material
and construction costs and can be taken as SW + 2d, where W is the weight in kilograms
force and d is the mean diameter of the column in centimeters.
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SOLUTION The design variables are the mean diameter (d) and tube thickness (f):

x={up =10 &
The objective function to be minimized is given by
SX) =5W+2d =5pin dt +2d = 9.82x,x, + 2x, (E2)
The behavior constraints can be expressed as
stress induced < yield stress

stress induced < buckling stress

The induced stress is given by

induced stress = o; = P _ 2500 (E3)

mdt TTX1 Xy

The buckling stress for a pin-connected column is given by

. Euler buckling load  z2EI 1
buckling stress = o, = = —

= E4
cross-sectional area 2 ndt (E4)

where

I = second moment of area of the cross section of the column
T4 4
= 6_4(do - d,‘ )

) 2 : _ay= = 2 2
= 64(d0+dl.)(d0+dl)(do d;) 64[(d+t) +(d —1)7]

X[d+1t)+(d—-D][d+1)—(d-1)]

= %dt(d2 + t2) = %xp@(x% +x§) (E5)

Thus, the behavior constraints can be restated as

2500

XXy

2500 72(0.85x 10%)( +x2)
XX, 8(250)2 <0

5 X) = —-500<0 (E6)

& X) =

(E7)

The side constraints are given by

02<1r<038
which can be expressed in standard form as
&X)=—-x,+20<0 (E8)

eX)=x,-140<0 (E9)
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g&X)=-x+02<0 (E10)
8sX)=x,-0.8<0 (E11)

Since there are only two design variables, the problem can be solved graphically
as shown below.

First, the constraint surfaces are to be plotted in a two-dimensional design space
where the two axes represent the two design variables x; and x,. To plot the first con-
straint surface, we have

aX) =29 _s00<0
X[ Xy
that is,
x1x, 2 1.593

Thus, the curve x;x, = 1.593 represents the constraint surface g,(X) = 0. This
curve can be plotted by finding several points on the curve. The points on the curve
can be found by giving a series of values to x; and finding the corresponding values
of x, that satisfy the relation x,x, = 1.593:

X 2.0 4.0 6.0 8.0 10.0 12.0 14.0
X, 0.7965 0.3983 0.2655 0.1990 0.1593 0.1328 0.1140

These points are plotted and a curve P,;Q, passing through all these points is
drawn as shown in Figure 1.7, and the infeasible region, represented by g,(X) >0 or
x,%, < 1.593, is shown by hatched lines.? Similarly, the second constraint g,(X) <0
can be expressed as xlxz(x% + x%) >47.3 and the points lying on the constraint surface
€2(X) = 0 can be obtained as follows for x,x,(x} +x3) = 47.3:

X 2 4 6 8 10 12 14
Xy 241 0.716 0.219 0.0926 0.0473 0.0274 0.0172

These points are plotted as curve P,(0,, the feasible region is identified, and the
infeasible region is shown by hatched lines as in Figure 1.7. The plotting of side con-
straints is very simple since they represent straight lines. After plotting all the six
constraints, the feasible region can be seen to be given by the bounded area ABCDEA.

Next, the contours of the objective function are to be plotted before finding the
optimum point. For this, we plot the curves given by

JSX) = 9.82x,x, + 2x; = ¢ = constant

for a series of values of c¢. By giving different values to ¢, the contours of f can be
plotted with the help of the following points.

Xy 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X 16.77 12.62 10.10 8.44 7.24 6.33 5.64 5.07

’The infeasible region can be identified by testing whether the origin lies in the feasible or infeasible region.
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Figure 1.7 Graphical optimization of Example 1.1.
For 9.82x,x, +2x, = 40.0:
Xy 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X 13.40 10.10 8.08 6.75 5.79 5.06 4.51 4.05
For 9.82x,x, + 2x, = 31.58 (passing through the corner point C):
X, 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
X, 10.57 7.96 6.38 5.33 4.57 4.00 3.56 3.20
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For 9.82x,x, + 2x; = 26.53 (passing through the corner point B):

Xy 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X 8.88 6.69 5.36 4.48 3.84 3.36 2.99 2.69

For 9.82x,x, + 2x; =20.0:

X, 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X 6.70 5.05 4.04 3.38 2.90 2.53 2.26 2.02

These contours are shown in Figure 1.7 and it can be seen that the objective func-
tion cannot be reduced below a value of 26.53 (corresponding to point B) without
violating some of the constraints. Thus the optimum solution is given by point B with
d* =x] =544cmand * = x5 = 0.293 cm with f,;, = 26.53.

1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.

1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained or
unconstrained, depending on whether constraints exist in the problem.

1.5.2 Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems can be
classified into two broad categories. In the first category, the problem is to find values
to a set of design parameters that make some prescribed function of these parameters
minimum subject to certain constraints. For example, the problem of minimum-weight
design of a prismatic beam shown in Figure 1.8a subject to a limitation on the maxi-
mum deflection can be stated as follows:

Find X = {Z} which minimizes
f(X) = plbd (1.4)

—
3
2

QU
Al m e a ey
k.
oY
~
=
=
/7
Z
TR Y

(a) Parameter optimization problem. (b) Trajectory optimization problem.

Figure 1.8 Cantilever beam under concentrated load.
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subject to the constraints

6tip(X) < 6max
b>0
d>0

where p is the density and 6, is the tip deflection of the beam. Such problems are
called parameter or static optimization problems. In the second category of problems,
the objective is to find a set of design parameters, which are all continuous functions
of some other parameter, that minimizes an objective function subject to a set of con-
straints. If the cross-sectional dimensions of the rectangular beam are allowed to vary
along its length as shown in Figure 1.8b, the optimization problem can be stated as

Find X(1) = {Zgg} which minimizes
!
JIX®] = p/o b(r) d(r) dt (1.5)
subject to the constraints
Oip [ X(N] < 6y, 011
b(t)>0, 0<t<l
d@) >0, 0<t<l!

Here the design variables are functions of the length parameter ¢. This type of
problem, where each design variable is a function of one or more parameters, is known
as a trajectory or dynamic optimization problem [1.55].

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems can be
classified as optimal control and nonoptimal control problems.

Optimal Control Problem An optimal control (OC) problem is a mathematical pro-
gramming problem involving a number of stages, where each stage evolves from the
preceding stage in a prescribed manner. It is usually described by two types of vari-
ables: the control (design) and the state variables. The control variables define the
system and govern the evolution of the system from one stage to the next, and the
state variables describe the behavior or status of the system in any stage. The prob-
lem is to find a set of control or design variables such that the total objective function
(also known as the performance index, PI) over all the stages is minimized subject to
a set of constraints on the control and state variables. An OC problem can be stated as

follows [1.55]:
i

Find X which minimizes f(X) = Zfi(xi,yi) (1.6)

i=1
subject to the constraints
4G y) Y =y, i=1,2,...1
g(x)<0, j=12,..,1
hk(yk)s(), k=1,2,...,l
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where x; is the ith control variable, y; the ith state variable, and f; the contribution of
the ith stage to the total objective function; g;, h;, and g; are functions of x;, y;, and x;
and y;, respectively, and [ is the total number of stages. The control and state variables
x; and y; can be vectors in some cases. The following example serves to illustrate the
nature of an optimal control problem.

Example 1.2 A rocket is designed to travel a distance of 12 s in a vertically upward
direction [1.39]. The thrust of the rocket can be changed only at the discrete points
located at distances of 0, s, 2s, 3s, ..., 12s. If the maximum thrust that can be devel-
oped at point i either in the positive or negative direction is restricted to a value of
F;, formulate the problem of minimizing the total time of travel under the following
assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of the
rocket are changed be numbered as 1, 2, 3,..., 13 (Figure 1.9). Denoting x; as the
thrust, v; the velocity, a; the acceleration, and m; the mass of the rocket at point i,
Newton’s second law of motion can be applied as

net force on the rocket = mass X acceleration
This can be written as
thrust — gravitational force — air resistance = mass X acceleration

or
x; —m;g — kv, = ma; (ED)

where the mass m; can be expressed as

m;

= mi_l - kzs (Ez)

and k; and k, are constants. Eq. (E1) can be used to express the acceleration, g;, as

=t —g-— (E3)

m; m;

a;

If ¢; denotes the time taken by the rocket to travel from point i to point i + 1, the
distance traveled between the points i and i + 1 can be expressed as

_ 1 »
s=vt; + Eaiti

or

m; m;

A kv,
%t?(ﬁ—g—l—vl)+fivi—s=0 (E4)
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Figure 1.9 Control points in the path of the rocket.

from which ¢, can be determined as

(ES)

Of the two values given by Eq. (ES), the positive value has to be chosen for ¢,.
The velocity of the rocket at point i+ 1, v;,;, can be expressed in terms of v; as (by
assuming the acceleration between points i and i + 1 to be constant for simplicity)

(E6)

Vig1 = v +a;
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The substitution of Egs. (E3) and (ES) into Eq. (E6) leads to

5 Xi kyv;
Vil =i t2s| ——8g—— (E7)
m; m;

From an analysis of the problem, the control variables can be identified as the
thrusts, x;, and the state variables as the velocities, v;. Since the rocket starts at point
1 and stops at point 13,

Vl = V13 = O (Eg)
Thus, the problem can be stated as an OC problem as

X1

. X . L
Find X =< “2 } which minimizes

5 Xi kyv;
. n |Vt t2s| — -8 —
m; m;
fX =)= -
i=1

i=1

X12

subject to

V]=V13=O

1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the nature of
expressions for the objective function and the constraints. According to this classifi-
cation, optimization problems can be classified as linear, nonlinear, geometric, and
quadratic programming problems. This classification is extremely useful from the
computational point of view since there are many special methods available for the
efficient solution of a particular class of problems. Thus, the first task of a designer
would be to investigate the class of problem encountered. This will, in many cases,
dictate the types of solution procedures to be adopted in solving the problem.

Nonlinear Programming Problem 1f any of the functions among the objective and
constraint functions in Eq. (1.1) is nonlinear, the problem is called an NLP problem.
This is the most general programming problem and all other problems can be consid-
ered as special cases of the NLP problem.

Example 1.3 The step-cone pulley shown in Figure 1.10 is to be designed for trans-
mitting a power of at least 0.75 hp. The speed of the input shaft is 350 rpm and the
output speed requirements are 750, 450, 250, and 150 rpm for a fixed center distance
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d|
f 2| d'y ) N=350

Figure 1.10 Step-cone pulley.

of a between the input and output shafts. The tension on the tight side of the belt is to
be kept more than twice that on the slack side. The thickness of the belt is ¢ and the
coefficient of friction between the belt and the pulleys is u. The stress induced in the
belt due to tension on the tight side is s. Formulate the problem of finding the width
and diameters of the steps for minimum weight.

SOLUTION The design vector can be taken as

where d; is the diameter of the ith step on the output pulley and w is the width of the
belt and the steps. The objective function is the weight of the step-cone pulley system:

FO) = pwi(d +dy +di +di+d T +d5+d 5+ d)
> 750) 450
= pw— {d 1+( 1+<350)

350) |+
+d [1+(250)]+d§ 1+(%)2]} (E1)

350
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where p is the density of the pulleys and d, is the diameter of the ith step on the input
pulley.

To have the belt equally tight on each pair of opposite steps, the total length of the
belt must be kept constant for all the output speeds. This can be ensured by satisfying
the following equality constraints:

C,—Cy=0 (E2)
€ —Cy=0 (E3)
Cl - C4 =0 (E4)

where C; denotes length of the belt needed to obtain output speed N; (i =1, 2, 3, 4)
and is given by [1.116, 1.117]:

2
2 N da +ea

2
N; 2
xd; N; (ﬁ - 1) d;
Cix— (14— )|+ —m
where N is the speed of the input shaft and a is the center distance between the shafts.
The ratio of tensions in the belt can be expressed as [1.116, 1.117]
5 — e”ei

T

where Tf and Té are the tensions on the tight and slack sides of the ith step, u the
coefficient of friction, and 6; the angle of lap of the belt over the ith pulley step. The
angle of lap is given by

0, = = — 2sin™"

and hence the constraint on the ratio of tensions becomes

N. d
exp{y [7r—2sin_1 {(ﬁ—l) i}

The limitation on the maximum tension can be expressed as

}22, i=1,234 (E5)

T, =stw, i=12.34 (E6)

where s is the maximum allowable stress in the belt and ¢ is the thickness of the belt.
The constraint on the power transmitted can be stated as (using Ib; for force and ft for
linear dimensions). ‘ _
(T} — T;)rd}(350)
33,000

which can be rewritten, using T} = stw from Eq. (E6), as

e {(5) )

x(ﬂ) >075, i=1,2,3,4 (E7)

Stw <1 — exp

33,000
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Finally, the lower bounds on the design variables can be taken as

w>0 (E8)

d >0, i=1,2,3,4 (E9)

As the objective function, (E1), and most of the constraints, (E2)—(E9), are non-
linear functions of the design variables d,, d,, ds, d,, and w, this problem is a NLP
problem.

Geometric Programming Problem Definition A function 4(X) is called a posyn-
omial if h can be expressed as the sum of power terms each of the form
ail ai2 | in
cx] X e xy
where ¢; and a;; are constants with ¢; > 0 and x; > 0. Thus, a posynomial with N terms
can be expressed as

h(X) = ¢! xg"2 oo il e VN (1.7)

A GMP problem is one in which the objective function and constraints are
expressed as posynomials in X. Thus, GMP problem can be posed as follows [1.59]:
Find X which minimizes

N(]
X =Yg (H ”‘f),ci>0,xj>0 (1.8)

i=1

subject to

N, n
gX) = Zaik (ij’7k> >0, az >0, x,>0, k=1,2,...,m

i=1 j=1

where N, and N, denote the number of posynomial terms in the objective and kth
constraint function, respectively.

Example 1.4 Four identical helical springs are used to support a milling machine
weighing 5000 1b. Formulate the problem of finding the wire diameter (d), coil diame-
ter (D), and the number of turns () of each spring (Figure 1.11) for minimum weight
by limiting the deflection to 0.1 in. and the shear stress to 10 000 psi in the spring. In
addition, the natural frequency of vibration of the spring is to be greater than 100 Hz.
The stiffness of the spring (k), the shear stress in the spring (z), and the natural fre-
quency of vibration of the spring (f,) are given by

_ &G
8D3N
8FD

_K—
S wd?

kg d4G AV ng
V 8D3N p(ﬂd2/4)7rDN 24/2pxD2N
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T

Figure 1.11 Helical spring.

where G is the shear modulus, F the compressive load on the spring, w the weight of
the spring, p the weight density of the spring, and K| the shear stress correction factor.

Assume that the material is spring steel with G = 12 x 10° psi and p = 0.3 1b/in.3, an

the shear stress correction factor is K = 1.05.

SOLUTION The design vector is given by

and the objective function by
rd?
f(X) = weight = TIL'DN/)

The constraints can be expressed as

3
deflection = £ = 8FD'N <0.1
k d*G
that is,
d*‘G
X)=——>

& SOFD’N

8FD

shear stress = K| 7 < 10,000

d

(ED)

(E2)
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that is,
12507 d?
X)=—"——>1
& (X) K.FD

natural frequenc ce L > 100 (E3)

that is,
v Ggd
HX)y=———>1 (E4)

200/2pzD?N

Since the equality sign is not included (along with the inequality symbol, >) in
the constraints of Eqgs. (E2)—(E4), the design variables are to be restricted to positive
values as

d>0, D>0, N>0 (ES)

By substituting the known data, F = weight of the milling machine/4 = 1250 Ib,
p=0.31b/in?, G =12 x 10° psi, and K, = 1.05, Egs. (E1)~(E4) become

fX) = in2(0.3)d2DN = 0.7402x7x,x; (E6)
d*(12 x 10%) 43
gl(X) = W 120x Xy Xy > 1 (E7)
12507d° e
X)= ——— _ =2992 > 1 E8
&%) = 1050250D N (E8)
VG d 2 -1
g(X) = ———— =139.8388x,x,%x; ' > 1 (E9)

2004/2prnD?*N

It can be seen that the objective function, f (X), and the constraint functions, g,
(X)—g3 (X), are posynomials and hence the problem is a GMP problem.

Quadratic Programming Problem A quadratic programming problem is a NLP
problem with a quadratic objective function and linear constraints. It is usually for-

mulated as follows:
F(X)—c+2q,xl+22Q,,, (1.9)
i=1 j=

subject to
Zal, X; = j, j=L2,...,m
x>0, i=12,....m
where c, ¢;, Q,j, a;, and b are constants.

Example 1.5 A manufacturing firm produces two products, A and B, using two lim-
ited resources. The maximum amounts of resources 1 and 2 available per day are 1000
and 250 units, respectively. The production of 1 unit of product A requires 1 unit of
resource 1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires
0.5 unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are
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given by the relations (0.375 — 0.000 05u«,) and (0.75 — 0.0001u,), respectively, where
u; denotes the number of units of resource i used (i =1, 2). The selling prices per unit
of products A and B, p, and pj, are given by

pa = 2.00 —0.0005x, — 0.00015x,

pg = 3.50 — 0.0002x, — 0.0015x,
where x, and x; indicate, respectively, the number of units of products A and B sold.
Formulate the problem of maximizing the profit assuming that the firm can sell all the

units it manufactures.

SOLUTION Let the design variables be the number of units of products A and B

manufactured per day:
x=1{"
B

The requirement of resource 1 per day is (x4 +0.5x5) and that of resource 2 is
(0.2x, + 0.5x5) and the constraints on the resources are

x, +0.5x5 < 1000 (E1)
0.2x, 4+ 0.5x5 < 250 (E2)
The lower bounds on the design variables can be taken as
x4 20 (E3)
x>0 (E4)
The total cost of resources 1 and 2 per day is

(x4 + 0.5x5)[0.375 — 0.00005(x, + 0.5x5)]
+(0.2x, + 0.5x,)[0.750 — 0.0001(0.2x,, + 0.5x)]

and the return per day from the sale of products A and B is
x,4(2.00 — 0.0005x4 — 0.00015x5) + x5(3.50 — 0.0002x, — 0.0015x5)

The total profit is given by the total return minus the total cost. Since the objective
function to be minimized is the negative of the profit per day, f (X) is given by
JX) = (x4 +0.5x5)[0.375 — 0.00005(x,4 + 0.5x)]
+ (0.2x4 + 0.5x5)[0.750 — 0.0001(0.2x,4 + 0.5x5)]
—x4(2.00 — 0.0005x, — 0.00015x5)
—x5(3.50 — 0.0002x, — 0.0015xp) (ES)

As the objective function (Eq. (E5)) is a quadratic and the constraints
(Egs. (E1)—(E4)) are linear, the problem is a quadratic programming problem.
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Linear Programming Problem If the objective function and all the constraints in
Eq. (1.1) are linear functions of the design variables, the mathematical programming
problem is called a linear programming (LP) problem. A linear programming problem
is often stated in the following standard form:

X1
Find X = {72

Xn

which minimizes f(X) = 2 CiX;

i=1

subject to the constraints

x>0,i=12,....n (1.10)

where c;, a;;, and bj are constants.

i
Example 1.6 A scaffolding system consists of three beams and six ropes as shown
in Figure 1.12. Each of the top ropes A and B can carry a load of W, each of the
middle ropes C and D can carry a load of W,, and each of the bottom ropes E and
F can carry a load of Wj. If the loads acting on beams 1, 2, and 3 are x;, x,, and x;,
respectively, as shown in Figure 1.12, formulate the problem of finding the maximum
load (x; + x, + x3) that can be supported by the system. Assume that the weights of
the beams 1, 2, and 3 are w,, w,, and w;, respectively, and the weights of the ropes are
negligible.

SOLUTION Assuming that the weights of the beams act through their respective
middle points, the equations of equilibrium for vertical forces and moments for each
of the three beams can be written as

For beam 3:
TE + TF = .X3 + W3
X380 + w32 = Tr(4)) =0
LSS L
A N B
—— 3/ — 6/ =
Y
Beam 1
e— 2] — *2 l— 2/ al
C “l’i D
Beam 2
] *3
E 3/ [~ F
\
Beam 3

Figure 1.12 Scaffolding system with three beams.
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For beam 2:

To+Tp—Tp=x,+w,
Xy (1) + wy() + Ty(l) = Tp(2) = 0

For beam 1:
Ty +Tg—Tc—Tp—Tp=x+w,

m60+m(%)—Q@D+Q@D+Q@D+ﬂﬂb:0

where T; denotes the tension in rope i. The solution of these equations gives

3 1

1 1
TE = —X3 + W3

4 2
TD—le+ng+lW2+lW3

2 8~ 2 4
T lx2+lx3+lwz+lw3

2 8~ 2 4
TB—1x1+lx2+zx3+lwl+ Wy + —Ww3

3 3 3 2 3 9
T, = x1+2x2+lx3+lw1+gw2+iw3

3 3 3 2 3 9

The optimization problem can be formulated by choosing the design vector as

X1
X == .x2

X3

Since the objective is to maximize the total load

JX) = =0 +x, +x3) (E1)

The constraints on the forces in the ropes can be stated as

T, <W,
T, < W,
Tc=W,
T, < W,
Tp<W;

TFS W3

(E2)
(E3)
(E4)
(ES)
(E6)

(E7)
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Finally, the nonnegativity requirement of the design variables can be expressed as

(E8)

Since all the equations of the problem (E1)—(E8), are linear functions of x|, x,,
and x5, the problem is a linear programming problem.

1.5.5 Classification Based on the Permissible Values of the Design Variables

Depending on the values permitted for the design variables, optimization problems
can be classified as integer and real-valued programming problems.

Integer Programming Problem If some or all of the design variables x;, x,,...,
x,, of an optimization problem are restricted to take on only integer (or discrete) val-
ues, the problem is called an integer programming problem. On the other hand, if all
the design variables are permitted to take any real value, the optimization problem is
called a real-valued programming problem. According to this definition, the problems
considered in Examples 1.1-1.6 are real-valued programming problems.

Example 1.7 A cargo load is to be prepared from five types of articles. The weight
w;, volume v;, and monetary value ¢; of different articles are given below.

Article type w; v; ¢
1 4 9 5
2 8 7 6
3 2 4 3
4 5 3 2
5 3 8 8

Find the number of articles x; selected from the ith type (i = 1, 2, 3, 4, 5), so that
the total monetary value of the cargo load is a maximum. The total weight and volume
of the cargo cannot exceed the limits of 2000 and 2500 units, respectively.

SOLUTION Let x; be the number of articles of type i (i = 1-5) selected. Since it
is not possible to load a fraction of an article, the variables x; can take only integer
values.

The objective function to be maximized is given by

FX) = 5x; + 6x, + 3x3 + 2x, + 8x; (ED)
and the constraints by
4x; + 8xy + 2x3 + 5x4 + 3x5 < 2000 (E2)
Ox; + Tx, + 4x3 + 3x4 + 8x5 < 2500 (E3)
x; 2 0 and integral, i =1,2,...,5 (E4)

Since x; are constrained to be integers, the problem is an integer programming
problem.
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1.5.6 Classification Based on the Deterministic Nature of the Variables

Based on the deterministic nature of the variables involved, optimization problems can
be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem A stochastic programming problem is an opti-
mization problem in which some or all of the parameters (design variables and/or
preassigned parameters) are probabilistic (nondeterministic or stochastic). Accord-
ing to this definition, the problems considered in Examples 1.1-1.7 are deterministic
programming problems.

Example 1.8 Formulate the problem of designing a minimum-cost rectangu-
lar under-reinforced concrete beam that can carry a bending moment M with a
probability of at least 0.95. The costs of concrete, steel, and formwork are given
by C, =$200/m?, C, =$5000/m>, and C; =$40/m? of surface area. The bending
moment M is a probabilistic quantity and varies between 1x 10° and 2 x 10> N-m
with a uniform probability. The strengths of concrete and steel are also uniformly
distributed probabilistic quantities whose lower and upper limits are given by

f. =25 and 35MPa
f;, =500 and 550 MPa

Assume that the area of the reinforcing steel and the cross-sectional dimensions
of the beam are deterministic quantities.

SOLUTION The breadth b in meters, the depth d in meters, and the area of reinforc-
ing steel A, in square meters are taken as the design variables x|, x,, and x;, respectively
(Figure 1.13). The cost of the beam per meter length is given by

f(X) = cost of steet + cost of concrete + cost of formwork

= A,C, + (bd — A)C, +2(b + d)C; (E1)

The resisting moment of the beam section is given by [1.129]

_ Ads
My =Af, <d - 0592 )

c

QU

/1N
000

R ——

Figure 1.13 Cross section of a reinforced concrete beam.
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and the constraint on the bending moment can be expressed as [1.130]

Aty
PMg—M>0]=P [Asfs (d - 0597

c

)—MZO >0.95 (E2)

where P [- - -] indicates the probability of occurrence of the event [- - -].
To ensure that the beam remains underreinforced,’ the area of steel is bounded by
the balanced steel area Aﬁb) as

A, <AY (E3)
where 7 600
AD = (0.542)~ bd
o= ) £, 600+,

Since the design variables cannot be negative, we have

\'

d
b

v
S o O

A

A

\%

(E4)

Since the quantities M, f., and f, are nondeterministic, the problem is a stochastic
programming problem.

1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and non-separable programming
problems based on the separability of the objective and constraint functions.

Separable Programming Problem

Definition A function f (X) is said to be separable if it can be expressed as the sum of
n single-variable functions, fi (x,), f>(x,),. . ., f,(x,), that is,

FX) =Y i) (1.11)
i=1

A separable programming problem is one in which the objective function and the
constraints are separable and can be expressed in standard form as

Find X which minimizes f(X) = Z fi(x) (1.12)

i=1

subject to
g(X) =Y g;(x) <b. j=12,....m
i=1

where b, is a constant.

31f steel area is larger than A§b>, the beam becomes over-reinforced and failure occurs all of a sudden due
to lack of concrete strength. If the beam is under-reinforced, failure occurs due to lack of steel strength and
hence it will be gradual.
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Example 1.9 A retail store stocks and sells three different models of TV sets. The
store cannot afford to have an inventory worth more than $45 000 at any time. The TV
sets are ordered in lots. It costs $aj for the store whenever a lot of TV model j is ordered.
The cost of one TV set of model j is ¢;. The demand rate of TV model j is d; units per
year. The rate at which the inventory costs accumulate is known to be proportional
to the investment in inventory at any time, with ¢; =0.5, denoting the constant of
proportionality for TV model j. Each TV set occupies an area of s; =0.40 m? and the
maximum storage space available is 90 m?. The data known from the past experience
are given below.

TV model j
1 2 3
Ordering cost, a; ($) 50 80 100
Unit cost, ¢; $) 40 120 80
Demand rate, dj 800 400 1200

Formulate the problem of minimizing the average annual cost of ordering and
storing the TV sets.

SOLUTION  Letx; denote the number of TV sets of model j ordered in each lot (j = 1,
2,3). Since the demand rate per year of modelj is d;, the number of times the TV model
J needs to be ordered is d;/x;. The cost of ordering TV model j per year is thus a,d;/x;,
J=1,2,3. The cost of storing TV sets of model j per year is g;c;x;/2 since the average
level of inventory at any time during the year is equal to ¢;x;/2. Thus, the objective

function (cost of ordering plus storing) can be expressed as

F(X) = (aldl n 511C1x1> n <02d2 " 42C2x2> n <a3d3 " Q3C3x3> (E1)

X 2 X, 2 X3 2

where the design vector X is given by
X
X=3x (E2)
X3
The constraint on the worth of inventory can be stated as
C1X; + ¢xy + c3x3 < 45,000 (E3)
The limitation on the storage area is given by
$1X) F 553X, + 5353 < 90 (E4)
Since the design variables cannot be negative, we have
x20,/=123 (ES)

By substituting the known data, the optimization problem can be stated as follows:
Find X which minimizes

fX) = (—40’000 + 10x1> + <32’000 + 30x2> + <—120’000 + 20x3> (E6)
X1 X2 X3
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subject to
g,(X) = 40x, + 120x, + 80x; < 45,000 (E7)
2,(X) = 0.40(x; + x, + x3) <90 (E8)
8X)=-x <0 (E9)
8/X)=-x,<0 (E10)
&X)=-x,<0 (E11)

It can be observed that the optimization problem stated in Egs. (E6)—(E11) is a
separable programming problem.

1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization
problems can be classified as single- and multi-objective programming problems.
According to this classification, the problems considered in Examples 1.1-1.9 are
single objective programming problems.

Multi-objective Programming Problem A multi-objective programming problem
can be stated as follows:

Find X which minimizes f; (X), /,(X), ...,f(X)
subject to
gX)<0,j=12,....m (1.13)
where f}, f,. .., f; denote the objective functions to be minimized simultaneously.

Example 1.10 A uniform column of rectangular cross section is to be constructed
for supporting a water tank of mass M (Figure 1.14). It is required (i) to minimize

| Il

=

Cross section of
the column

Figure 1.14 Water tank on a column.
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the mass of the column for economy, and (ii) to maximize the natural frequency of
transverse vibration of the system for avoiding possible resonance due to wind. For-
mulate the problem of designing the column to avoid failure due to direct compression
and buckling. Assume the permissible compressive stress to be o,y -

SOLUTION Let x; = b and x, = d denote the cross-sectional dimensions of the col-
umn. The mass of the column (m) is given by

m = pbdl = plx,x, (E1)
where p is the density and [ is the height of the column. The natural frequency of

transverse vibration of the water tank (@), by treating it as a cantilever beam with a tip
mass M, can be obtained as [1.127]

1/2
o=| —2— (E2)
3 3
(M + 5 40m) /
where E is the Young’s modulus and [ is the area moment of inertia of the column
given by
[=Lps (E3)
12

The natural frequency of the water tank can be maximized by minimizing —w.
With the help of Egs. (E1) and (E3), Eq. (E2) can be rewritten as

12
Ex, x>
W= 2 (E4)

33
4B (M + mplxpcz)

The direct compressive stress (¢,) in the column due to the weight of the water
tank is given by

M M
6, = —5 = —5 (ES)
bd  xx,
and the buckling stress for a fixed-free column (¢}, is given by [1.132]
2 2Ex2
o, = n-El i _TEN (E6)
412 ) bd 4812

To avoid failure of the column, the direct stress has to be restricted to be less
than o,,,, and the buckling stress has to be constrained to be greater than the direct
compressive stress induced.

Finally, the design variables have to be constrained to be positive. Thus, the
multi-objective optimization problem can be stated as follows:

Find X = {il } which minimizes
2

SHX) = plxyx, (E7)
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1/2
Exlxg
LX) =— " (EB)
472 (M + mplxpcz)
subject to
Mg
giX)=—=——-0,x <0 (E9)
XX
Mg 71'2E)C§
X)= — - < E10
8,(X) Xy 182 = ( )
g:(X) = —x, <0 (E11)
8X)=-x,<0 (E12)

1.6 OPTIMIZATION TECHNIQUES

The various techniques available for the solution of different types of optimization
problems are given under the heading of mathematical programming techniques in
Table 1.1. The classical methods of differential calculus can be used to find the uncon-
strained maxima and minima of a function of several variables. These methods assume
that the function is differentiable twice with respect to the design variables and the
derivatives are continuous. For problems with equality constraints, the Lagrange mul-
tiplier method can be used. If the problem has inequality constraints, the Kuhn-Tucker
conditions can be used to identify the optimum point. But these methods lead to a set of
nonlinear simultaneous equations that may be difficult to solve. The classical methods
of optimization are discussed in Chapter 2.

The techniques of nonlinear, linear, geometric, quadratic, or integer programming
can be used for the solution of the particular class of problems indicated by the name
of the technique. Most of these methods are numerical techniques wherein an approx-
imate solution is sought by proceeding in an iterative manner by starting from an
initial solution. Linear programming techniques are described in Chapters 3 and 4.
The quadratic programming technique, as an extension of the linear programming
approach, is discussed in Chapter 4. Since NLP is the most general method of opti-
mization that can be used to solve any optimization problem, it is dealt with in detail
in Chapters 5-7. The geometric and integer programming methods are discussed in
Chapters 8 and 10, respectively. The dynamic programming technique, presented in
Chapter 9, is also a numerical procedure that is useful primarily for the solution of opti-
mal control problems. Stochastic programming deals with the solution of optimization
problems in which some of the variables are described by probability distributions.
This topic is discussed in Chapter 11.

In Chapter 12 we discuss calculus of variations, optimal control theory, and
optimality criteria methods. Chapter 13 presents the modern methods of optimization,
including genetic algorithms, simulated annealing, particle swarm optimization, ant
colony optimization, neural network-based optimization, and fuzzy optimization.
Chapter 14 presents the more recently developed metaheuristic methods such as the
firefly, fruitfly, harmony search, honey bee, cuckoo, bat, crow, teaching-learning,
passing-vehicle, salp swarm, runner-root, water evaporation, intelligent water drops,
and imperialist competitive algorithms. Several practical aspects of optimization
such as the reduction of size of optimization problems, fast reanalysis techniques, the
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efficient computation of the derivatives of static displacements and stresses, eigen-
values and eigenvectors, and transient response, and sensitivity of optimum solution
to problem parameters are considered in Chapter 15. The aspects of multilevel
optimization, parallel processing, and multi-objective optimization are presented in
Chapter 16. Finally, the solution of different types of optimization problems using
MATLAB are presented in Chapter 17.

1.7 ENGINEERING OPTIMIZATION LITERATURE

The literature on engineering optimization is large and diverse. Several text-books
are available and dozens of technical periodicals regularly publish papers related to
engineering optimization. This is primarily because optimization is applicable to all
areas of engineering. Researchers in many fields must be attentive to the developments
in the theory and applications of optimization.

The most widely circulated journals that publish papers related to engineering
optimization are Engineering Optimization, ASME Journal of Mechanical Design,
AIAA Journal, ASCE Journal of Structural Engineering, Computers and Structures,
International Journal for Numerical Methods in Engineering, Structural Optimiza-
tion, Journal of Optimization Theory and Applications, Computers and Operations
Research, Operations Research, Management Science, Evolutionary Computation,
IEEE Transactions on Evolutionary Computation, European Journal of Operations
Research, IEEE Transactions on Systems, Man and Cybernetics, Journal of Heuris-
tics, Applied Mathematical Modeling, Advances in Engineering Software, Simulation,
Journal of Franklin Institute, Applied Mathematics and Computation, and Applied
Soft Computing. Many of these journals are cited in the chapter references.

References related to optimization are given in terms of the specific areas of
application as well as specific methods of optimization as follows: Structural opti-
mization [1.1-1.9], thermal system optimization [1.10-1.13], chemical and metallur-
gical process optimization [1.14—-1.16], electronics and electrical engineering [1.17-
1.19], mechanical design [1.20-1.22], general engineering design [1.23—-1.32], general
nonlinear programming theory [1.33—1.49] computer programs [1.50-1.54], optimal
control [1.55-1.58], geometric programming [1.59-1.63], linear programming [1.64—
1.70] integer programming [1.71-1.77] dynamic programming [1.78-1.84], stochastic
programming [1.85-1.89], multiobjective programming [1.90-1.97], nontraditional
optimization techniques including metaheuritic algorithms [1.98—-1.124] and related
areas of analysis, design and optimization [1.125-1.136].

1.8 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of the tubular column design prob-
lem considered in Example 1.1 is given in Example 17.1.
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REVIEW QUESTIONS

1.1 Match the following terms and descriptions:

1.2

1.3

(a) Free feasible point gj(X) =0

(b) Free infeasible point Some gj(X) = 0 and other gj(X) <0
(c) Bound feasible point Some gj(X) = 0 and other gj(X) >0
(d) Bound infeasible point Some gj(X) > 0 and other gj(X) <0
(e) Active constraints All gj(X) <0

Answer true or false:

(a) Optimization problems are also known as mathematical programming problems.
(b) The number of equality constraints can be larger than the number of design variables.
(c) Preassigned parameters are part of design data in a design optimization problem.
(d) Side constraints are not related to the functionality of the system.

(e) A bound design point can be infeasible.

(f) It is necessary that some gj(X) = 0 at the optimum point.

(g) An optimal control problem can be solved using dynamic programming techniques.
(h) An integer programming problem is same as a discrete programming problem.

(i) Metaheuristic optimization is a type of mathematical programming technique.

Define the following terms:

(a) Mathematical programming problem
(b) Trajectory optimization problem

(¢) Behavior constraint

(d) Quadratic programming problem
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(e) Posynomial
(f) Geometric programming problem

Match the following types of problems with their descriptions.

(a) Geometric programming problem  Classical optimization problem

(b) Quadratic programming problem  Objective and constraints are quadratic

(¢) Dynamic programming problem Objective is quadratic and constraints are
linear

(d) Nonlinear programming problem  Objective and constraints arise from a
serial system

(e) Calculus of variations problem Objective and constraints are polynomials
with positive coefficients

How do you solve a maximization problem as a minimization problem?

State the linear programming problem in standard form.

Define an OC problem and give an engineering example.

What is the difference between linear and nonlinear programming problems?

What is the difference between design variables and preassigned parameters?

What is a design space?

What is the difference between a constraint surface and a composite constraint surface?
What is the difference between a bound point and a free point in the design space?
What is a merit function?

Suggest a simple method of handling multiple objectives in an optimization problem.
What are objective function contours?

What is operations research?

State five engineering applications of optimization.

What is an integer programming problem?

What is graphical optimization, and what are its limitations?

Under what conditions can a polynomial in n variables be called a posynomial?
Define a stochastic programming problem and give two practical examples.

What is a separable programming problem?

State four characteristics of a metaheuristic optimization method.

Name four metaheuristic optimization methods.

Name two popular metaheuristic optimization methods that were first introduced to the
literature.

A fertilizer company purchases nitrates, phosphates, potash, and an inert chalk base at a
cost of $1500, $500, $1000, and $100 per ton, respectively, and produces four fertilizers
A, B, C, and D. The production cost, selling price, and composition of the four fertilizers
are given below.
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1.2

Production  Selling Percentage composition by weight

cost price
Fertilizer ($/ton) ($/ton)  Nitrates Phosphates Potash Inert chalk base
A 100 350 5 10 5 80
B 150 550 5 15 10 70
C 200 450 10 20 10 60
D 250 700 15 5 15 65

During any week, no more than 1000 tons of nitrate, 2000 tons of phosphates, and
1500 tons of potash will be available. The company is required to supply a minimum
of 5000 tons of fertilizer A and 4000 tons of fertilizer D per week to its customers; but
it is otherwise free to produce the fertilizers in any quantities it pleases. Formulate the
problem of finding the quantity of each fertilizer to be produced by the company to
maximize its profit.

The two-bar truss shown in Figure 1.15 is symmetric about the y axis. The nondimen-
sional area of cross section of the members A/A_;, and the nondimensional position of
joints 1 and 2, x/h, are treated as the design variables x, and x,, respectively, where A_;
is the reference value of the area (A) and 4 is the height of the truss. The coordinates of
joint 3 are held constant. The weight of the truss (f}) and the total displacement of joint
3 under the given load (f,) are to be minimized without exceeding the permissible stress,
o0,- The weight of the truss and the displacement of joint 3 can be expressed as

fl (X) = 2phx2 \/ 1+ x%Aref
Ph(1 +x%)l‘5\ /1 +)c‘l1

5HX) =
2 \/EEx%szref
y
[}
1
X |

Member 2 Member 1

45°

Figure 1.15 Two-bar truss.
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where p is the weight density, P the applied load, and E the Young’s modulus. The stresses
induced in members 1 and 2 (¢, and o,) are given by

P(1+x)4/(1 +x7)

o X) =
22X, %A o

P(x; = D4/(1 +x2)
0,(X) =

24/2x;x,A

ref

In addition, upper and lower bounds are placed on design variables x; and x, as
x;"i“ <x <™ i=1,2

Find the solution of the problem using a graphical method with (a) f; as the objec-
tive, (b) f, as the objective, and (¢) (f; +f,) as the objective for the following data:
E = 30x10°psi, p = 0.2831b/in.3, P = 10,0001b, o, = 20000psi, # = 100in.,
A= 1in2, x‘]'““ =0.1, x‘z“i“ = 0.1, x"™ = 2.0, and xJ** = 2.5.

Ten jobs are to be performed in an automobile assembly line as noted in the following
table:

Time required to Jobs that must be

Job complete the completed before
number job (min) starting this job

1 4 None

2 8 None

3 7 None

4 6 None

5 3 1,3

6 5 2,3,4

7 1 5,6

8 9 6

9 2 7,8
10 8 9

It is required to set up a suitable number of workstations, with one worker assigned to
each workstation, to perform certain jobs. Formulate the problem of determining the
number of workstations and the particular jobs to be assigned to each workstation to
minimize the idle time of the workers as an integer programming problem. Hint: Define

variables x;; such that x; =1 if job / is assigned to station j, and x;; = 0 otherwise.

A railroad track of length L is to be constructed over an uneven terrain by adding or
removing dirt (Figure 1.16). The absolute value of the slope of the track is to be restricted
to a value of r; to avoid steep slopes. The absolute value of the rate of change of the
slope is to be limited to a value r, to avoid rapid accelerations and decelerations. The
absolute value of the second derivative of the slope is to be limited to a value of r; to avoid
severe jerks. Formulate the problem of finding the elevation of the track to minimize the
construction costs as an OC problem. Assume the construction costs to be proportional
to the amount of dirt added or removed. The elevation of the track is equal to a and b at
x =0 and x = L, respectively.
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1.5

1.6

1.7

1.8

Terrain (known elevation, g(x))

'_L Track (unknown elevation, /(x))
b —_—/__-_I)*L\L./
. ] 2 — -
—_ -’*TD& ~. N
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Figure 1.16 Railroad track on an uneven terrain.

A manufacturer of a particular product produces x; units in the first week and x, units in
the second week. The number of units produced in the first and second weeks must be
at least 200 and 400, respectively, to be able to supply the regular customers. The initial
inventory is zero and the manufacturer ceases to produce the product at the end of the
second week. The production cost of a unit, in dollars, is given by 4xl.2, where x; is the
number of units produced in week i (i = 1, 2). In addition to the production cost, there is
an inventory cost of $10 per unit for each unit produced in the first week that is not sold
by the end of the first week. Formulate the problem of minimizing the total cost and find
its solution using a graphical optimization method.

Consider the slider-crank mechanism shown in Figure 1.17 with the crank rotating at a
constant angular velocity w. Use a graphical procedure to find the lengths of the crank and
the connecting rod to maximize the velocity of the slider at a crank angle of § = 30° for
@ = 100rad/s. The mechanism has to satisfy Groshof’s criterion / > 2.5r to ensure 360°
rotation of the crank. Additional constraints on the mechanism are given by 0.5 <r <10,
2.5<1<25,and 10 <x<20.

Solve Problem 1.6 to maximize the acceleration (instead of the velocity) of the slider at
0 = 30° for @ = 100rad/s.

It is required to stamp four circular disks of radii R, R,, R;, and R, from a rectangu-
lar plate in a fabrication shop (Figure 1.18). Formulate the problem as an optimization
problem to minimize the scrap. Identify the design variables, objective function, and the
constraints.

Crank, length r

Connecting rod, length /

Slider
LLLs
STTTTIITITITPT777277
’ |

Figure 1.17 Slider-crank mechanism.
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Figure 1.18 Locations of circular disks in a rectangular plate.
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Figure 1.19 Cone clutch.

1.9 The torque transmitted (7) by a cone clutch, shown in Figure 1.19, under uniform pressure
condition is given by
_ 2=fp

— R3_R3
3sina( 1~ Ry)

where p is the pressure between the cone and the cup, f the coefficient of friction, « the
cone angle, R, the outer radius, and R, the inner radius.

(a) Find R, and R, that minimize the volume of the cone clutch with & = 30°, F=301b,
and f = 0.5 under the constraints 7>1001b-in., R, >2R,, 0<R,; <15in., and
0<R,<10in.

(b) What is the solution if the constraint R, > 2R, is changed to R; <2R,?

(c) Find the solution of the problem stated in part (a) by assuming a uniform wear con-
dition between the cup and the cone. The torque transmitted (7) under uniform wear
condition is given by

_ 7fpR,

T=-
sin a

2 p2
(R —Ry)

Note: Use graphical optimization for the solutions.
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1.10

1.11

1.12

A hollow circular shaft is to be designed for minimum weight to achieve a minimum
reliability of 0.99 when subjected to a random torque of (7', o) = ( 10°, 10*) 1b-in., where
T is the mean torque and o is the standard deviation of the torque, 7. The permissible
shear stress, 7, of the material is given by (7, o,,) = (50,000, 5000) psi, where 7, is the
mean value and o, is the standard deviation of 7,,. The maximum induced stress (7) in
the shaft is given by

where r, is the outer radius and J is the polar moment of inertia of the cross section of the
shaft. The manufacturing tolerances on the inner and outer radii of the shaft are specified
as +0.06in. The length of the shaft is given by 50 + 1 in. and the specific weight of the
material by 0.3 +0.03 Ib/in.3. Formulate the optimization problem and solve it using a
graphical procedure. Assume normal distribution for all the random variables and 3¢
values for the specified tolerances. Hints:

(1) The minimum reliability requirement of 0.99 can be expressed, equivalently, as
[1.130]

-7,
7, =2326<
0'3 + 630
(2) Iff(x;, x,,...,x,)is a function of the random variables x|, x ,,..., x,, the mean

value of f(f) and the standard deviation of f (¢,) are given by

f=f.%,...,%,)

2
n af X
6f= 21<a_xl >6xi
i= X1 Xg,s ey X,

where X; is the mean value of x;, and o, is the standard deviation of x;.

Certain nonseparable optimization problems can be reduced to a separable form by using
suitable transformation of variables. For example, the product term f = x; x, can be
reduced to the separable form f = y% — y% by introducing the transformations

1
= %(xl +x), ¥, = 7 —x)
Suggest suitable transformations to reduce the following terms to separable form:

f =x%x;, x> 0x,>0

(a) f=x2, x>0

In the design of a shell-and-tube heat exchanger (Figure 1.20), it is decided to have the
total length of tubes equal to at least a; [1.10]. The cost of the tube is &, per unit length
and the cost of the shell is given by a; D*°L, where D is the diameter and L is the length of
the heat exchanger shell. The floor space occupied by the heat exchanger costs a, per unit
area and the cost of pumping cold fluid is ozSL/dSN2 per day, where d is the diameter of the
tube and N is the number of tubes. The maintenance cost is given by agNdL. The thermal
energy transferred to the cold fluid is given by a,/N'2dL'* + ag/d**L. Formulate the
mathematical programming problem of minimizing the overall cost of the heat exchanger
with the constraint that the thermal energy transferred be greater than a specified amount
ay. The expected life of the heat exchanger is a, years. Assume thata;, i =1,2,..., 10,
are known constants, and each tube occupies a cross-sectional square of width and depth
equal to d.
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Tubes of diameter d
Number of tubes N
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Figure 1.20 Shell-and-tube heat exchanger.

Figure 1.21 Electrical bridge network.

The bridge network shown in Figure 1.21 consists of five resistors R; (i=1,2,...,5).If I;
is the current flowing through the resistance R;, the problem is to find the resistances R,
R,,. .., Ry so that the total power dissipated by the network is a minimum. The current /;
can vary between the lower and upper limits /; ,;, and ; .., and the voltage drop, V; = R;
I;, must be equal to a constant ¢; for 1 <i <5. Formulate the problem as a mathematical

programming problem.

A traveling saleswoman has to cover n towns. She plans to start from a particular town
numbered 1, visit each of the other n — 1 towns, and return to the town 1. The distance
between towns i and j is given by d;;. Formulate the problem of selecting the sequence in
which the towns are to be visited to minimize the total distance traveled.

A farmer has a choice of planting barley, oats, rice, or wheat on his 200-acre farm. The
labor, water, and fertilizer requirements, yields per acre, and selling prices are given in
the following table:

Labor Water Fertilizer Selling
Type of cost required required Yield price
crop ¥ (m?) (Ib) (Ib) ($/1b)
Barley 300 10000 100 1500 0.5
Oats 200 7000 120 3000 0.2
Rice 250 6000 160 2500 0.3
Wheat 360 8000 200 2000 04

The farmer can also give part or all of the land for lease, in which case he gets $200 per
acre. The cost of water is $0.02/m> and the cost of the fertilizer is $2/Ib. Assume that
the farmer has no money to start with and can get a maximum loan of $50 000 from the
land mortgage bank at an interest of 8%. He can repay the loan after six months. The
irrigation canal cannot supply more than 4 X 103 m* of water. Formulate the problem of
finding the planting schedule for maximizing the expected returns of the farmer.
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1.16

1.17

There are two different sites, each with four possible targets (or depths) to drill an oil
well. The preparation cost for each site and the cost of drilling at site i to target j are
given below:

Drilling cost

to target j
Site i 1 2 3 4 Preparation cost
1 4 1 9 7 11
2 7 9 5 2 13

Formulate the problem of determining the best site for each target so that the total cost
is minimized.

A four-pole dc motor, whose cross section is shown in Figure 1.22, is to be designed with
the length of the stator and rotor x,, the overall diameter of the motor x,, the unnotched
radius x5, the depth of the notches x,, and the ampere turns x5 as design variables. The air
gap is to be less than k; 1/x, 4+ 7.5 where &, is a constant. The temperature of the external
surface of the motor cannot exceed AT above the ambient temperature. Assuming that
the heat can be dissipated only by radiation, formulate the problem for maximizing the
power of the motor [1.59]. Hints:

Slots (to house armature winding)

Figure 1.22 Cross section of an idealized motor.
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1. The heat generated due to current flow is given by k,x,x;'x;'xZ, where k, is a con-
stant. The heat radiated from the external surface for a temperature difference of AT
is given by kj x; x, AT, where kj is a constant.

2. The expression for power is given by k,NBx,x;xs, where k, is a constant, N is the
rotational speed of the rotor, and B is the average flux density in the air gap.

3. The units of the various quantities are as follows. Lengths: centimeter, heat generated,
heat dissipated; power: watt; temperature: °C; rotational speed: rpm; flux density:
gauss.

A gas pipeline is to be laid between two cities A and E, making it pass through one of the
four locations in each of the intermediate towns B, C, and D (Figure 1.23). The associated
costs are indicated in the following tables.

Costs for A-B and D-E

Station {

1 2 3 4

From A to point i of B 30 35 25 40
From pointiof D to E 50 40 35 25

Costs for B—C and C-D
To:

From: 1 2 3 4
1 22 18 24 18

2 35 25 15 21

3 24 20 26 20

4 22 21 23 22

Formulate the problem of minimizing the cost of the pipeline.

A beam-column of rectangular cross section is required to carry an axial load of 251b
and a transverse load of 101b, as shown in Figure 1.24. It is to be designed to avoid the
possibility of yielding and buckling and for minimum weight. Formulate the optimization
problem by assuming that the beam-column can bend only in the vertical (xy) plane.

‘V’:“\V;
AN
i A /‘;;IM\(
NV
VA

\ Y
37 N4
Town B Town C Town D

Figure 1.23 Possible paths of the pipeline between A and E.
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1.20

1.21

P,=101b “«
l
P,=251b \; %
) d
~————— [=50in —>|

Figure 1.24 Beam-column.

Assume the material to be steel with a specific weight of 0.3 1b/in.?, Young’s modulus of
30 x 10° psi, and a yield stress of 30 000 psi. The width of the beam is required to be at
least 0.5 in. and not greater than twice the depth. Also, find the solution of the problem
graphically. Hint: The compressive stress in the beam-column due to P, is P, /bd and that
due to P, is

Pld 6Pl

2. pd?

el

The axial buckling load is given by

n’El. _ z2Ebd’
42 48P

(Py)cri =

A two-bar truss is to be designed to carry a load of 2 W as shown in Figure 1.25. Both
bars have a tubular section with mean diameter d and wall thickness ¢. The material
of the bars has Young’s modulus E and yield stress ¢,. The design problem involves
the determination of the values of d and ¢ so that the weight of the truss is a minimum
and neither yielding nor buckling occurs in any of the bars. Formulate the problem as a
nonlinear programming problem.

Consider the problem of determining the economic lot sizes for four different items.
Assume that the demand occurs at a constant rate over time. The stock for the ith item
is replenished instantaneously upon request in lots of sizes Q;. The total storage space
available is A, whereas each unit of item i occupies an area d;. The objective is to find
the values of Q; that optimize the per unit cost of holding the inventory and of ordering

2w

d

L Section A-A

|<_2b——->

Figure 1.25 Two-bar truss.
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subject to the storage area constraint. The cost function is given by

4
c=3 (% +biQi) 0> 0
i=1 1

where a; and b; are fixed constants. Formulate the problem as a dynamic programming
(optimal control) model. Assume that Q; is discrete.

The layout of a processing plant, consisting of a pump (P), a water tank (7)), a compressor
(C), and a fan (F), is shown in Figure 1.26. The locations of the various units, in terms of
their (x, y) coordinates, are also indicated in this figure. It is decided to add a new unit,
a heat exchanger (H), to the plant. To avoid congestion, it is decided to locate H within
a rectangular area defined by {—15<x<15, —10 <y <10}. Formulate the problem of
finding the location of H to minimize the sum of its x and y distances from the existing
units, P, T, C, and F.

Two copper-based alloys (brasses), A and B, are mixed to produce a new alloy, C. The
composition of alloys A and B and the requirements of alloy C are given in the following
table:

Composition by weight
Lead

Alloy Copper Zinc

A 80
B 60
C >75

10
20
> 15

6 4
18 2
> 16 >3

If alloy B costs twice as much as alloy A, formulate the problem of determining the
amounts of A and B to be mixed to produce alloy C at a minimum cost.

An oil refinery produces four grades of motor oil in three process plants. The refinery
incurs a penalty for not meeting the demand of any particular grade of motor oil. The
capacities of the plants, the production costs, the demands of the various grades of motor
oil, and the penalties are given in the following table:

80 ft

Fan (F)
@)
(=30, 20)

(-25,-35)

Pump (P)

Compressor (C)
O

(40, 30)

—r— e — e — X
10

O Tank (7)
(20, -15)

100 ft

Figure 1.26 Processing plant layout (coordinates in ft).
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1.25

1.26

1.27

Production cost ($/day)
to manufacture motor

Process Capacity of the plant oil of grade:

plant (kgal/day) 1 2 3 4

1 100 750 900 1000 1200
2 150 800 950 1100 1400
3 200 900 1000 1200 1600
Demand (kgal/day) 50 150 100 75
Penalty (per each kilogallon shortage) $10 $12 $16 $20

Formulate the problem of minimizing the overall cost as an LP problem.

A part-time graduate student in engineering is enrolled in a four-unit mathematics course
and a three-unit design course. Since the student has to work for 20 hours a week at a
local software company, he can spend a maximum of 40 hours a week to study outside the
class. It is known from students who took the courses previously that the numerical grade
(g) in each course is related to the study time spent outside the class as g,, = t,/6 and
g,=1,/5, where g indicates the numerical grade (g =4 for A, 3 for B, 2 for C, 1 for D, and
0 for F), ¢ represents the time spent in hours per week to study outside the class, and the
subscripts m and d denote the courses, mathematics and design, respectively. The student
enjoys design more than mathematics and hence would like to spend at least 75 minutes
to study for design for every 60 minutes he spends to study mathematics. Also, as far as
possible, the student does not want to spend more time on any course beyond the time
required to earn a grade of A. The student wishes to maximize his grade point P, given
by P = 4g, +3g,, by suitably distributing his study time. Formulate the problem as an
LP problem.

The scaffolding system, shown in Figure 1.27, is used to carry a load of 10 000 Ib. Assum-
ing that the weights of the beams and the ropes are negligible, formulate the problem of
determining the values of x,, x,, x5, and x, to minimize the tension in ropes A and B while
maintaining positive tensions in ropes C, D, E, and F.

Formulate the problem of minimum weight design of a power screw subjected to an
axial load, F, as shown in Figure 1.28 using the pitch (p), major diameter (d), nut height
(h), and screw length (s) as design variables. Consider the following constraints in the
formulation:

1. The screw should be self-locking [1.126].

2. The shear stress in the screw should not exceed the yield strength of the material in
shear. Assume the shear strength in shear (according to distortion energy theory), to
be 0.577c,, where o, is the yield strength of the material.

LLLLLLLLLLLLLLLLL L L LLLLLLLLL

A 10 ft B
Beam 1
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l Beam 3
P =10,000 Ib

Figure 1.27 Scaffolding system.
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F = Load

1.28

1.29

Figure 1.28 Power screw.

3. The bearing stress in the threads should not exceed the yield strength of the
material, o,
4. The critical buckling load of the screw should be less than the applied load, F.

(a) A simply supported beam of hollow rectangular section is to be designed for mini-
mum weight to carry a vertical load F, and an axial load P as shown in Figure 1.29.
The deflection of the beam in the y direction under the self-weight and F , should
not exceed 0.5 in. The beam should not buckle either in the yz or the xz plane under
the axial load. Assuming the ends of the beam to be pin ended, formulate the opti-
mization problem using x;, i = 1, 2, 3, 4 as design variables for the following data:
F, =3001b, P =400001b, [ = 120in., E = 30 x 10° psi, p = 0.2841b/in.3, lower
bound on x, and x, = 0.125 in., upper bound on x,, and x, = 4in.

(b) Formulate the problem stated in part (a) using x; and x, as design variables, assuming
the beam to have a solid rectangular cross section. Also find the solution of the
problem using a graphical technique.

A cylindrical pressure vessel with hemispherical ends (Figure 1.30) is required to hold at
least 20 000 gal of a fluid under a pressure of 2500 psia. The thicknesses of the cylindrical
and hemispherical parts of the shell should be equal to at least those recommended by
section VIII of the ASME pressure vessel code, which are given by

t. = PR
¢ Se+04p
PR
t,= ————
Se +0.8p
y
y F
' 7
T 72222277,
p l P T 7K %
L= - —A
AW rrrsrrrd
| z I s — fe—x; —|
I 2 I 2 e Xl —
Cross section
of beam
(@) )

Figure 1.29 Simply supported beam under loads.
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f

X

Figure 1.30 Pressure vessel.

where S is the yield strength, e the joint efficiency, p the pressure, and R the radius.
Formulate the design problem for minimum structural volume using x;, i = 1, 2, 3, 4, as
design variables. Assume the following data: S = 30000 psi and e = 1.0.

1.30 A crane hook is to be designed to carry a load F as shown in Figure 1.31. The hook can
be modeled as a three-quarter circular ring with a rectangular cross section. The stresses
induced at the inner and outer fibers at section AB should not exceed the yield strength
of the material. Formulate the problem of minimum volume design of the hook using r,

0’

r;, b, and h as design variables. Note: The stresses induced at points A and B are given

by [1.126]

M,

A7 Aer,

Mc,

B Aer
B To

A
i

|
L
U i——-ri——: lﬁ!' <
)\
—r—— |
i f—h ——

-

F Cross section AB

(@) (b)
Figure 1.31 Crane hook carrying a load.
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where M is the bending moment due to the load (=FR), R the radius of the centroid, r,, the
radius of the outer fiber, r; the radius of the inner fiber, ¢, the distance of the outer fiber
from the neutral axis = R, —r,, ¢; the distance of inner fiber from neutral axis = r,, — r;,
r,, the radius of neutral axis, given by

h

n = In(r,/r;)

A the cross-sectional area of the hook = bh, and e the distance between the centroidal
and neutral axes =R —r,,.

Consider the four-bar truss shown in Figure 1.32, in which members 1, 2, and 3 have
the same cross-sectional area x; and the same length /, while member 4 has an area of
cross section x, and length \/3 1. The truss is made of a lightweight material for which
Young’s modulus and the weight density are given by 30 x 10° psi and 0.033 33 1b/in.3,
respectively. The truss is subject to the loads P; =100001b and P, =200001b. The
weight of the truss per unit value of / can be expressed as

£ =3x,(1)(0.03333) + x,1/3(0.03333) = 0.1x, + 0.05773x,

The vertical deflection of joint A can be expressed as

0.6 0.3464
o4 = — +
X RY)

and the stresses in members 1 and 4 can be written as

o —2\/5(10,000) 34,640
4= = —

5(10,000) 50,000
o1 = X = x
1 1 X, X,

The weight of the truss is to be minimized with constraints on the vertical deflection of
the joint A and the stresses in members 1 and 4. The maximum permissible deflection
of joint A is 0.1in. and the permissible stresses in members are 6, = 8333.3333 psi
(tension) and o ;, = —4948.5714 psi (compression). The optimization problem can be
stated as a separable programming problem as follows:

Minimize f(x;,x,) = 0.1x; +0.05773x,

subject to

0.6 , 0.3464

X X

~01<0,6-x,<0,7—x,<0

Determine the solution of the problem using a graphical procedure.

Figure 1.32 Four-bar truss.
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Figure 1.33 A simply supported beam subjected to concentrated and distributed loads.

1.32

1.33

A simply supported beam, with a uniform rectangular cross section, is subjected to both
distributed and concentrated loads as shown in Figure 1.33. It is desired to find the cross
section of the beam to minimize the weight of the beam while ensuring that the maximum
stress induced in the beam does not exceed the permissible stress (o) of the material and
the maximum deflection of the beam does not exceed a specified limit (6,)).

The data of the problem are P = 10° N, p, = 10°N/m, L = 1 m, E = 207 GPa, weight
density (p,,) = 76.5 kN/m3, 6y =220MPa, and 6, = 0.02 m.

(a) Formulate the problem as a mathematical programming problem assuming that
the cross-sectional dimensions of the beam are restricted as x; <x,, 0.04m
<x,<0.12m, and 0.06 m <x, <0.20 m.

(b) Find the solution of the problem formulated in part (a) graphically.

Solve Problem 1.32, parts (a) and (b), assuming the cross section of the beam to be hollow
circular with inner diameter x, and outer diameter x,. Assume the data and bounds on
the design variables to be as given in Problem 1.32.



Classical Optimization
Techniques

2.1 INTRODUCTION

The classical methods of optimization are useful in finding the optimum solution of
continuous and differentiable functions. These methods are analytical and make use
of the techniques of differential calculus in locating the optimum points. Since some
of the practical problems involve objective functions that are not continuous and/or
differentiable, the classical optimization techniques have limited scope in practical
applications. However, a study of the calculus methods of optimization forms a basis
for developing most of the numerical techniques of optimization presented in sub-
sequent chapters. In this chapter we present the necessary and sufficient conditions
for locating the optimum solution of a single-variable function, a multivariable func-
tion with no constraints, and a multivariable function with equality and inequality
constraints.

2.2 SINGLE-VARIABLE OPTIMIZATION

A function of one variable f (x) is said to have a relative or local minimum at x = x* if
F(&x*) <f(x* + h) for all sufficiently small positive and negative values of 4. Similarly,
a point x* is called a relative or local maximum if f (x*) > f (x* + h) for all values of &
sufficiently close to zero. A function f (x) is said to have a global or absolute minimum
at x* if f (x*) <f(x) for all x, and not just for all x close to x*, in the domain over which
f (%) is defined. Similarly, a point x* will be a global maximum of f (x) if f (x*) > f (x)
for all x in the domain. Figure 2.1 shows the difference between the local and global
optimum points.

A single-variable optimization problem is one in which the value of x = x* is to be
found in the interval [a, b] such that x* minimizes f (x). The following two theorems
provide the necessary and sufficient conditions for the relative minimum of a function
of a single variable [2.1, 2.2].

Theorem 2.1 Necessary Condition If a function f (x) is defined in the interval
a <x < b and has a relative minimum at x = x*, where a < x* < b, and if the derivative
df (x)/dx = f' (x) exists as a finite number at x = x*, then ' (x*) = 0.

Proof: Ttis given that

e fGE D) = ()
£ = lim = 2.1)

—
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Ay, Ay, A3 = Relative maxima
A, = Global maximum

0 By, B, = Relative minima 19
B; = Global minimum
2 Relative minimum
As is also global
minimum

S — =

I
I
I
l
. X X X
a b a
Figure 2.1 Relative and global minima.

exists as a definite number, which we want to prove to be zero. Since x* is a relative
minimum, we have

FO&) S f&7 +h)
for all values of £ sufficiently close to zero. Hence

&+ - h}z S S0 ithso

Thus Eq. (2.1) gives the limit as 4 tends to zero through positive values as

Fl&x) 20 2.2)
while it gives the limit as & tends to zero through negative values as

<0 (2.3)
The only way to satisfy both Eqs. (2.2) and (2.3) is to have

fl&)=0 2.4

This proves the theorem.

Notes:
1. This theorem can be proved even if x* is a relative maximum.
2. The theorem does not say what happens if a minimum or maximum occurs at
a point x* where the derivative fails to exist. For example, in Figure 2.2,
LG (CY)

li

lim 7 = m™ (positive) or m~(negative)

depending on whether / approaches zero through positive or negative values,
respectively. Unless the numbers m* and m™~ are equal, the derivative f’ (x*)
does not exist. If f'(x*) does not exist, the theorem is not applicable.
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Sx)

r Negative slope m~

Sx®)

Figure 2.2 Derivative undefined at x*.

3. The theorem does not say what happens if a minimum or maximum occurs at
an endpoint of the interval of definition of the function. In this case

SO+ - ()

m —

i
h—0 h

exists for positive values of / only or for negative values of & only, and hence
the derivative is not defined at the endpoints.

4. The theorem does not say that the function necessarily will have a minimum or
maximum at every point where the derivative is zero. For example, the deriva-
tive f'(x) = 0 at x = 0 for the function shown in Figure 2.3. However, this point
is neither a minimum nor a maximum. In general, a point x* at which f’ (x*) = 0
is called a stationary point.

If the function f (x) possesses continuous derivatives of every order that come into
question, in the neighborhood of x = x*, the following theorem provides sufficient
condition for the minimum or maximum value of the function [2.3, 2.4].

J)

Stationary
point, f(x) =0

Figure 2.3 Stationary (inflection) point.
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Theorem 2.2 Sufficient Condition Let f/(x*) = f"/(x*) = --- = f D (x*) = 0, but
£ (x*)#0. Then f (x*) is (i) a minimum value of f (x) if ™ (x*) > 0 and n is even;

(ii) a maximum value of f (x) if f™ (x*) < 0 and n is even; (iii) neither a maximum
nor a minimum if z is odd.

Proof: Applying Taylor’s theorem with remainder after n terms, we have

F&*+h) =f(x) + hf' () + Z—z'f”(x*) + e+ hn—_lf(n—l)(x*)

-1
+ h—'f(”)(x* +0h) for 0<6<1 (2.5)
n!
since f'(x*) = f"(x*) = --- = f" = D(x*) = 0, Eq. (2.5) becomes

FO* + by — () = Z—fﬂ")(x* +0h)

As f (x*) # 0, there exists an interval around x* for every point x of which the nth
derivative f" (x) has the same sign, namely, that of f"*)(x*). Thus, for every point
x* + h of this interval, f™ (x* +@h) has the sign of f™ (x*). When n is even, h"/n!
is positive irrespective of whether % is positive or negative, and hence f (x* + h) —
£ (x*) will have the same sign as that of £ (x*). Thus x* will be a relative minimum
if f (x*) is positive and a relative maximum if f (x*) is negative. When 7 is odd,
h"/n! changes sign with the change in the sign of /& and hence the point x* is neither a
maximum nor a minimum. In this case the point x* is called a point of inflection.

Example 2.1 Determine the maximum and minimum values of the function
fx) = 1200 — 45x* +40x° + 5

SOLUTION Since f’ (x) = 60(x* — 3x3 + 2x%) = 60x*(x — 1)(x = 2), f' (x) =0atx =0,
x =1, and x = 2. The second derivative is

" (x) = 60(4x> — 9x° + 4x)

Atx =1, f"(x) = —60 and hence x = 1 is a relative maximum. Therefore,

At x =2, f"(x) = 240 and hence x = 2 is a relative minimum. Therefore,
Jin =f(x=2)=-11
Atx =0, f”(x) = 0 and hence we must investigate the next derivative:
F"(x) = 60(12x> — 18x+4) =240 at x=0

Since f""(x)#0 at x = 0, x = 0 is neither a maximum nor a minimum, and it is an
inflection point.
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Example 2.2 1In a two-stage compressor, the working gas leaving the first stage of
compression is cooled (by passing it through a heat exchanger) before it enters the
second stage of compression to increase the efficiency [2.5]. The total work input to a
compressor (W) for an ideal gas, for isentropic compression, is given by

(k=1)/k (k=1)/k
W=e,T, <12> +<’§> -2
D1 D

where ¢, is the specific heat of the gas at constant pressure, k is the ratio of specific heat
at constant pressure to that at constant volume of the gas, and 7 is the temperature
at which the gas enters the compressor. Find the pressure, p,, at which intercooling
should be done to minimize the work input to the compressor. Also determine the
minimum work done on the compressor.

SOLUTION The necessary condition for minimizing the work done on the compres-

sor is
dw k N k=1
T =c, 1\ — - — ()
P> k-1 P1 k

o=k +1 _
+ (k—1)/k (1-2k)/k =0
(3) — P2)
which yields
Py = (ppy)'?

The second derivative of W with respect to p, gives

(k=1)/k

W _ - (L I —a+h/k
2 cp 1 (p2)

dp; P1 k

—(py) kK 1-2k (p2)<1—3k)/k]
k

k-1
<d2w> _ 2CPT1 T
2 T Gk=1)/2k_(k+1)/2k
dp2 Pz=(P1P3)1/2 p / p /

1 3

Since the ratio of specific heats k is greater than 1, we get

d*w
— |>0 at p,=@py)'”?
dp2

and hence the solution corresponds to a relative minimum. The minimum work done

is given by
(k—1)/2k
W = 2cpTl%1 l(%) - 1]
1
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2.3 MULTIVARIABLE OPTIMIZATION WITH NO CONSTRAINTS

In this section we consider the necessary and sufficient conditions for the minimum or
maximum of an unconstrained function of several variables [2.6, 2.7]. Before seeing
these conditions, we consider the Taylor’s series expansion of a multivariable function.

2.3.1 Definition: rth Differential of f

If all partial derivatives of the function f through order r > 1 exist and are continuous
at a point X", the polynomial

d'f(X*) = Z Z Zh hk% (2.6)

i=1 j=1

%,_z

r summations

is called the rth differential of f at X*. Notice that there are r summations and one #;
is associated with each summation in Eq. (2.6).
For example, when r = 2 and n = 3, we have

2 *
PFX*) = d*f(x}, x5, x3) Z Z o LX)

j
=5 6x6x

02 02
=h} f(x*)+h2 f(x*) +h— 5(X")
1 axz dx%
02 2 62
+2h,h, f (X*) + 2h,hy 9f (X*) +2h,hy S (X*)
ox,0 0x,0 0x,0x;

The Taylor’s series expansion of a function f (X) about a point X* is given by
JX) =f(X") +df(X7) + Edzf(X )+ gde(X )
+ et %de(X*) + Ry(X*, h) 2.7)

where the last term, called the remainder, is given by

Ry(X*,h) = d"F(X* + 6h) (2.8)

(N D!
where 0 <6 <1 and h = X — X*,

Example 2.3 Find the second-order Taylor’s series approximation of the function
f(xlsxz,x3) = X§X3 +xlex3
about the point X* = {1, 0,—2}T.

SOLUTION The second-order Taylor’s series approximation of the function f about
point X* is given by

1 1 | 1
fXy=f| 0 [+df| O +5d2f 0

-2 -2 : -2
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where
1
flo|=e2
-2
1 1 1 1
a ) )
df| 0 =h1—f 0 +h2—f 0 +h3—f 0
) x| _y x| o ox3 | _o
1
= [h€” + hy(2xyx3) + h3x3 + hyx,€21| O | = hye™ + hye™
-2

3

1 2 1 2 2 2
dzf 0 =2 Y nhy of =<h23f+hzaf L
-2

2 3
=5 " ox;0x; 1 o2 6x2
e 9 e !
+ 2y = I onn =L o, 2L )| o
0x,0x, 0x,0x3 ox10x3 || _»

= [h7(0) + h3(2x3) + h3(x,€) + 2h 7y (0) + 2k, h3(2x,)

1
+2hhy(e™)]]| 0 | = —4h + €723 + 2h hze™
-2

Thus, the Taylor’s series approximation is given by
fX) e+ e (hy + hy) + %(—4}@ + 723 + 2l hye™)
where hy = x—1, hy, = x,, and hy = x3 +2.

Theorem 2.3 Necessary Condition If f(X) has an extreme point (maximum or min-
imum) at X = X* and if the first partial derivatives of f (X) exist at X*, then

of

. _9
a—xl(X )=

af X)=-==X)= (2.9)
X2 'xn

Proof: The proof given for Theorem 2.1 can easily be extended to prove the present
theorem. However, we present a different approach to prove this theorem. Suppose
that one of the first partial derivatives, say the kth one, does not vanish at X*. Then,
by Taylor’s theorem,

o, 0
X +h) =X+ ) hia—i(x*) +R,(X*,h)
i=1 i

that is,

FX* 4+ h) — f(X*) = hkg(x*) + %d2f(X* +06h), 0<6<1
X !
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Since df (X* + 6h) is of order h?, the terms of order h will dominate the higher-order
terms for small h. Thus, the sign of f (X* +h)—f (X*) is decided by the sign of
hy of (X*)/0x,. Suppose that of (X*)/0x;, > 0. Then the sign of f (X* +h) —f (X*)
will be positive for i, > 0 and negative for /;, < 0. This means that X* cannot be
an extreme point. The same conclusion can be obtained even if we assume that of
(X*)/0x;, < 0. Since this conclusion is in contradiction with the original statement that
X* is an extreme point, we may say that df/dx;, = 0 at X = X*. Hence the theorem is
proved.

Theorem 2.4 Sufficient Condition A sufficient condition for a stationary point X*
to be an extreme point is that the matrix of second partial derivatives (Hessian matrix)
of f(X) evaluated at X* is (i) positive definite when X* is a relative minimum point,
and (ii) negative definite when X* is a relative maximum point.

Proof: From Taylor’s theorem we can write

FOX ) = f(X*)+2h,—<X*>+ : 22 n ajji;; ,

i=1 j=1 7 1X=X*+6h
0<06<1 (2.10)

Since X* is a stationary point, the necessary conditions give (Theorem 2.3)

o
0x; B

Thus Eq. (2.10) reduces to

FX ) = fX) = o ZZ i

, 0<o<1
el i ’6x6x

X=X*+6h

Therefore, the sign of
FOX* +h) - f(X7)

will be same as that of ;

ZZ ’faxax

i=1 j=1 7

X=X"*+6h

Since the second partial derivative of 9° f(X)/0x; dx; is continuous in the neighborhood
of X*,
*f
0x;0x;

X=X*+6h

will have the same sign as (02f/0xl-axj)IX = X* for all sufficiently small h. Thus f
(X* +h) — £ (X*) will be positive, and hence X* will be a relative minimum, if

0= ZZ 'Jaxax

is positive. This quantity Q is a quadratic form and can be written in matrix form as

@2.11)

X=X*

Q =h"Jh|x_x. (2.12)
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02
J|X=X* = l f ]
X=X*

0x;0x;
is the matrix of second partial derivatives and is called the Hessian matrix of f (X).

It is known from matrix algebra that the quadratic form of Egs. (2.11) or (2.12)
will be positive for all h if and only if [J] is positive definite at X = X*. This means
that a sufficient condition for the stationary point X* to be a relative minimum is that
the Hessian matrix evaluated at the same point be positive definite. This completes the
proof for the minimization case. By proceeding in a similar manner, it can be proved
that the Hessian matrix will be negative definite if X* is a relative maximum point.

Note: A matrix A will be positive definite if all its eigenvalues are positive; that
is, all the values of A that satisfy the determinantal equation

where

(2.13)

|[A—-AM|=0 (2.14)
should be positive. Similarly, the matrix A will be negative definite if its eigenvalues
are negative. A matrix A will be positive semidefinite (or negative semidefinite) if all
of its eigenvalues are nonnegative (or nonpositive).

Another test that can be used to find the positive definiteness of a matrix A of
order n involves evaluation of the determinants

A = |a11 |9
ap dpp gz v dyy
Qyy dpp Ap3
A i A A, =|az az a ~-~an
2 > n = [d31 d3p 433 3n
ayy dp : (2.15)
App Ay Gy " Oy
ap A a3
A3 = |dy Ay Cl23 s ey
as dsz; ds3
The matrix A will be positive definite if and only if all the values A;, A,, A5, ..., A,
are positive. The matrix A will be negative definite if and only if the sign of A; is (—1Y
forj=1,2, ..., n. If some of the A; are positive and the remaining A; are zero, the

matrix A will be positive semidefinite.

Example 2.4 Figure 2.4 shows two frictionless rigid bodies (carts) A and B connected
by three linear elastic springs having spring constants k;, k,, and k5. The springs are
at their natural positions when the applied force P is zero. Find the displacements x;
and x, under the force P by using the principle of minimum potential energy.

SOLUTION  According to the principle of minimum potential energy, the system will
be in equilibrium under the load P if the potential energy is a minimum. The potential
energy of the system is given by

potential energy (U)

= strain energy of springs — work done by external forces

1 1 1
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AN NS NNNNNN

Figure 2.4 Spring—cart system.

The necessary conditions for the minimum of U are

aUu

e kyx; —k3(x, —x)) =0 (ED)
X1

_aU = k3(X2 —xl) + kle - P = 0 (E2)

0x,

The values of x; and x, corresponding to the equilibrium state, obtained by solving
Egs. (El) and (E2), are given by
e Pk
U kky + kiky + koky
v _ P(k, + k3)
27 lk, + kiky + ks

The sufficiency conditions for the minimum at (x7, x3) can also be verified by testing
the positive definiteness of the Hessian matrix of U. The Hessian matrix of U evaluated
at (x{,x3) is

cu o
3l ox; 0x10x, ky+ ks  —ks
N R | ks ks

()

The determinants of the square submatrices of J are

J] = |k2+k3| =k2+k3>0
ky+k; ks

= kiky + k k3 + kyky > 0
kK K 1Ky T KyK3 T Kok

J2=

since the spring constants are always positive. Thus, the matrix J is positive definite
and hence (x}, x3) corresponds to the minimum of potential energy.
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2.3.2 Semidefinite Case

We now consider the problem of determining sufficient conditions for the case when
the Hessian matrix of the given function is semidefinite. In the case of a function of
a single variable, the problem of determining sufficient conditions for the case when
the second derivative is zero was resolved quite easily. We simply investigated the
higher-order derivatives in the Taylor’s series expansion. A similar procedure can be
followed for functions of n variables. However, the algebra becomes quite involved,
and hence we rarely investigate the stationary points for sufficiency in actual practice.
The following theorem, analogous to Theorem 2.2, gives the sufficiency conditions
for the extreme points of a function of several variables.

Theorem 2.5 Let the partial derivatives of f of all orders up to the order k>2 be
continuous in the neighborhood of a stationary point X*, and

drf‘|X:X*=Ov lgrﬁk—l
dflx=x-#0, r=k

so that d*f|x_x. is the first nonvanishing higher-order differential of f at X*. If k is
even, then (i) X* is a relative minimum if d*f |x=x~ 1s positive definite, (ii) X* is a
relative maximum if d*f|y_y. is negative definite, and (iii) if d*f|x_x- is semidefinite
(but not definite), no general conclusion can be drawn. On the other hand, if & is odd,
X* is not an extreme point of f (X).

Proof: A proof similar to that of Theorem 2.2 can be found in Ref. [2.7].

2.3.3 Saddle Point

In the case of a function of two variables, f (x, y), the Hessian matrix may be neither
positive nor negative definite at a point (x*, y*) at which

d_U_

ox  dy

In such a case, the point (x*, y*) is called a saddle point. The characteristic of a saddle
point is that it corresponds to a relative minimum or maximum of f (x, y) with respect
to one variable, say, x (the other variable being fixed at y = y*) and a relative maximum
or minimum of f (x, y) with respect to the second variable y (the other variable being

fixed at x*).
As an example, consider the function f (x, y) = x> — y2. For this function,
of of
= =2 d =—=-2
3 = 2 an PR y

These first derivatives are zero at x* = 0 and y* = 0. The Hessian matrix of f at (x*,

y*) is given by
20
-4

Since this matrix is neither positive definite nor negative definite, the point (x* = 0,
y* = 0) is a saddle point. The function is shown graphically in Figure 2.5. It can be
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fxy)
A

Figure 2.5 Saddle point of the function f (x, y) = x> — y?.

seen that f (x, y*) = f(x, 0) has a relative minimum and f (x*, y) = £ (0, y) has a relative
maximum at the saddle point (x*, y*). Saddle points may exist for functions of more
than two variables also. The characteristic of the saddle point stated above still holds
provided that x and y are interpreted as vectors in multidimensional cases.

Example 2.5 Find the extreme points of the function

JGep,x5) =x? +x§ + Zx% +4x§ +6

SOLUTION The necessary conditions for the existence of an extreme point are

of

o 3x] +4x; = x,(3x, +4) =0
0

s _ 3x5 4+ 8x; = x,(3x, +8) =0
ox,

These equations are satisfied at the points

00 (). (o). o (4

To find the nature of these extreme points, we have to use the sufficiency conditions.
The second-order partial derivatives of f are given by

02
ox;
02
2
ox;
02
S o

0x,0x,
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The Hessian matrix of fis given by

6x, +4 0
| 0 6x,+8
6x, +4 0
IfJ, =16x; +4l and J, = 10 6x. + 8| the values of J, and J, and the nature
X2

of the extreme point are as given below:

Point X Value of /;  ValueofJ,  Nature of J Nature of X fX)
0, 0) +4 +32 Positive definite Relative minimum 6
(0, —§) +4 -32  Indefinite Saddle point 41827
(— : 0) —4 -3 Indefinite Saddle point 194/27
(— % ,— % ) —4 +32 Negative definite ~ Relative maximum 50/3

2.4 MULTIVARIABLE OPTIMIZATION WITH EQUALITY
CONSTRAINTS

In this section we consider the optimization of continuous functions subjected to equal-
ity constraints:

Minimize f = f(X)

subject to
gX)=0, j=12,....m (2.16)
where
X
X =47
X

n

Here m is less than or equal to n; otherwise (if m > n), the problem becomes overde-
fined and, in general, there will be no solution. There are several methods available for
the solution of this problem. The methods of direct substitution, constrained variation,
and Lagrange multipliers are discussed in the following sections [2.8-2.10].

2.4.1 Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically possible
to solve simultaneously the m equality constraints and express any set of m variables
in terms of the remaining n — m variables. When these expressions are substituted into
the original objective function, there results a new objective function involving only
n—m variables. The new objective function is not subjected to any constraint, and
hence its optimum can be found by using the unconstrained optimization techniques
discussed in Section 2.3.

This method of direct substitution, although it appears to be simple in theory, is
not convenient from a practical point of view. The reason for this is that the constraint
equations will be nonlinear for most of practical problems, and often it becomes
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impossible to solve them and express any m variables in terms of the remaining n — m
variables. However, the method of direct substitution might prove to be very simple
and direct for solving simpler problems, as shown by the following example.

Example 2.6 Find the dimensions of a box of largest volume that can be inscribed in
a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system x;, x,, x; be at the
center of the sphere and the sides of the box be 2x;, 2x,, and 2x;. The volume of the
box is given by

J (1,29, 3) = 8x12px3 (ED)

Since the corners of the box lie on the surface of the sphere of unit radius, x;, x,, and
x5 have to satisfy the constraint

X+ =1 (E2)

This problem has three design variables and one equality constraint. Hence the equality
constraint can be used to eliminate any one of the design variables from the objective
function. If we choose to eliminate x;, Eq. (E2) gives

Xy =(1—x2 = xH)/? (E3)
Thus, the objective function becomes
SO, x) = 8xx,(1 — x% - x%)l/z (E4)

which can be maximized as an unconstrained function in two variables.
The necessary conditions for the maximum of f give

2
of X
—_—= 8)62 (1 —X% —Xg)l/z - 2—]212 = O (ES)
0x, (I =x7=x3) /

2
of X
— =8x |(1 -2 —x})/2 - 2—2212 =0 (E6)
0x, (I =x7 =x3) /

Equations (ES) and (E6) can be simplified to obtain

1-2x1-x3=0

2 2 _
l—xi=2x=0
from which it follows that x] = x; = 1/ \/’5 and hence xj = 1/ \/g . This solution gives
the maximum volume of the box as
8

33

To find whether the solution found corresponds to a maximum or a minimum, we apply
the sufficiency conditions to f (x;, x,) of Eq. (E4). The second-order partial derivatives

fmax =
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of fat (x], x3) are given by

’f_ 32

7 at (x{,x3)
ax 3
Pf 32
a—x% =———at (xl,xz)

02
S = —ﬁat (x},x3)
0x,0x,

Since

2 *r \’
—f <0 and —f—f - f >0
ox? 0x? x> 0x,0x,

1 1 0%

the Hessian matrix of f'is negative definite at (x},x3). Hence the point (x7, x}) corre-

sponds to the maximum of f.

2.4.2 Solution by the Method of Constrained Variation

The basic idea used in the method of constrained variation is to find a closed-form
expression for the first-order differential of f (df) at all points at which the constraints
gj(X) =0,j=1,2, ..., m,are satisfied. The desired optimum points are then obtained
by setting the differential df equal to zero. Before presenting the general method, we
indicate its salient features through the following simple problem withn =2 and m = 1:

Minimize f(x;, x,) 2.17)

subject to
g(x;,x) =0 (2.18)

A necessary condition for f to have a minimum at some point (x7, x3) is that the total
derivative of f (x;, x,) with respect to x; must be zero at (x7,x7). By setting the total
differential of f (x;, x,) equal to zero, we obtain

of of

df = —dx; + —dx, =0 2.19
Iif ox, ax X ( )

Since g(x},x3) = 0 at the minimum point, any variations dx, and dx, taken about the
point (xl, 2) are called admissible variations provided that the new point lies on the
constraint:

g0} +dxy, x5 +dxy) =0 (2.20)

The Taylor’s series expansion of the function in Eq. (2.20) about the point (x7,x
gives

1’2

g(x} +dxy, x5 + dx,)

oy 98
= g(xl,xz) +—

o, (x7,x5)dx) + a—xz(xl,xz)dxz =0 2.21)

where dx, and dx, are assumed to be small. Since g(x}, x7) = 0, Eq. (2.21) reduces to

g 3k *
dg = 0x1 abc1 o, —dx, =0 at (x],x3) (2.22)
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X2

8(x1.x) =0

= X1

Figure 2.6 Variations about A.

Thus Eq. (2.22) has to be satisfied by all admissible variations. This is illustrated in
Figure 2.6, where PQ indicates the curve at each point of which Eq. (2.18) is satisfied.
If A is taken as the base point (x7, x3), the variations in x; and x, leading to points B
and C are called admissible variations. On the other hand, the variations in x; and x,
representing point D are not admissible since point D does not lie on the constraint
curve, g (x;, x,) = 0. Thus any set of variations (dx;, dx,) that does not satisfy Eq.
(2.22) leads to points such as D, which do not satisfy constraint Eq. (2.18).
Assuming that dg/0x, #0, Eq. (2.22) can be rewritten as

dg/0x,
0g/0x,
This relation indicates that once the variation in x, (dx,) is chosen arbitrarily, the vari-

ation in x, (dx,) is decided automatically in order to have dx, and dx, as a set of
admissible variations. By substituting Eq. (2.23) in Eq. (2.19), we obtain

dx2 =

(o, x)dx, (2.23)

df = <i _ 98/0x i) dx; =0 (2.24)

0x; 0g/ox, 0x,

(7%3)

The expression on the left-hand side is called the constrained variation of f. Note that
Eq. (2.24) has to be satisfied for all values of dx,. Since dx,; can be chosen arbitrarily,

Eq. (2.24) leads to
< of dg  of ag >

=0 2.25
0x, 0x,  0x, 0x, (2.25)

(7%3)

Equation (2.25) represents a necessary condition in order to have (x}, x3) as an extreme
point (minimum or maximum).

Example 2.7 A beam of uniform rectangular cross section is to be cut from a log
having a circular cross section of diameter 2a. The beam has to be used as a cantilever
beam (the length is fixed) to carry a concentrated load at the free end. Find the dimen-
sions of the beam that correspond to the maximum tensile (bending) stress carrying
capacity.

SOLUTION From elementary strength of materials, we know that the tensile stress
induced in a rectangular beam (o) at any fiber located a distance y from the neutral
axis is given by
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y
A

e
. __’/_——- -——-»= x (Neutral axis)

\x2+y2=a2

—— 2x ——

Figure 2.7 Cross section of the log.

where M is the bending moment acting and [ is the moment of inertia of the cross
section about the x axis. If the width and depth of the rectangular beam shown in
Figure 2.7 are 2x and 2y, respectively, the maximum tensile stress induced is given by

M My 3IM
Opax = —yV = ————— =

X y= - 7T 5
T Laneyp 47

Thus, for any specified bending moment, the beam is said to have maximum tensile
stress carrying capacity if the maximum induced stress (6,,,,) is a minimum. Hence,
we need to minimize k/xy> or maximize Kxy?, where k = 3 M/4 and K = 1/k, subject
to the constraint

2y =a
This problem has two variables and one constraint; hence Eq. (2.25) can be applied
for finding the optimum solution. Since

f=hkly? (ED)

g=x"+y -d* (E2)
we have

of 2. -2

B

ox tY

g — —2kx_1y_3

ay

0

% _ 2x

ox

0

ay
Equation (2.25) gives

—kx "2y 22y 4+ 2k Ty B 2x) =0 at (xF,y")
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that is,
v = Vx (E3)

Thus, the beam of maximum tensile stress carrying capacity has a depth of \/ 2 times
its breadth. The optimum values of x and y can be obtained from Eqs. (E3) and (E2) as

=2 and y'=v2-L
3

Vi V3

Necessary Conditions for a General Problem. The procedure indicated above can
be generalized to the case of a problem in n variables with m constraints. In this case,
each constraint equation gj(X) =0,j=1,2, ..., m, gives rise to a linear equation in
the variations dx;, i = 1, 2, ..., n. Thus, there will be in all m linear equations in n
variations. Hence, any m variations can be expressed in terms of the remaining n — m
variations. These expressions can be used to express the differential of the objective
function, df, in terms of the n — m independent variations. By letting the coefficients
of the independent variations vanish in the equation df = 0, one obtains the necessary
conditions for the constrained optimum of the given function. These conditions can
be expressed as [2.7]

o o of of
0x, 0x; 0x, 0x,,
T TR 1
ox, 0x; 0x, 0x,,
J( 18185 - 1 8m ): % 9% 9% . 9%|_g (2.26)
Xis X15 X5 X35 -+ o5 Xy ox;, 0x; Ox, 0x,,
%8m 98w 98w 98w
0x, 0x; 0x, 0x,,
wherek=m+1,m+2, ...,n.Itisto be noted that the variations of the first m variables
(dx,, dx,, ..., dx,) have been expressed in terms of the variations of the remaining
n —m variables (dx,,,, dx,,,», ..., dx,) in deriving Eq. (2.26). This implies that the
following relation is satisfied:
7 <gl,82’ ""gm) £0 2.27)
X15Xp,s ey Xy,
The n —m equations given by Eq. (2.26) represent the necessary conditions for the
extremum of f (X) under the m equality constraints, 8 X)=0,j=1,2,...,m.
Example 2.8 .
Minimum f(Y) = E(yf +y3 45+ (E1)
subject to
g1 (Y)=y, +2y, +3y; +5y,—10=0 (E2)

SOLUTION This problem can be solved by applying the necessary conditions given
by Eq. (2.26). Since n = 4 and m = 2, we have to select two variables as independent
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variables. First, we show that any arbitrary set of variables cannot be chosen as
independent variables since the remaining (dependent) variables have to satisfy the
condition of Eq. (2.27).

In terms of the notation of our equations, let us take the independent variables as

x3=y; and x, =y, sothat x; =y, and x,=Yy,

Then the Jacobian of Eq. (2.27) becomes

Jg; 9g;
,<w>= oy oy, =‘12’=0
X1: X Jg, 08 12
dy; oy

and hence the necessary conditions of Eq. (2.26) cannot be applied.
Next, let us take the independent variables as x; =y, and x, =y, so that x; =y,
and x, = y;. Then the Jacobian of Eq. (2.27) becomes

% 98
81,8 dy, Oy 1 3’
J| —= = 1 3| = =2 0
<x1,x2> 98 98 ‘1 5 7
dy;  0y3

and hence the necessary conditions of Eq. (2.26) can be applied. Equations (2.26) give
fork=m+1=3

of o of o o o
oy 0x;  oxy| |9y, 9y dys
d9g, 0g, 08 g, 0g, 08
ox;  0x;  dxy| |dy; 9y, dys
Oxy  Ox;  O0xp dy, dy;  Oy3

Y2 Y1 V3
=121 3
215
=35 =3)—y,(10-6) + y;(2 - 2)
=2y, -4y, =0 (E4)

andfork=m+2=n=4,

o o of o o Of
ox, ox,  ox| [dy, Iy 9y
dg; dg 0g dag; dg, 08
ax; dx,  dxy| |dyy Oy, Oys
g, 08 0% 0g, 08 08
ax; dx,  Oxy| |dy, 9y, Oys

Ya Y1 )3
=|51 3

6 15
Y45 =3) = y1(25 = 18) +y;(5 - 6)
=2y, =Ty =y;=0 (E5)
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Equations (E4) and (E5) give the necessary conditions for the minimum or the maxi-

mum of fas |
= 5)’2
7
V3 =2y, =Ty, =2y, — 32 (E6)

When Egs. (E6) are substituted, Eqs. (E2) and (E3) take the form

—8y, + 11y, = 10
—15y, + 16y, = 15

from which the desired optimum solution can be obtained as

.5
y1—_ﬂ
.5
yz__ﬁ
. 155
a7y
.30
y4—§

Sufficiency Conditions for a General Problem. By eliminating the first m variables,
using the m equality constraints (this is possible, at least in theory), the objective func-

tion f'can be made to depend only on the remaining variables, x,, ., X,,,2, - .., X,. Then
the Taylor’s series expansion of f, in terms of these variables, about the extreme point
X* gives

FOX*4dX) = fX) + Y <ﬁ> dx;
8

. ox;
i=m+1

+l i Zn: il dx,dx; (2.28)
2! ox0x; ) '

i=m+1 j=m+1

where (9f70x;), is used to denote the partial derivative of f with respect to x; (holding

all the other variables x,,,{, X,,,2, -..» Xi_j, Xi11> Xiy2,> - .-, X, COnstant) when x;, x,,

.., x,, are allowed to change so that the constraints g X*+dX)=0,j=1,2, ...,m,

are satisfied; the second derivative, (02f/6xl~8xj)g, is used to denote a similar meaning.
As an example, consider the problem of minimizing

SX) =f(xy, x5, x3)
subject to the only constraint
g1 X) =xf +x§ +x§ -8=0

Since n =3 and m = 1 in this problem, one can think of any of the m variables, say x,, to
be dependent and the remaining n — m variables, namely x, and x5, to be independent.
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Here the constrained partial derivative (df/0x,),, for example, means the rate of change
of f with respect to x, (holding the other independent variable x; constant) and at the
same time allowing x; to change about X* so as to satisfy the constraint g, (X) = 0.
In the present case, this means that dx; has to be chosen to satisfy the relation

" o 1 981 981 081 s _
g1 (X" +dX) =~ g, (X*) + —(X"dx; + — (X")dx, + — (X )dx; =0
0x, 0x, 0x3

that is,
2xjdx; + 2x3dx, = 0

since g, (X*) = 0 at the optimum point and dx; = 0 (x; is held constant).

Notice that (9f70x;) B hastobe zerofori=m+1,m+2, ..., nsince the dx; appear-
ing in Eq. (2.28) are all independent. Thus, the necessary conditions for the existence
of constrained optimum at X* can also be expressed as

o)
(—f> =0, i=m+1m+2,...,n (2.29)
0x;
g

Of course, with little manipulation, one can show that Egs. (2.29) are nothing but
Eq. (2.26). Further, as in the case of optimization of a multivariable function with no
constraints, one can see that a sufficient condition for X* to be a constrained relative
minimum (maximum) is that the quadratic form Q defined by

n n azf
o= > ( o ax/>gdxidxj (2.30)

i=m+1 j=m+1

is positive (negative) for all nonvanishing variations dx;. As in Theorem 2.4, the matrix

o) G, o (@)
axr2n+l ¢ axm+laxm+2 g axm+laxn g

(Fom), o), ~ ()
0x,0%,,, . 0x,0X,,,» . ox> e

has to be positive (negative) definite to have Q positive (negative) for all choices of
dx;. It is evident that computation of the constrained derivatives (0*f/0x; 0x;), is a diffi-
cult task and may be prohibitive for problems with more than three constraints. Thus,
the method of constrained variation, although it appears to be simple in theory, is
very difficult to apply since the necessary conditions themselves involve evaluation of
determinants of order m + 1. This is the reason that the method of Lagrange multipli-
ers, discussed in the following section, is more commonly used to solve a multivariable
optimization problem with equality constraints.

2.4.3 Solution By the Method of Lagrange Multipliers

The basic features of the Lagrange multiplier method is given initially for a simple
problem of two variables with one constraint. The extension of the method to a general
problem of n variables with m constraints is given later.
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Problem with Two Variables and One Constraint. Consider the problem
Minimize f(x;, x,) (2.31)

subject to
8(x, %) =0

For this problem, the necessary condition for the existence of an extreme point at
X = X* was found in Section 2.4.2 to be

of 9f/ox, dg
0x, 0g/0x, 0x,

=0 (2.32)

[t

By defining a quantity 4, called the Lagrange multiplier, as

of /o
x:-(f/ x2> (2.33)
0g/0x, )
Equation (2.32) can be expressed as
%) 0
(—f n x—g> =0 (2.34)
0x, 0x, W)
and Eq. (2.33) can be written as
<i ¥ xa—g> =0 (2.35)
0x, 0x, W x2)

In addition, the constraint equation has to be satisfied at the extreme point, that is,
g(xl’XZ)l(xT,x;) =0 (2.36)

Thus Egs. (2.34)—(2.36) represent the necessary conditions for the point (x*l‘,x’z") to be
an extreme point.

Notice that the partial derivative (6g/6x2)|(x»{,x;) has to be nonzero to be able
to define A by Eq. (2.33). This is because the variation dx, was expressed in terms
of dx; in the derivation of Eq. (2.32) (see Eq. (2.23)). On the other hand, if we
choose to express dx; in terms of dx,, we would have obtained the requirement
that (dg/axl)l(xix;) be nonzero to define A. Thus, the derivation of the necessary
conditions by the method of Lagrange multipliers requires that at least one of the
partial derivatives of g (x,, x,) be nonzero at an extreme point.

The necessary conditions given by Egs. (2.34)—(2.36) are more commonly gener-
ated by constructing a function L, known as the Lagrange function, as

L(x;, x5, ) = f(x1, %) + Ag(x), %) (2.37)

By treating L as a function of the three variables x, x,, and 4, the necessary conditions
for its extremum are given by
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oL d dg
a_(xl,xz,h) f(xl,x2)+7\a (xl,xz)
X1
oL )
a_(xl’xb}‘) f(xl’xz)'i'k (xl’xz)
X
a(xl,xz,}») =g8(x;,x) =0 (2.38)

Equations (2.38) can be seen to be same as Egs. (2.34)—(2.36). The sufficiency condi-
tions are given later.

Example 2.9 Find the solution of Example 2.7 using the Lagrange multiplier method:
Minimize f(x, y) = kx~'y~2

subject to
gx,y) =x2+y2—a2 =0

SOLUTION The Lagrange function is
Lx,y, M) = £, 9) + Mg, y) = k™ y™2 + M + 37 = a?)

The necessary conditions for the minimum of f (x, y) (Eq. (2.38)) give

oL _

—kx"Hy 2 4 2x0 =0 (E1)
ox
OL _ ope 'y 420 =0 (E2)
day
%:x2+y2—a2=0 (E3)
Equations (E1) and (E2) yield
k 2k
M= —— =
By xy

from which the relation x* = (1/\/ 2)y* can be obtained. This relation, along with
Eq. (E3), gives the optimum solution as

v =-% and y*=\/§i

V3 V3

Necessary Conditions for a General Problem. The equations derived above can be
extended to the case of a general problem with n variables and m equality constraints:

Minimize f(X) (2.39)

subject to
gX)=0, j=12,....m
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The Lagrange function, L, in this case is defined by introducing one Lagrange multi-
plier 4; for each constraint g,(X) as

L(x;, X%y, ooy X Ay Ay ooy Ay)
=fX) + 181 (X) +2,8,(X) + -+ + 4,8, (X) (2.40)
By treating L as a function of the n 4+ m unknowns, x|, X,, ..., X,, 41, 49, ..., 4,,, the

necessary conditions for the extremum of L, which also correspond to the solution of
the original problem stated in Eq. (2.39), are given by

oL f ~. 98 ,

o _ 2 AL =0, i=12, ..., 2.41
ox;  Ox; * le I ox; ! . (2.41)
L _eX)=0, j=1.2...m (2.42)
o, o

Equations (2.41) and (2.42) represent n + m equations in terms of the n + m unknowns,
x; and A;. The solution of Egs. (2.41) and (2.42) gives

£3 *

X A

£3 *

X A

X* =421 and A =47
£3 *

X A

m

The vector X* corresponds to the relative constrained minimum of f (X) (sufficient
conditions are to be verified) while the vector A* provides the sensitivity information,
as discussed in the next subsection.

Sufficiency Conditions for a General Problem. A sufficient condition for f (X) to
have a constrained relative minimum at X* is given by the following theorem.

Theorem 2.6 Sufficient Condition A sufficient condition for f (X) to have a relative
minimum at X* is that the quadratic, Q, defined by

n n

0= Z Z 0°L dx,dx; (2.43)

0x;0x;

i=1 j=1

evaluated at X = X* must be positive definite for all values of dX for which the con-
straints are satisfied.

Proof: The proof is similar to that of Theorem 2.4.

Notes
1. If

n n

PL i ns
0= 2 Z orox (X*, M)dx;dx;
i=1 j= !

is negative for all choices of the admissible variations dx;, X* will be a con-
strained maximum of f (X).
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2. It has been shown by Hancock [2.1] that a necessary condition for the quadratic
form Q, defined by Eq. (2.43), to be positive (negative) definite for all admissi-
ble variations dX is that each root of the polynomial z;, defined by the following
determinantal equation, be positive (negative):

Ly-z Ly Ly ..o Ly 81 81 -+ &m
Ly, Ly—z Ly ... Ly 82 82 - &m
L L L. ... L —

nl n2 n3 nn 2 81n 82n 8mn -0 (244)
& g &3 --- &, 0 0 ... 0
821 8> 83 --- 8 0 0 ... 0
8m1 8w &3 -+ &mn o 0 ... 0

where
L .
L;= X", A" 2.45
Y 6xi6xj( ) (245
08 <.
8= E(X ) (2.46)

7

3. Equation (2.44), on expansion, leads to an (n — m)th-order polynomial in z. If
some of the roots of this polynomial are positive while the others are negative,
the point X* is not an extreme point.

The application of the necessary and sufficient conditions in the Lagrange multi-
plier method is illustrated with the help of the following example.

Example 2.10 Find the dimensions of a cylindrical tin (with top and bottom) made
up of sheet metal to maximize its volume such that the total surface area is equal to
Ay =24rn.

SOLUTION If x; and x, denote the radius of the base and length of the tin, respec-
tively, the problem can be stated as

Maximize f(x;,x,) = wx{x,

subject to
2rxt + 2mxyx, = Ay = 247

The Lagrange function is
L(x, %3, M) = mx0x, + M27x; + 2703, %, — Ag)

and the necessary conditions for the maximum of f give

oL

= 27x,%, + dmhx, + 2708, = 0 E1)
0x,
OL 2 +2mhx, =0 (E2)
0x,
I _ 27? + 2,3, — Ay = 0 (E3)

dA
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Equations (E1) and (E2) lead to

X1 Xy 1,
2x; + x, 27!
that is, .
== E4
X = 2% (E4)

and Egs. (E3) and (E4) give the desired solution as

12 1/2 1/2
x| = 4 /x*= o /and}»*=—ﬂ /
1 6r 2 3 ’ 24r

This gives the maximum value of f as

3N\ 12
= i
54r

If Ay = 247, the optimum solution becomes
xXf=2, x5=4, AN =-1, and f*=Il6x

To see that this solution really corresponds to the maximum of f, we apply the suffi-
ciency condition of Eq. (2.44). In this case

2
L= 0_[2, =2zxy +47\" = 4n
0x] (X* A%
2
(3x10x2 (X*, %)
9L
Ly, = F =0
X2 x= )
0 ,
g = 981 =4ax* + 2nxt = 1671
11 p) 1 2
xl (X*,)»*)
) .
g = 0;8’1 =2nx; =4n
x2 (X*, %)

Thus Eq. (2.44) becomes

dr—z 2x 161

2r 0—z 4z(=0
167 dr 0
that is,
227% 7+ 1927° =0
This gives
z= _Eﬂ
17

Since the value of z is negative, the point (x], x3) corresponds to the maximum of f.
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Interpretation of the Lagrange Multipliers. To find the physical meaning of the
Lagrange multipliers, consider the following optimization problem involving only a
single equality constraint:

Minimize f(X) (2.47)

subject to
gX)=0b or gX)=b-gX)=0 (2.48)

where b is a constant. The necessary conditions to be satisfied for the solution of the
problem are

af
6x + 6x
g=0 (2.50)

=0, i=12,...,n (2.49)

Let the solution of Egs. (2.49) and (2.50) be given by X*, 1*, and f* = f (X*). Suppose
that we want to find the effect of a small relaxation or tightening of the constraint on
the optimum value of the objective function (i.e. we want to find the effect of a small
change in b on f*). For this we differentiate Eq. (2.48) to obtain

db—dg=0
or N ag
db — dg = 2 ——dy; (2.51)

Equation (2.49) can be rewritten as

) ) og
f _ Y Ar— =0 (2.52)
6x ax 0x; 0x;
or P o /0
g .
8 A%y, (2.53)
ox; A

Substituting Eq. (2.53) into Eq. (2.51), we obtain

d _df
e Z % % dr. (2.54)
since n
df = ; g_i dx, (2.55)
Equation (2.54) gives p JF
s d]; or A = % (2.56)
or

df* = \db (2.57)
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Thus A* denotes the sensitivity (or rate of change) of f with respect to b or the
marginal or incremental change in f* with respect to b at x*. In other words, A*
indicates how tightly the constraint is binding at the optimum point. Depending on
the value of A* (positive, negative, or zero), the following physical meaning can be
attributed to A*:

1. 2* > 0. In this case, a unit decrease in b is positively valued since one gets a
smaller minimum value of the objective function f. In fact, the decrease in f*
will be exactly equal to A* since df = A* (—1) = —A* < 0. Hence A* may be
interpreted as the marginal gain (further reduction) in f* due to the tightening of
the constraint. On the other hand, if b is increased by 1 unit, f will also increase
to a new optimum level, with the amount of increase in f* being determined
by the magnitude of A* since df = A*(+1) > 0. In this case, 1* may be thought
of as the marginal cost (increase) in f* due to the relaxation of the constraint.

2. A* < 0. Here a unit increase in b is positively valued. This means that it
decreases the optimum value of f. In this case the marginal gain (reduction) in
f* due to a relaxation of the constraint by 1 unit is determined by the value
of A* as dff = A*(+1) < 0. If b is decreased by 1 unit, the marginal cost
(increase) in f* by the tightening of the constraint is df* = A*(—1) > 0 since,
in this case, the minimum value of the objective function increases.

3. A* =0. In this case, any incremental change in b has absolutely no effect on the
optimum value of f and hence the constraint will not be binding. This means
that the optimization of f subject to g = 0 leads to the same optimum point X*
as with the unconstrained optimization of f

In economics and operations research, Lagrange multipliers are known as shadow
prices of the constraints since they indicate the changes in optimal value of the objec-
tive function per unit change in the right-hand side of the equality constraints.

Example 2.11 Find the maximum of the function f (X) = 2x; + x, + 10 subject to
gX)=x, + 2x§ = 3 using the Lagrange multiplier method. Also find the effect of
changing the right-hand side of the constraint on the optimum value of f.
SOLUTION The Lagrange function is given by

LN = 2x; +x, + 10+ A3 —x; — 2%3) (E1)
The necessary conditions for the solution of the problem are

oL

—=2-L1=0

ox,

O 1 _4, =0

0x,

oL

a:3—x1—2x§:0 (E2)

The solution of Eq. (E2) is

A =20 (E3)
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The application of the sufficiency condition of Eq. (2.44) yields

Ly—-z Ly 811
Ly, Ly—z g|=0
811 812 0
-z 0 -1 -z 0 -1
0 —4r—z —4x,|=|0 -8-z —-052|=0
-1 —4x, 0 -1 -0.52 0
02704z +8+z=0
z=-6.2972

Hence X* will be a maximum of f with /* = f (X*) = 16.07.

One procedure for finding the effect on f* of changes in the value of b (right-hand
side of the constraint) would be to solve the problem all over with the new value of
b. Another procedure would involve the use of the value of A*. When the original
constraint is tightened by 1 unit (i.e. db = —1), Eq. (2.57) gives

df* = \db=2(=1) = =2

Thus, the new value of f* is f* 4+ df* = 14.07. On the other hand, if we relax the original
constraint by 2 units (i.e. db = 2), we obtain

df* = \db =2(+2) = 4

and hence the new value of f* is f* + df* = 20.07.

2.5 MULTIVARIABLE OPTIMIZATION WITH INEQUALITY
CONSTRAINTS

This section is concerned with the solution of the following problem:
Minimize f(X)

subject to
gX)<0, j=12,....m (2.58)

The inequality constraints in Eq. (2.58) can be transformed to equality constraints by
adding nonnegative slack variables, yjz, as

gX)+y; =0, j=12....m (2.59)
where the values of the slack variables are yet unknown. The problem now becomes
Minimize f(X)

subject to
— 2 _ P
GX.Y)=gX)+y; =0, j=12,....m (2.60)

where Y = {y;, ¥, -5 Y }T is the vector of slack variables.
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This problem can be solved conveniently by the method of Lagrange multipliers.
For this, we construct the Lagrange function L as

LX, Y,A) =fX) + Z Gi(X,Y) (2.61)
j=1
where A = {4, 4y, ..., 4,,}T is the vector of Lagrange multipliers. The stationary

points of the Lagrange function can be found by solving the following equations (nec-
essary conditions):

L XY= (X) + Zx —(X) i=1.2. .0 (262

ox; X;

aLXYx—GXY— X)+y2 =0, j=102 2.63

K( s 5 )_ /( ) )_g/( )+yj_ s J_ sy .M ( )
]

L XY=y, =0, j=12 ....m (2.64)
ayj )

It can be seen that Eqgs. (2.62)—(2.64) represent (n+ 2m) equations in the (n + 2m)
unknowns, X, 4, and Y. The solution of Egs. (2.62)—(2.64) thus gives the optimum
solution vector, X*; the Lagrange multiplier vector, A*; and the slack variable vector,
Y*,

Equations (2.63) ensure that the constraints g;(X) <0,j=1,2, ..., m, are satisfied,
while Eq. (2.64) 1mp1y that either 4, = 0 or y; = 0. If 4, = 0, it means that the jth
constraint is inactive' and hence can be ignored. On the other hand, if y; = 0, it means
that the constraint is active (g; = 0) at the optimum point. Consider the division of
the constraints into two subsets, J, and J,, where J; +J, represent the total set of
constraints. Let the set J; indicate the indices of those constraints that are active at the
optimum point and J, include the indices of all the inactive constraints.

Thus, forj € J, 2 V= 0 (constraints are active), for j € J,, /lj = 0 (constraints are
inactive), and Eq. (2.62) can be simplified as

of 98 .
3 + N5 =0 i=12 .. (2.65)

Jel,

Similarly, Eq. (2.63) can be written as

gX)=0, jel, (2.66)
gX)+y; =0, jel, (2.67)

Equations (2.65)—(2.67) represent n+p+ (m—p) = n+m equations in the n+m
unknowns x; i=1,2, ..., n), Aj(j € J;), and yj(]' € J,), where p denotes the number
of active constraints.

Assuming that the first p constraints are active, Eq. (2.65) can be expressed as

of 98, 08,
e WR-LIEy Vs 2 I s Lo
ox,  lox,  Zox P ox;

i=1,2,...,n (2.68)

I'Those constraints that are satisfied with an equality sign, g; =0, at the optimum point are called the active
constraints, while those that are satisfied with a strict 1nequa11ty sign, g < 0, are termed inactive constraints.

2The symbol € is used to denote the meaning “belongs to” or “element of”".
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These equations can be written collectively as

where Vfand Vg; are the gradients of the objective function and the jth constraint,
respectively:

af /0x, agj/axl

Vf = of /ox, and Vg = ag;/0x,
: J :

af/axn ag]/axn

Equation (2.69) indicates that the negative of the gradient of the objective function can
be expressed as a linear combination of the gradients of the active constraints at the
optimum point.

Further, we can show that in the case of a minimization problem, the ﬂj values
(j € J,) have to be positive. For simplicity of illustration, suppose that only two con-
straints are active (p = 2) at the optimum point. Then Eq. (2.69) reduces to

Let S be a feasible direction® at the optimum point. By premultiplying both sides of
Eq. (2.70) by ST, we obtain

—S"Vf =1S"Vg, + 1,8 Vg, (2.71)

where the superscript 7 denotes the transpose. Since S is a feasible direction, it should
satisfy the relations

STvg, <0
STvg, <0 (2.72)

Thus, if A4, > 0 and A, > 0, the quantity S” V f can be seen always to be positive. As
Vfindicates the gradient direction, along which the value of the function increases at
the maximum rate,* S” V f represents the component of the increment of f along the
direction S. If ST V £> 0, the function value increases as we move along the direction S.
Hence, if A, and 4, are positive, we will not be able to find any direction in the feasible

3 A vector S is called a feasible direction from a point X if at least a small step can be taken along S that does
not immediately leave the feasible region. Thus, for problems with sufficiently smooth constraint surfaces,
vector S satisfying the relation

STVgi <0

can be called a feasible direction. On the other hand, if the constraint is either linear or concave, as shown
in Figure 2.8b and c, any vector satisfying the relation

STng <0

can be called a feasible direction. The geometric interpretation of a feasible direction is that the vector
S makes an obtuse angle with all the constraint normals, except that for the linear or outward-curving
(concave) constraints, the angle may go to as low as 90°.

4See Section 6.10.2 for a proof of this statement.
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Figure 2.8 Feasible direction S.

domain along which the function value can be decreased further. Since the point at
which Eq. (2.72) is valid is assumed to be optimum, A, and A, have to be positive.
This reasoning can be extended to cases where there are more than two constraints
active. By proceeding in a similar manner, one can show that the 4; values have to be
negative for a maximization problem.

Example 2.12 Consider the following optimization problem:

Minimize f (x;,x;) = xf +x§
subject to

X +2x, <15
1<x,<10;i=1,2

Derive the conditions to be satisfied at the point X, = {1, 7}T by the search direction
S = {s,, 5,} T if it is a (a) usable direction, and (b) feasible direction.
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SOLUTION The objective function and the constraints can be stated as

[l x) = x% + x%
g1 X)=x, +2x, <15
£X)=1-x,<0
gX)=1-x,<0
84X)=x-10<0
g8sX)=x,—-10<0
At the given point X, = {1, 7}7, all the constraints can be seen to be satisfied with g,

and g, being active. The gradients of the objective and active constraint functions at
point X; = {1, 7}T are given by

raf\
V = = 1 =
"o ( {sz}xl 1)
aXZJX]
98,
) oxy 1
Vgl_<dﬁ> _{2}
anZJXl
r%\
a.xl _1
Vg, =4 %> = { 0}

\ale X,

For the search direction S = {s,, sz}T, the usability and feasibility conditions can be
expressed as

(a) Usability condition:
STVF <0 or (s sz){é} <0 or 2s +14s5,<0 (ED)

(b) Feasibility conditions:

ST™Vg, <0 or (s sz){;} <0 or s +25 <0 (E2)
STVg, <0 or (s sz){_ol} <0 or—s, <0 (E3)

Note: Any two numbers for s, and s, that satisfy the inequality (E1) will constitute
a usable direction S. For example, s; = 1 and s, = —1 gives the usable direction
S = {1, —1}T. This direction can also be seen to be a feasible direction because it
satisfies the inequalities (E2) and (E3).



90 Classical Optimization Techniques

2.5.1 Kuhn-Tucker Conditions

As shown above, the conditions to be satisfied at a constrained minimum point, X*,
of the problem stated in Eq. (2.58) can be expressed as

af ag; .
— + rM— =0, =1,2, ..., 2.73
o /EZJ: iox i n (2.73)

J 1

N>0, jel (2.74)

These are called Kuhn—Tucker conditions after the mathematicians who derived them
as the necessary conditions to be satisfied at a relative minimum of f (X) [2.11].
These conditions are, in general, not sufficient to ensure a relative minimum. How-
ever, there is a class of problems, called convex programming problems,> for which
the Kuhn—Tucker conditions are necessary and sufficient for a global minimum.

If the set of active constraints is not known, the Kuhn—Tucker conditions can be
stated as follows:

A20, j=L2....m (2.75)

Note that if the problem is one of maximization or if the constraints are of the type
;2 0, the 4; have to be nonpositive in Eq. (2.75). On the other hand, if the problem is
one of maximization with constraints in the form g = 0, the Aj have to be nonnegative
in Eq. (2.75).

2.5.2 Constraint Qualification

When the optimization problem is stated as
Minimize f(X)
subject to
g(X) <0, j=12,....m
hX)=0 k=12,...,p (2.76)

the Kuhn—Tucker conditions become
m )4
Vf+ D WVg— D BVhy =0
i=1 k=1

}\,jgjzo, j:1,2,...,m

g <0, i=12....m
h, =0, k=1,2,....p
4> 0, ji=1,2....m (2.77)

S5See Sections 2.6 and 7.14 for a detailed discussion of convex programming problems.
This condition is the same as Eq. (2.64).
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where 4; and f; denote the Lagrange multipliers associated with the constraints g; <0
and &, = 0, respectively. Although we found qualitatively that the Kuhn—Tucker con-
ditions represent the necessary conditions of optimality, the following theorem gives
the precise conditions of optimality.

Theorem 2.7 Let X* be a feasible solution to the problem of Eq. (2.76). If Vg;(X*),
j€J,yand Vi, (X*), k=1, 2,. ..., p, are linearly independent, there exist A* and B*
such that (X*, A*, §*) satisfy Eq. (2.77).

Proof: See Ref. [2.12, 2.13].

The requirement that Vg_,- (X*),jeJ,and Vi, (X*),k=1,2, ..., p, be linearly
independent is called the constraint qualification. If the constraint qualification is vio-
lated at the optimum point, Eq. (2.77) may or may not have a solution. It is difficult
to verify the constraint qualification without knowing X* beforehand. However, the
constraint qualification is always satisfied for problems having any of the following
characteristics:

1. All the inequality and equality constraint functions are linear.
2. All the inequality constraint functions are convex, all the equality constraint

functions are linear, and at least one feasible vector X exists that lies strictly
inside the feasible region, so that

gX)<0, j=12....m and KX =0, k=12 ....p

Example 2.13 Consider the following problem:

Minimize f (x;,x,) = (x; — 1)* + X2 (ED)

subject to
81(x1, %) = x? -2x, <0 (E2)
g, %) =x +2x, <0 (E3)

Determine whether the constraint qualification and the Kuhn—Tucker conditions are
satisfied at the optimum point.

SOLUTION The feasible region and the contours of the objective function are shown

in Figure 2.9. It can be seen that the optimum solution is (0, 0). Since g, and g, are
both active at the optimum point (0, 0), their gradients can be computed as

3x2 0 3x2 0
Vg (X*) = { 21} = {_2} and ng<X*)={ 2‘} = {z}
- (0,0) (0,0)

Itis clear that Vg,(X*) and Vg,(X*) are not linearly independent. Hence the con-
straint qualification is not satisfied at the optimum point. Noting that

o 20— 1 )2
woey - {3 }mf{"}
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X2

Feasible space

81=0

Figure 2.9 Feasible region and contours of the objective function.

the Kuhn—Tucker conditions can be written, using Eqs. (2.73) and (2.74), as

—2 4+ 1,(0) + 2,(0) =0 (E4)
0+2,(=2) + 1,(2) =0 (E5)
A >0 (E6)
A >0 (E7)

Since Eq. (E4) is not satisfied and Eq. (E5) can be satisfied for negative values of
Ay = A, also, the Kuhn—Tucker conditions are not satisfied at the optimum point.

Example 2.14 A manufacturing firm producing small refrigerators has entered into
a contract to supply 50 refrigerators at the end of the first month, 50 at the end of the
second month, and 50 at the end of the third. The cost of producing x refrigerators
in any month is given by $(x> +1000). The firm can produce more refrigerators in
any month and carry them to a subsequent month. However, it costs $20 per unit for
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any refrigerator carried over from one month to the next. Assuming that there is no
initial inventory, determine the number of refrigerators to be produced in each month
to minimize the total cost.

SOLUTION Let x;, x,, and x5 represent the number of refrigerators produced in the
first, second, and third month, respectively. The total cost to be minimized is given by

total cost = production cost + holding cost
or

F(x1,x5,x3) = (4 + 1000) + (x5 + 1000) + (x3 + 1000) + 20(x; — 50)
+20(x; +x, — 100)

_ 2,2, 2
= x| +x; + x5+ 40x; + 20x,
The constraints can be stated as

81(x1,x0,x3) =x;, =50 >0
82(xy, %0, x3) = x; +x, — 100 >0

83(x 1, X0, x3) =X, +x, +x3— 150> 0

The Kuhn—Tucker conditions are given by

of 0g, 0g, 0g;

— 4+ M —+N—=+M—=0, i=1,2,3
0x; ! ox; 2 ox; 3 ox; :
that is,
2x1+40+}\1+}\,2+}\,3=0 (El)
20 +204+ 0 +23 =0 (E2)
Kjgj =0, j=12,3
that is,
AMx, —50)=0 (E4)
A(x; +x, —100) =0 (ES)
M) +x,+x3, —150) =0 (E6)
g <0, j=123
that is,
X =50 >0 (E7)
x;+x,—100>0 (E8)
X +x,+x;,—-150>0 (E9)

A <0, j=123
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that is,
MZ0 (E10)
M <0 (E11)
<0 (E12)

The solution of Eqs. (E1)—(E12) can be found in several ways. We proceed to solve
these equations by first nothing that either A, = 0 or x; = 50 according to Eq. (E4).
Using this information, we investigate the following cases to identify the optimum
solution of the problem.

Case 1: A, =0.
Equations (E1)—-(E3) give

}‘3
x3——?
Ao A
xz_—lo—f—f
A A
X, =—20—32—73 (E13)

Substituting Eq. (E13) in Egs. (ES) and (E6), we obtain
M(=130-2, —23) =0
3
x3(—180—x2—§x3) =0 (E14)

The four possible solutions of Eq. (E14) are

1. A, =0,-180—-2, — %7»3 = 0. These equations, along with Eq. (E13), yield the
solution

A =0, A=-120, x, =40, x,=50, x,=060

This solution satisfies Eqs. (E10)—(E12) but violates Egs. (E7) and (E8) and
hence cannot be optimum.

2. A3 =0, -130— 4, — A; =0. The solution of these equations leads to
h=-130, M=0, x, =45 x,=55 x3=0
This solution can be seen to satisfy Eqs. (E10)—-(E12) but violate Egs. (E7) and
(E9).
3. 4, =0, 4; =0. Equations (E13) give
x;=-20, x=-10, x =0

This solution satisfies Egs. (E10)—(E12) but violates the constraints, Eqgs.
(ET)—(E9).
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4. —-130-4,—1;=0,-180—- 4, — %/13 =0. The solution of these equations and
Eq. (E13) yields

A =-30, A =-100, x;, =45 x,=55 x=50
This solution satisfies Egs. (E10)—(E12) but violates the constraint, Eq. (E7).

Case 2: x; = 50.
In this case, Eqgs. (E1)-(E3) give

Ay = —2x;
}\,2 = —20—2x2 —}\,3 = —20—2X2 +2)C3
}\,1 =—40—2x1—7\42—}\43=—120+2X2 (EIS)

Substitution of Eq. (E15) in Eqgs. (E5) and (E6) leads to

(=20 — 2x,y + 2x3)(x; + x, —100) =0
(=2x3)(x; +x, +x3 — 150) =0 (E16)

Once again, it can be seen that there are four possible solutions to Eq. (E16), as indi-
cated below:

1. —20—-2x, +2x3 =0, x; + x, + x3 — 150 = 0: The solution of these equations
yields
x; =50, x,=45 x3=55

This solution can be seen to violate Eq. (ES).
2. =20 —2x, +2x; =0, —2x; =0: These equations lead to the solution

xl :50, .X:z:_lo, X3=0

This solution can be seen to violate Egs. (E8) and (E9).
3. x; +x, —100 = 0, —2x; =0: These equations give

x; =50, x=50, x=0

This solution violates the constraint Eq. (E9).
4. x; +x, —100 = 0, x; + x, + x3 — 150 = 0: The solution of these equations
yields
x; =50, x,=50, x3=50

This solution can be seen to satisfy all the constraint Eqs. (E7)—(E9). The val-
ues of A, 4,, and A5 corresponding to this solution can be obtained from Eq.
(E15) as

A =-20, A, =-20, Ay=-100

Since these values of 4; satisfy the requirements (Eqs. (E10)—(E12)), this solu-
tion can be identified as the optimum solution. Thus

x; =50, x;=50, x5=50
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2.6 CONVEX PROGRAMMING PROBLEM

The optimization problem stated in Eq. (2.58) is called a convex programming prob-
lem if the objective function f (X) and the constraint functions g;(X) are convex. The
definition and properties of a convex function are given in Appendix A. Suppose that
f (X) and g X),j=1,2, ..., m, are convex functions. The Lagrange function of
Eq. (2.61) can be written as

LX, Y. 0) =f(X) + Y 41g,X) +)7] (2.78)

J=1

If /1j >0, then /ljgj (X) is convex, and since ﬁjyj = 0 from Eq. 2.64), L (X, Y, A)
will be a convex function. As shown earlier, a necessary condition for f (X) to be a
relative minimum at X* is that L (X, Y, A) have a stationary point at X*. However, if
L (X, Y, ) is a convex function, its derivative vanishes only at one point, which must
be an absolute minimum of the function f (X). Thus, the Kuhn-Tucker conditions are
both necessary and sufficient for an absolute minimum of f (X) at X*.

Notes:

1. If the given optimization problem is known to be a convex programming prob-
lem, there will be no relative minima or saddle points, and hence the extreme
point found by applying the Kuhn—Tucker conditions is guaranteed to be an
absolute minimum of f (X). However, it is often very difficult to ascertain
whether the objective and constraint functions involved in a practical engineer-
ing problem are convex.

2. The derivation of the Kuhn-Tucker conditions was based on the development
given for equality constraints in Section 2.4. One of the requirements for these
conditions was that at least one of the Jacobians composed of the m constraints
and m of the n + m variables (x|, x5, ..., X,; ¥}, Y2, - .., Y,,) be nonzero. This
requirement is implied in the derivation of the Kuhn-Tucker conditions.
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REVIEW QUESTIONS

2.1 State the necessary and sufficient conditions for the minimum of a function f (x).

2.2 Under what circumstances can the condition df (x)/dx =0 not be used to find the mini-
mum of the function f (x)?

2.3 Define the rth differential, d " f (X), of a multivariable function f (X).

2.4 Write the Taylor’s series expansion of a function f (X).

2.5 State the necessary and sufficient conditions for the maximum of a multivariable function
FX).

2.6 What is a quadratic form?

2.7 How do you test the positive, negative, or indefiniteness of a square matrix [A]?

2.8 Define a saddle point and indicate its significance.

2.9 State the various methods available for solving a multivariable optimization problem
with equality constraints.

2.10 State the principle behind the method of constrained variation.

2.11 What is the Lagrange multiplier method?

2.12 What is the significance of Lagrange multipliers?

2.13 Convert an inequality constrained problem into an equivalent unconstrained
problem.

2.14 State the Kuhn—Tucker conditions.

2.15 What is an active constraint?

2.16 Define a usable feasible direction.

2.17 What is a convex programming problem? What is its significance?

2.18 Answer whether each of the following quadratic forms is positive definite, negative

definite, or neither:
— 2.2
(a) f - Xl - -xz
(b) f=4xx,
— 2 2
(o f= X+ 2x;
@a f= —x% +4x,x, + 4x§
(e) f=—x +4xx) — 9x% + 2x,x;5 + 83,05 — 4x3
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PROBLEMS

2.19

2.20

2.1

2.2

2.3

24

2.5

State whether each of the following functions is convex, concave, or neither:

(@ f= —2x>+8x+4
(b) f=x>+10x+1
© f = -2

(d j‘:—)c%+4)c1x2

€ f=e* x>0
® f=+xx>0
® f=xx,

(h) f=(x; = 1>+ 10(x, - 2)*

Match the following equations and their characteristics:

(@) f=4x, —3x,+2 Relative maximum at (1, 2)
(b) f=2x, =2)* +(x, —2)? Saddle point at origin

(© f=—(x;—1)2—(x,—2)? No minimum

d) f=xx, Inflection point at origin
() f=x Relative minimum at (1, 2)

A dc generator has an internal resistance R ohms and develops an open-circuit voltage
of V volts (Figure 2.10). Find the value of the load resistance » for which the power
delivered by the generator will be a maximum.

Find the maxima and minima, if any, of the function
o
(x—=1D)(x—3)3

Find the maxima and minima, if any, of the function

Jx) =

fx) =4x® — 18x> +27x -7
The efficiency of a screw jack is given by

_ tana
tan(a + ¢)

where « is the lead angle and ¢ is a constant. Prove that the efficiency of the screw jack
will be maximum when a = 45° — /2 with n,,,,, = (1 —sin @)/A1 +sin @).

Find the minimum of the function

F) = 1045 — 48x° + 15x* + 200x° — 12047 — 480x + 100

:
,

Vv

Figure 2.10 Electric generator with load.
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Find the angular orientation of a cannon to maximize the range of the projectile.

In a submarine telegraph cable the speed of signaling varies as x> log (1/x), where x is
the ratio of the radius of the core to that of the covering. Show that the greatest speed is
attained when this ratiois 1 : \/E.

The horsepower generated by a Pelton wheel is proportional to u (V — u), where u is the
velocity of the wheel, which is variable, and V is the velocity of the jet, which is fixed.
Show that the efficiency of the Pelton wheel will be maximum when u = V/2.

A pipe of length / and diameter D has at one end a nozzle of diameter d through which
water is discharged from a reservoir. The level of water in the reservoir is maintained at
a constant value & above the center of nozzle. Find the diameter of the nozzle so that the
kinetic energy of the jet is a maximum. The kinetic energy of the jet can be expressed as

1 2( 2gD°h >3/2
—mpd* | —=——
4 DS + 4fid*

where p is the density of water, f the friction coefficient and g the gravitational constant.

An electric light is placed directly over the center of a circular plot of lawn 100m in
diameter. Assuming that the intensity of light varies directly as the sine of the angle at
which it strikes an illuminated surface, and inversely as the square of its distance from
the surface, how high should the light be hung in order that the intensity may be as great
as possible at the circumference of the plot?

If a crank is at an angle 6 from dead center with § = wt, where w is the angular velocity
and ¢ is time, the distance of the piston from the end of its stroke (x) is given by

2
x=r(l —cos0) + %(1 — c0s20)

where r is the length of the crank and / is the length of the connecting rod. For r = 1 and
[ =5, find (a) the angular position of the crank at which the piston moves with maximum
velocity, and (b) the distance of the piston from the end of its stroke at that instant.

Determine whether each of the matrices in Problems 2.12-2.14 is positive definite, neg-
ative definite, or indefinite by finding its eigenvalues.

[ 3 1 —1]
Aar=1 3 -1
-1-15
[ 4 2 —4]
Bl=|2 4 -2
—4 -2 4
[—1 -1 —1]
[Cl=|-1 =2 =2
-1 -2 -3

Determine whether each of the matrices in Problems 2.15-2.17 is positive definite, neg-
ative definite, or indefinite by evaluating the signs of its submatrices.

[ 3 1 -1]
Al=| 1 3 -1
-1-15
[ 4 2 —4]
Bl=|2 4 -2

-4 -2 4

[—1 —1 1]
[Cl=|-1 -2 =2
-1 -2 -3
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2.18

2.19

2.20

2.21

2.22

Express the function

2 _ 2 2
SO Xy, 63) = =x] — x5 + 2xx, — x5 + 6xx3

+4x; —5x3+2

in matrix form as |
fX) = 5XT[A]X +B'X+C

and determine whether the matrix [A] is positive definite, negative definite, or indefinite.

Determine whether the following matrix is positive or negative definite:

4 =30
[A]=(-3 0 4
0 42

Determine whether the following matrix is positive definite:
-14 3
[A] = -1

N O

3
0

N

The potential energy of the two-bar truss shown in Figure 2.11 is given by

2 2
O, xy) = %(%) x% + %(?) x% — Px; cos @ — Px, sin @
where E is Young’s modulus, A the cross-sectional area of each member, / the span of
the truss, s the length of each member, % the height of the truss, P the applied load, 0
the angle at which the load is applied, and x, and x, are, respectively, the horizontal and
vertical displacements of the free node. Find the values of x; and x, that minimize the
potential energy when E =207 x 10° Pa,A =10 m?,/=15m,h=4.0m, P = 10*N,
and 0 = 30°

The profit per acre of a farm is given by
20x, + 26x, + 4x,x, — 4x% - 3x§

where x; and x, denote, respectively, the labor cost and the fertilizer cost. Find the values
of x; and x, to maximize the profit.

Figure 2.11 Two-bar truss.
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2.23 The temperatures measured at various points inside a heated wall are as follows:

Distance from the heated surface as a 0 25 50 75 100
percentage of wall thickness, d
Temperature, #(°C) 380 200 100 20 0

It is decided to approximate this table by a linear equation (graph) of the form r = a + bd,
where a and b are constants. Find the values of the constants a and b that minimize the
sum of the squares of all differences between the graph values and the tabulated values.

2.24 Find the second-order Taylor’s series approximation of the function
fx,x) = (x; — D*e® +x

at the points (a) (0,0) and (b) (1,1).

2.25 Find the third-order Taylor’s series approximation of the function
S, xp,x3) = x§x3 +x,e%

at point (1, 0, —2).
2.26 The volume of sales (f) of a product is found to be a function of the number of newspaper
advertisements (x) and the number of minutes of television time (y) as
f=12xy —x* = 3y?
Each newspaper advertisement or each minute on television costs $1000. How should
the firm allocate $48 000 between the two advertising media for maximizing its sales?

2.27 Find the value of x* at which the following function attains its maximum:

Flx) = —em1/206=100)/ 107

10V2x

2.28 It is possible to establish the nature of stationary points of an objective function based
on its quadratic approximation. For this, consider the quadratic approximation of a
two-variable function as

fX)~a+b"X + %XT[C]X

X b c C
X = Ly b={1}, [c]=[” 12]
{xz} b, €12 €2
If the eigenvalues of the Hessian matrix, [c], are denoted as f, and f,, identify the nature

of the contours of the objective function and the type of stationary point in each of the
following situations.

where

(a) B, = P,; both positive

(b) p, > p,; both positive

(¢) 1p,1=16,l; B, and S, have opposite signs
d £,>0,p,=0

Plot the contours of each of the following functions and identify the nature of its sta-
tionary point.

229 f=2-x2—y>+4xy
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2.30
231
2.32
2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

241

242

f=2+ X2 — y2

f=xy

f= X3 = 3xy2

Find the admissible and constrained variations at the point X = {0, 4}T for the following

problem:
Minimize f = x% +(x; — 1)?

subject to
—2x% +x,=4

Find the diameter of an open cylindrical can that will have the maximum volume for a
given surface area, S.

A rectangular beam is to be cut from a circular log of radius r. Find the cross-sectional
dimensions of the beam to (a) maximize the cross-sectional area of the beam, and (b)
maximize the perimeter of the beam section.

Find the dimensions of a straight beam of circular cross section that can be cut from a
conical log of height / and base radius r to maximize the volume of the beam.

The deflection of a rectangular beam is inversely proportional to the width and the cube
of depth. Find the cross-sectional dimensions of a beam, which corresponds to minimum
deflection, that can be cut from a cylindrical log of radius r.

A rectangular box of height a and width b is placed adjacent to a wall (Figure 2.12).
Find the length of the shortest ladder that can be made to lean against the wall.

Show that the right circular cylinder of given surface (including the ends) and maximum
volume is such that its height is equal to the diameter of the base.

Find the dimensions of a closed cylindrical soft drink can that can hold soft drink of
volume V for which the surface area (including the top and bottom) is a minimum.

An open rectangular box is to be manufactured from a given amount of sheet metal (area
S). Find the dimensions of the box to maximize the volume.

Find the dimensions of an open rectangular box of volume V for which the amount of
material required for manufacture (surface area) is a minimum.

s
V
Vv
¥
’
,’z s
sV
/A ¢
/7 #
o ;
//
’ vV
Ladder /
’
% 7
s

i &
o 4
r 4
s 7 4
’, V

’
5 4
;0 4
vl 4
£e a L/
/i v
L7 b -1/
’ v

e il o e Sl S il P SO SIS A

Figure 2.12 Ladder against a wall.
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A rectangular sheet of metal with sides a and b has four equal square portions (of side
d) removed at the corners, and the sides are then turned up in order to form an open
rectangular box. Find the depth of the box that maximizes the volume.

Show that the cone of the greatest volume that can be inscribed in a given sphere has
an altitude equal to two-thirds of the diameter of the sphere. Also prove that the curved
surface of the cone is a maximum for the same value of the altitude.

Prove Theorem 2.6.

A log of length [ is in the form of a frustum of a cone whose ends have radii a and
b(a> b). It is required to cut from it a beam of uniform square section. Prove that the
beam of greatest volume that can be cut has a length of al/[3(a — b)].

It has been decided to leave a margin of 30 mm at the top and 20 mm each at the left
side, right side, and the bottom on the printed page of a book. If the area of the page is
specified as 5 x 10* mm?, determine the dimensions of a page that provide the largest
printed area.

Minimize f =9 — 8x; — 6x, — 4x; + 2x%
+2x + xg + 2x,x, + 2%, X3

subject to
X +x,+2x;=3

by (a) direct substitution, (b) constrained variation, and (¢) Lagrange multiplier method.
Mmmmﬂm=%@+g+g)
subject to
g X)=x,—x,=0

&X)=x+x+x-1=0

by (a) direct substitution, (b) constrained variation, and (c¢) Lagrange multiplier method.

Find the values of x, y, and z that maximize the function

6xyz

X, ¥,2) = —————
ferd= o5

when x, y, and z are restricted by the relation xyz = 16.

A tent on a square base of side 2a consists of four vertical sides of height b surmounted
by a regular pyramid of height 4. If the volume enclosed by the tent is V, show that the
area of canvas in the tent can be expressed as

v _ %+4a\/hz+a2
a

Also, show that the least area of the canvas corresponding to a given volume V, if a and
h can both vary, is given by

and h=2b

_ G
a=

A department store plans to construct a one-story building with a rectangular planform.
The building is required to have a floor area of 22500 ft> and a height of 18 ft. It is
proposed to use brick walls on three sides and a glass wall on the fourth side. Find the
dimensions of the building to minimize the cost of construction of the walls and the roof,
assuming that the glass wall costs twice as much as that of the brick wall and the roof
costs three times as much as that of the brick wall per unit area.
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2.53

2.54

2.55

2.56

2.57

2.58

2.59

Find the dimensions of the rectangular building described in Problem 2.52 to minimize
the heat loss, assuming that the relative heat losses per unit surface area for the roof,
brick wall, glass wall, and floor are in the proportion4:2:5: 1.

A funnel, in the form of a right circular cone, is to be constructed from a sheet metal.
Find the dimensions of the funnel for minimum lateral surface area when the volume of
the funnel is specified as 200in.?

Find the effect on f* when the value of A, is changed to (a) 257 and (b) 227 in
Example 2.10 using the property of the Lagrange multiplier.

(a) Find the dimensions of a rectangular box of volume V = 1000in.? for which the
total length of the 12 edges is a minimum using the Lagrange multiplier method.

(b) Find the change in the dimensions of the box when the volume is changed to
1200in.? by using the value of 4* found in part (a).

(¢) Compare the solution found in part (b) with the exact solution.

Find the effect on f* of changing the constraint to (a) x+x,+2x; = 4 and (b)
x+x,+2x; =2 in Problem 2.48. Use the physical meaning of Lagrange multiplier in
finding the solution.

A real estate company wants to construct a multistory apartment building on a
500 x 500-ft lot. It has been decided to have a total floor space of 8x 10° ft>. The
height of each story is required to be 12 ft, the maximum height of the building is to be
restricted to 75 ft, and the parking area is required to be at least 10% of the total floor
area according to the city zoning rules. If the cost of the building is estimated at $(500,
0004 + 2000F + 500P), where h is the height in feet, F is the floor area in square feet,
and P is the parking area in square feet. Find the minimum cost design of the building.

The Brinell hardness test is used to measure the indentation hardness of materials. It
involves penetration of an indenter, in the form of a ball of diameter D (mm), under a
load P (kg;), as shown in Figure 2.13a. The Brinell hardness number (BHN) is defined
as

BHN = g = 2P (2.79)

DD — \/D? — d2)

iP

Spherical (ball)
indenter of
diameter D

(@)
Indentation or crater
— d —»] of diameter d and depth £
< 7
)

Figure 2.13 Brinell hardness test.
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where A (in mm?) is the spherical surface area and d (in mm) is the diameter of the
crater or indentation formed. The diameter d and the depth & of indentation are related

by (Figure 2.13b)
d=2v/hD - h) (2.80)

It is desired to find the size of indentation, in terms of the values of d and s, when a
tungsten carbide ball indenter of diameter 10 mm is used under a load of P = 3000 kg;
on a stainless steel test specimen of BHN 1250. Find the values of d and & by formulating
and solving the problem as an unconstrained minimization problem.

Hint: Consider the objective function as the sum of squares of the equations implied by
Egs. (2.79) and (2.80).

A manufacturer produces small refrigerators at a cost of $60 per unit and sells them to
a retailer in a lot consisting of a minimum of 100 units. The selling price is set at $80
per unit if the retailer buys 100 units at a time. If the retailer buys more than 100 units
at a time, the manufacturer agrees to reduce the price of all refrigerators by 10 cents for
each unit bought over 100 units. Determine the number of units to be sold to the retailer
to maximize the profit of the manufacturer.

Consider the following problem:
Minimize f = (x, — 2)* + (x, — 1)?

subject to
22x+x,

2
X, le

Using Kuhn-Tucker conditions, find which of the following vectors are local minima:

x={o5) x={i} x={5}

Using Kuhn-Tucker conditions, find the value(s) of § for which the pointx} = 1,xJ =2
will be optimal to the problem:

Maximize f(x,, x,) = 2x; + px,
subject to
g1(x,x) = x% +x§ -5<0

&x,Xx) =x+x,-2<0

Verify your result using a graphical procedure.

Consider the following optimization problem:
Maximize f = —x; — x,
subject to
2
X +x, 22
4 <x;+3x,
X + x; <30

(a) Find whether the design vector X = {1, 1}T satisfies the Kuhn—Tucker conditions
for a constrained optimum.

(b) What are the values of the Lagrange multipliers at the given design vector?
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2.64 Consider the following problem:

2.65

2.66

2.67

P _ 2,22
Maximize f(X) = x| + x5 + x5

subject to
X +x,+x3>5
2—-xx; <0

x 20, x>0, x3>2

Determine whether the Kuhn—Tucker conditions are satisfied at the following points:

Lgl
|
D NW W
Ko
Il
W W WA
<
Il
—

Find a usable and feasible direction S at (a) X; = {-1,5 }T and (b) X, =1{2,3 1T for the
following problem:

Minimize f(X) = (x; — 1)* + (x, — 5)°

subject to
g =-x1+x,-4<0

X)) =—(x; =2 +x,-3<0
Consider the following problem:
Maximize f = xf - X,

subject to
26 > x% + x%
X +x,>6

x>0

Determine whether the following search direction is usable, feasible, or both at the

design vector X = 1

s={}. s={7} s={o}. s-{3}

Consider the following problem:
Minimize f = x} — 6x7 + 11x, +x,

subject to
2, .2 2
Xi+x,—-x<0
2 22
4-x1—-x—-x <0

x20,i=1,23, x<5
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Determine whether the following vector represents an optimum solution:

X=14v2
V2

2.68 Minimize f = x] + 2x; + 3x3
subject to the constraints

81 =X —X,—2x; <12

& =x +2x,-3x3 <8

using Kuhn—Tucker conditions.
2.69 Minimize f(x;,x,) = (x; — 1)> + (x, — 5)?
subject to
—x% +x, <4
-, —2%+x, <3

by (a) the graphical method and (b) Kuhn—Tucker conditions.

S 2_ 2
2.70 Maximize f = 8x| + 4x, + x;x, —x] — X3

subject to
2x, +3x, <24
—5x; +12x, < 24

x, <5

by applying Kuhn-Tucker conditions.
2.71 Consider the following problem:

Maximize f(x) = (x — 1)

subject to
-2<x<4

Determine whether the constraint qualification and Kuhn—Tucker conditions are satisfied
at the optimum point.

2.72 Consider the following problem:
Minimize f = (x; — 1) + (x, — 1)?

subject to
26, —(1-x,)*<0
x 20
X, 20

Determine whether the constraint qualification and the Kuhn—Tucker conditions are sat-
isfied at the optimum point.
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Verify whether the following problem is convex:

2.73
Minimize f(X) = —4x, +x% - 2x,x, + 2x§

subject to
2% +x, <6
X —4x, <0

x 20, x>0

2.74 Check the convexity of the following problems.
Minimize f(X) = 2x; +3x, —x; — 2x

(a)
subject to
X +3x, <6
Sx; +2x, <10
x 20, x>0
(b) Minimize f(X) = 9x] — 18x,x, + 13x, — 4

subject to
x% +x§ +2x, > 16

2.75 Identify the optimum point among the given design vectors, X, X, and X, by applying
the Kuhn—Tucker conditions to the following problem:

Minimize f(X) = 100(x, — x71)* + (1 — x,)*

subject to
2
X5 =X
2
1

0 0
(e {0 s
4

2.76 Consider the following optimization problem:
Minimize f = —xf - x% +x,%, + Tx; +4x,

subject to
2x, +3x, <24
=5x, + 12x, <24

x 20, x>0 x,<4

Find a usable feasible direction at each of the following design vectors:

=) x-(2)



Linear Programming I: Simplex
Method

3.1 INTRODUCTION

Linear programming (LP) is an optimization method applicable for the solution of
problems in which the objective function and the constraints appear as linear functions
of the decision variables [3.1-3.8]. The constraint equations in a linear programming
problem may be in the form of equalities or inequalities. The linear programming type
of optimization problem was first recognized in the 1930s by economists while devel-
oping methods for the optimal allocation of resources. During World War II the U.S.
Air Force sought more effective procedures of allocating resources and turned to linear
programming. George B. Dantzig, who was a member of the Air Force group, formu-
lated the general linear programming problem and devised the simplex method of solu-
tion in 1947 [3.1]. This has become a significant step in bringing linear programming
into wider use. Afterward, much progress was made in the theoretical development and
in the practical applications of linear programming. Among all the works, the theoret-
ical contributions made by Kuhn and Tucker had a major impact in the development
of the duality theory in LP. The works of Charnes and Cooper were responsible for
industrial applications of LP.

Linear programming is considered a revolutionary development that permits us to
make optimal decisions in complex situations. At least four Nobel Prizes were awarded
for contributions related to linear programming. For example, when the Nobel Prize
in Economics was awarded in 1975 jointly to L.V. Kantorovich of the former Soviet
Union and T.C. Koopmans of the United States, the citation for the prize mentioned
their contributions on the application of LP to the economic problem of allocating
resources [3.9-3.11]. George Dantzig, the inventor of LP, was awarded the National
Medal of Science by President Gerald Ford in 1976.

Although several other methods have been developed over the years for solving LP
problems, the simplex method continues to be the most efficient and popular method
for solving general LP problems. Among other methods, Karmarkar’s method, devel-
oped in 1984, has been shown to be up to 50 times as fast as the simplex algorithm of
Dantzig [3.12]. In this chapter we present the theory, development, and applications
of the simplex method for solving LP problems. Additional topics, such as the revised
simplex method, duality theory, decomposition method, postoptimality analysis, and
Karmarkar’s method, are considered in Chapter 4.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization
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3.2 APPLICATIONS OF LINEAR PROGRAMMING

The number of applications of linear programming has been so large that it is not possi-
ble to describe all of them here [3.13-3.17]. Only the early applications are mentioned
here and the exercises at the end of this chapter give additional example applications
of linear programming. One of the early industrial applications of linear programming
was made in the petroleum refineries. In general, an oil refinery has a choice of buying
crude oil from several different sources with differing compositions and at differing
prices. It can manufacture different products, such as aviation fuel, diesel fuel, and
gasoline, in varying quantities. The constraints may be due to the restrictions on the
quantity of the crude oil available from a particular source, the capacity of the refinery
to produce a particular product, and so on. A mix of the purchased crude oil and the
manufactured products is sought that gives the maximum profit.

The optimal production plan in a manufacturing firm can also be decided using
linear programming. Since the sales of a firm fluctuate, the company can have various
options. It can build up an inventory of the manufactured products to carry it through
the period of peak sales, but this involves an inventory holding cost. It can also pay
overtime rates to achieve higher production during periods of higher demand. Finally,
the firm need not meet the extra sales demand during the peak sales period, thus losing
a potential profit. Linear programming can take into account the various cost and loss
factors and arrive at the most profitable production plan.

In the food-processing industry, linear programming has been used to determine
the optimal shipping plan for the distribution of a particular product from different
manufacturing plants to various warehouses. In the iron and steel industry, linear
programming is used to decide the types of products to be made in their rolling mills
to maximize the profit. Metalworking industries use linear programming for shop
loading and for determining the choice between producing and buying a part. Paper
mills use it to decrease the amount of trim losses. The optimal routing of messages
in a communication network and the routing of aircraft and ships can also be decided
using linear programming.

Linear programming has also been applied to formulate and solve several types of
engineering design problems, such as the plastic design of frame structures, as illus-
trated in the following example.

Example 3.1 In the limit design of steel frames, it is assumed that plastic hinges
will be developed at points with peak moments. When a sufficient number of hinges
develop, the structure becomes an unstable system referred to as a collapse mechanism.
Thus a design will be safe if the energy-absorbing capacity of the frame (U) is greater
than the energy imparted by the externally applied loads (E) in each of the deformed
shapes as indicated by the various collapse mechanisms [3.13].

For the rigid frame shown in Figure 3.1, plastic moments may develop at the
points of peak moments (numbered 1 through 7 in Figure 3.1). Four possible collapse
mechanisms are shown in Figure 3.2 for this frame. Assuming that the weight is a
linear function of the plastic moment capacities, find the values of the ultimate moment
capacities M, and M, for minimum weight. Assume that the two columns are identical
and that P, =3, P, =1,h=8,and [ = 10.

SOLUTION The objective function can be expressed as

f (M,,M_.) = weight of beam + weight of columns
=a2l M, +2hM,)

where «a is a constant indicating the weight per unit length of the member with a unit
plastic moment capacity. Since a constant multiplication factor does not affect the
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Figure 3.1 Rigid frame.

E=P 5 +P,8,=340 E=P, 5, =240
U=4M,0 +2M,0 U=2M,0 +2M,0

Figure 3.2 Collapse mechanisms of the frame. M,, moment carrying capacity of beam; M_,
moment carrying capacity of column [3.13].

result, f can be taken as
f=2IM,+2h M, =20M, + 16M, (E1)

The constraints (U > E) from the four collapse mechanisms can be expressed as
M.>6
M, >2.5
M, +M, > 17
M, +M, > 12 (E2)
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3.3 STANDARD FORM OF A LINEAR PROGRAMMING
PROBLEM

The general linear programming problem can be stated in the following standard
forms:

3.3.1 Scalar Form

Minimize f(x,%,, ....X,) = X + Xy + -+ + ¢, (3.1a)
subject to the constraints

a”x] + alzxZ + .- +a]n.xn = bl

ayn Xy + ayxy + - +a,,x, = b,

Ay X + AppXy + - +a,,x, = b, (3.2a)
X1 >0
X, >0
x, >0 (3.3a)
where <, bj, and al-j(i =1,2,...,m;j=1,2, ..., n) are known constants, and x; are
the decision variables.
3.3.2 Matrix Form
Minimize f (X) = ¢'X (3.1b)
subject to the constraints
aX = b (3.2b)
X>0 (3.3b)
where
X1 b, C1
X = x:2 . b l’:z . c= sz .
'xi‘l bm CI‘L
ap Ay ot a4y,
Ay Ay *+ Ay,
L Ly B

The characteristics of a linear programming problem, stated in standard
form, are

1. The objective function is of the minimization type.
2. All the constraints are of the equality type.
3. All the decision variables are nonnegative.
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Itis now shown that any linear programming problem can be expressed in standard
form by using the following transformations.

1. The maximization of a function f (x, x,, ..., x,) is equivalent to the minimiza-
tion of the negative of the same function. For example, the objective function

minimize [ = c x| + Xy + -+ +¢,%,
is equivalent to

maximize f' = —f = —C X — CyXy — +++ — C, X

n-n

Consequently, the objective function can be stated in the minimization form in
any linear programming problem.

2. In most engineering optimization problems, the decision variables represent
some physical dimensions, and hence the variables x; will be nonnegative.
However, a variable may be unrestricted in sign in some problems. In such
cases, an unrestricted variable (which can take a positive, negative, or zero
value) can be written as the difference of two nonnegative variables. Thus, if
x; is unrestricted in sign, it can be written as x; = xl’ — x_/’.’ , where

x/’.ZO and x;’ZO

It can be seen that x; will be negative, zero, or positive, depending on whether
x]f’ is greater than, equal to, or less than x]’..
3. If a constraint appears in the form of a “less than or equal to” type of inequality
as
akl.xl + akzxz + b + akn.xn S bk

it can be converted into the equality form by adding a nonnegative slack vari-
able x,,,, as follows:

Ay Xy + AppXy + -+ + QX + Xy = by

Similarly, if the constraint is in the form of a “greater than or equal to” type of
inequality as
akl.xl + ak2x2 + b + akn.xn Z bk

it can be converted into the equality form by subtracting a variable as
Xy + @oXy + o+ Qg Xy — Xy = by
where x,, | is a nonnegative variable known as a surplus variable.

It can be seen that there are m equations in n decision variables in a linear program-
ming problem. We can assume that m < n; for if m > n, there would be m — n redundant
equations that could be eliminated. The case n = m is of no interest, for then there is
either a unique solution X that satisfies Eqs. (3.2b) and (3.3b) (in which case there
can be no optimization) or no solution, in which case the constraints are inconsistent.
The case m < n corresponds to an underdetermined set of linear equations, which, if
they have one solution, have an infinite number of solutions. The problem of linear
programming is to find one of these solutions that satisfies Egs. (3.2b) and (3.3b) and
yields the minimum of f.
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3.4 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

A linear programming problem with only two variables presents a simple case for
which the solution can be obtained by using a rather elementary graphical method.
Apart from the solution, the graphical method gives a physical picture of certain geo-
metrical characteristics of linear programming problems. The following example is
considered to illustrate the graphical method of solution.

Example 3.2 A manufacturing firm produces two machine parts using lathes, milling
machines, and grinding machines. The different machining times required for each
part, the machining times available on different machines, and the profit on each
machine part are given in the following table.

Machining time required (min)

Maximum time available

Type of machine Machine part I Machine part II per week (min)
Lathes 10 5 2500
Milling machines 4 10 2000
Grinding machines 1 1.5 450
Profit per unit $50 $100

Determine the number of parts I and II to be manufactured per week to maximize
the profit.

SOLUTION Let the number of machine parts I and II manufactured per week be
denoted by x and y, respectively. The constraints due to the maximum time limitations
on the various machines are given by

10x + 5y < 2500 (E1)
4x + 10y < 2000 (E2)
x+ 1.5y <450 (E3)

Since the variables x and y cannot take negative values, we have

x>0
y=0 (E4)
The total profit is given by
f(x,y) =50x + 100y (ES5)

Thus the problem is to determine the nonnegative values of x and y that satisfy
the constraints stated in Egs. (E1)-(E3) and maximize the objective function given by
Eq. (ES). The inequalities (E1)—(E4) can be plotted in the xy plane and the feasible
region identified as shown in Figure 3.3 Our objective is to find at least one point
out of the infinite points in the shaded region of Figure 3.3 that maximizes the profit
function (ES).

The contours of the objective function, f, are defined by the linear equation

50x + 100y = k = constant



3.4 Geometry of Linear Programming Problems 115

y
A
A
E
C G(187.5,125.0)
1 1 1 > X
0,0 B F D o

Figure 3.3 Feasible region given by Egs. (E1) to (E4).
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Figure 3.4 Contours of objective function.

As kis varied, the objective function line is moved parallel to itself. The maximum
value of fis the largest kK whose objective function line has at least one point in common
with the feasible region. Such a point can be identified as point G in Figure 3.4. The
optimum solution corresponds to a value of x* = 187.5, y* = 125.0 and a profit of
$21875.00.

In some cases, the optimum solution may not be unique. For example, if the profit
rates for the machine parts I and I are $40 and $100 instead of $50 and $100, respec-
tively, the contours of the profit function will be parallel to side CG of the feasible
region as shown in Figure 3.5. In this case, line P”"Q", which coincides with the
boundary line CG, will correspond to the maximum (feasible) profit. Thus, there is
no unique optimal solution to the problem and any point between C and G on line
P" Q" can be taken as an optimum solution with a profit value of $20 000. There are
three other possibilities. In some problems, the feasible region may not be a closed
convex polygon. In such a case, it may happen that the profit level can be increased to
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Figure 3.5 Infinite solutions.
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Figure 3.6 Unbounded solution.

an infinitely large value without leaving the feasible region, as shown in Figure 3.6. In
this case the solution of the linear programming problem is said to be unbounded. On
the other extreme, the constraint set may be empty in some problems. This could be
due to the inconsistency of the constraints; or, sometimes, even though the constraints
may be consistent, no point satisfying the constraints may also satisfy the nonnegativ-
ity restrictions. The last possible case is when the feasible region consists of a single
point. This can occur only if the number of constraints is at least equal to the num-
ber of variables. A problem of this kind is of no interest to us since there is only one
feasible point and there is nothing to be optimized.

Thus, a linear programming problem may have (i) a unique and finite optimum
solution, (ii) an infinite number of optimal solutions, (iii) an unbounded solution, (iv)
no solution, or (v) a unique feasible point. Assuming that the linear programming
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problem is properly formulated, the following general geometrical characteristics can
be noted from the graphical solution:

1. The feasible region is a convex polygon.!
2. The optimum value occurs at an extreme point or vertex of the feasible region.

3.5 DEFINITIONS AND THEOREMS

The geometrical characteristics of a linear programming problem stated in Section 3.4
can be proved mathematically. Some of the more powerful methods of solving lin-
ear programming problems take advantage of these characteristics. The terminology
used in linear programming and some of the important theorems are presented in this
section [3.1].

3.5.1 Definitions

1. Point in n-dimensional space. A point X in an n-dimensional space is char-
acterized by an ordered set of n values or coordinates (x;, x,, ..., x,,). The
coordinates of X are also called the components of X.

g

Line segment in n dimensions (L). If the coordinates of two points A and
B are given by x](.l) and x¥ G =1, 2, ..., n), the line segment (L) joining
these points is the collection of points X(4) whose coordinates are given by
X = M;l) +(1 —}\)xj(.z),j =1,2,...,n,with0<A<1.
Thus

L={X|X=2XD+1-nXx?} (3.4)

In one dimension, for example, it is easy to see that the definition is in accor-
dance with our experience (Figure 3.7):

X = x(h) = AP — X1, 0<r<1 (3.5)

whence
x(0) = W 4 (1 =@, o<a<l1 (3.6)
3. Hyperplane. In n-dimensional space, the set of points whose coordinates sat-

isfy a linear equation
ax; + - +ax,=a'X=>b (3.7

is called a hyperplane. A hyperplane, H, is represented as
H(a,b) = {X|a"X = b} (3.8)

A hyperplane has n — 1 dimensions in an n-dimensional space. For example,
in three-dimensional space it is a plane, and in two-dimensional space it is

A B

| | | | - x
0 x( x® <@

Figure 3.7 Line segment.

A convex polygon consists of a set of points having the property that the line segment joining any two
points in the set is entirely in the convex set. In problems having more than two decision variables, the
feasible region is called a convex polyhedron, which is defined in the next section.
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a line. The set of points whose coordinates satisfy a linear inequality like
a\x; + - +a,x,<b is called a closed half-space, closed due to the inclu-
sion of an equality sign in the inequality above. A hyperplane partitions the
n-dimensional space (E") into two closed half-spaces, so that

H* ={X|a"™X > b} (3.9)
H ={X]|a'X<b) (3.10)

This is illustrated in Figure 3.8 in the case of a two-dimensional space (E?).

X

Hyperplane

X
H+

Figure 3.8 Hyperplane in two dimensions.

. Convex set. A convex set is a collection of points such that if XV and X® are

any two points in the collection, the line segment joining them is also in the
collection. A convex set, S, can be defined mathematically as follows:

If XD X® e g, then X €S

where
X =X + (1 - X2, 0<a<l1

A set containing only one point is always considered to be convex. Some
examples of convex sets in two dimensions are shown shaded in Figure 3.9.
On the other hand, the sets depicted by the shaded region in Figure 3.10 are
not convex. The L-shaped region, for example, is not a convex set, because it
is possible to find two points a and b in the set such that not all points on the
line joining them belong to the set.

Figure 3.9 Convex sets.

= & D)

Figure 3.10 Nonconvex sets.
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5. Convex polyhedron and convex polytope. A convex polyhedron is a set of

points common to one or more half-spaces. A convex polyhedron that is
bounded is called a convex polytope.
Figure 3.11a and b represents convex polytopes in two and three dimensions,
and Figure 3.11c and d denotes convex polyhedra in two and three dimen-
sions. It can be seen that a convex polygon, shown in Figure 3.11a and c, can
be considered as the intersection of one or more half-planes.

X
Xy
A A
——— X,
— X
X3
(a) (b)
X2 X2
A A
— =
— X
X3
(o) (d)

Figure 3.11 Convex polytopes in two and three dimensions (a, b) and convex polyhedra in
two and three dimensions (c, d).

6. Vertex or extreme point. This is a point in the convex set that does not lie on a
line segment joining two other points of the set. For example, every point on
the circumference of a circle and each corner point of a polygon can be called
a vertex or extreme point.

Feasible solution. In a linear programming problem, any solution that satisfies
the constraints (see Eqgs. (3.2b) and (3.3b)) is called a feasible solution.
Basic solution. A basic solution is one in which n — m variables are set equal
to zero. A basic solution can be obtained by setting n — m variables to zero
and solving the constraint Eq. (3.2b) simultaneously.

7

8

9. Basis. The collection of variables not set equal to zero to obtain the basic
solution is called the basis.
10. Basic feasible solution. This is a basic solution that satisfies the nonnegativity
conditions of Eq. (3.3b).
11. Nondegenerate basic feasible solution. This is a basic feasible solution that
has got exactly m positive x;.
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12. Optimal solution. A feasible solution that optimizes the objective function is
called an optimal solution.

13. Optimal basic solution. This is a basic feasible solution for which the objec-
tive function is optimal.

3.5.2 Theorems
The basic theorems of linear programming can now be stated and proved.?

Theorem 3.1 The intersection of any number of convex sets is also convex.

Proof: Let the given convex sets be represented as R;,(i =1, 2, ..., K) and their inter-
section as R, so that?

K
R=nNR

If the points X, X» € R, then from the definition of intersection,

X=XP+1-MXPer, (=12 ...,K)
0<Aa<l1
Thus
K
XeR=nNR,

=

and the theorem is proved. Physically, the theorem states that if there are a number of
convex sets represented by R, R,, ..., the set of points R common to all these sets
will also be convex. Figure 3.12 illustrates the meaning of this theorem for the case of
two convex sets.

Theorem 3.2 The feasible region of a linear programming problem is convex.

Proof: The feasible region S of a standard linear programming problem is defined as
S={X|aX=b,X >0} (3.11)
Let the points X, and X, belong to the feasible set S so that

aX, = b, X, >0 (3.12)

/.

7

Figure 3.12 Intersection of two convex sets.

2The proofs of the theorems are not needed for an understanding of the material presented in subsequent
sections.

3The symbol N represents the intersection of sets.
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aX, =b, X, >0 (3.13)
Multiply Eq. (3.12) by 4 and Eq. (3.13) by (1 — 4) and add them to obtain
alA X, + (1 -M)X,;]=Ab+(1-Mb=Db

that is,
aX}L = b

where
X, =AX; + (1 -MX,

Thus, the point X satisfies the constraints and if
0<r<1, X, >0
Hence, the theorem is proved.

Theorem 3.3 Any local minimum solution is global for a linear programming
problem.

Proof: In the case of a function of one variable, the minimum (maximum) of a func-
tion f (x) is obtained at a value x at which the derivative is zero. This may be a point
like A(x = x,) in Figure 3.13, where f (x) is only a relative (local) minimum, or a point
like B(x = x,), where f (x) is a global minimum. Any solution that is a local minimum
solution is also a global minimum solution for the linear programming problem. To
see this, let A be the local minimum solution and assume that it is not a global mini-
mum solution so that there is another point B at which f; <f,. Let the coordinates of
A and B be given by {x,, x,, ...,x,,}T and {y,, y,, ...,yn}T, respectively. Then any
point C = {z,, 25, --.,2,}" that lies on the line segment joining the two points A and
B is a feasible solution and f- = Af, + (1 — A)f3. In this case, the value of f decreases
uniformly from f, to fz, and thus all points on the line segment between A and B
(including those in the neighborhood of A) have f values less than f, and correspond
to feasible solutions. Hence, it is not possible to have a local minimum at A and at the
same time another point B such that f, > f;. This means that for all B, f; <fj, so that
f4 1s the global minimum value.

Jx)
A

I' Local
| minimum

: | Global minimum
|

— X

X1 X

Figure 3.13 Local and global minima.
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The generalized version of this theorem is proved in Appendix A so that it can be
applied to nonlinear programming problems also.

Theorem 3.4 Every basic feasible solution is an extreme point of the convex set of
feasible solutions.

Theorem 3.5 Let S be a closed, bounded convex polyhedron with X?, i =1 to p, as
the set of its extreme points. Then any vector X € S can be written as

P
X =) X
i=1

20

A=1

i=1

Theorem 3.6 Let S be a closed convex polyhedron. Then the minimum of a linear
function over S is attained at an extreme point of S.

The proofs of Theorems 3.4-3.6 can be found in Ref. [3.1].

3.6 SOLUTION OF A SYSTEM OF LINEAR SIMULTANEOUS
EQUATIONS

Before studying the most general method of solving a linear programming problem,
it will be useful to review the methods of solving a system of linear equations. Hence,
in the present section we review some of the elementary concepts of linear equations.
Consider the following system of n equations in » unknowns:

allxl + a12X2 + -+ alnxn = bl (El)
alel + a22x2 + -+ azn.xn = b2 (Ez)
a3 Xy + azpxy + - + a3, X, = by (Ey)
anx, +apx, + - +a,x,=b, E,) (3.14)

Assuming that this set of equations possesses a unique solution, a method of solv-
ing the system consists of reducing the equations to a form known as canonical form.

It is well known from elementary algebra that the solution of Eq. (3.14) will not be
altered under the following elementary operations: (i) any equation E, is replaced by
the equation kE,, where k is a nonzero constant, and (ii) any equation E, is replaced by
the equation E, + kE, where E| is any other equation of the system. By making use of
these elementary operations, the system of Eq. (3.14) can be reduced to a convenient
equivalent form as follows. Let us select some variable x; and try to eliminate it from
all the equations except the jth one (for which a;; is nonzero). This can be accomplished
by dividing the jth equation by a;; and subtracting a,; times the result from each of the
other equations, k = 1,2, ...,j—1,j+1, ..., n. The resulting system of equations
can be written as

' ' ’ ' ' _
ayXxy +dpx, + e tayp X 0 +ay X o +agx, =0

' ' ’ ' ' g
ay Xy +apXy + ot ay, X+ 0 +ay X+ Hayx, = b
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' ' ! 1 1 1t
a4 Xt a X+ ta Ox; + Ay Xipr T Ay X, = bj_1

' ' ' ' / g
Xy +apXy + oty X+ G+ a Xy + o @ x, = b

' ' ’ ' ' g
Ay X1+ X+ o+ @y X+ 0G gy Xy + o+ X = by

a Xy +apXy + et a X+ 06+ a) X+ +aX, = by, (3.15)
where the primes indicate that the al’.j and b’ are changed from the original system. This
procedure of eliminating a particular variaf)le from all but one equation is called a pivot
operation. The system of Eq. (3.15) produced by the pivot operation have exactly the
same solution as the original set of Eq. (3.14). That is, the vector X that satisfies Eq.
(3.14) satisfies Eq. (3.15), and vice versa.

Next time, if we take the system of Eq. (3.15) and perform a new pivot operation
by eliminating x, s # i, in all the equations except the rth equation, ¢ #, the zeros or
the 1 in the ith column will not be disturbed. The pivotal operations can be repeated
by using a different variable and equation each time until the system of Eq. (3.14) is
reduced to the form

Lx; + 0xy 4 Ox3 + -+ + Ox,, = b
Ox; + 1x, + 0x3 + -+ + Ox, = Y

Ox; + 0x; + 1xz + -+ + Ox, = by

0x; + 0x, + Oxz + =+ + 1x, = b)) (3.16)

This system of Eq. (3.16) is said to be in canonical form and has been obtained
after carrying out n pivot operations. From the canonical form, the solution vector can
be directly obtained as

x; =b, i=12,....n (3.17)

Since the set of Eq. (3.16) has been obtained from Eq. (3.14) only through ele-
mentary operations, the system of Eq. (3.16) is equivalent to the system of Eq. (3.14).
Thus, the solution given by Eq. (3.17) is the desired solution of Eq. (3.14).

3.7 PIVOTAL REDUCTION OF A GENERAL SYSTEM OF
EQUATIONS

Instead of a square system, let us consider a system of m equations in n variables with
n > m. This system of equations is assumed to be consistent so that it will have at least
one solution:

anXx, +apx, + - +a,x, =b

Ay Xy + ApXy + o+ + Ay, X, = b,y

Ay Xy + QypXy + -0 + @, X, = bm (3.18)

The solution vector(s) X that satisfy Eq. (3.18) are not evident from the equations.
However, it is possible to reduce this system to an equivalent canonical system from
which at least one solution can readily be deduced. If pivotal operations with respect
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to any set of m variables, say, x|, x,, ..., x,,, are carried, the resulting set of equations
can be written as follows:

Canonical system with pivotal variables x|, x,, ..., x,,

1 " —
Lxy +0xy + - +0x, + @\ X4 + o0 +a] X, = D]

Ox; + Ly + -+ + 0x,, +ay,  Xpgy + 0 +ay x, =D
Ox; +0xy + oo + Lx, + @) X0 + o +ap,x, =D,
’ (3.19)
Pivotal Nonpivotal or Constants
variables independent
variables

One special solution that can always be deduced from the system of Eq. (3.19) is

b, i=1,2, ...
x=3 i TS (3.20)
0, i=m+1,m+2,...,n

This solution is called a basic solution since the solution vector contains no more
than m nonzero terms. The pivotal variables x;, i = 1, 2, ..., m, are called the basic
variables and the other variables x;, i =m+1, m+2, ..., n, are called the nonbasic
variables. Of course, this is not the only solution, but it is the one most readily deduced
from Eq. (3.19). If all &, i = 1, 2, ..., m, in the solution given by Eq. (3.20) are
nonnegative, it satisfies Eq. (3.3b) in addition to Eq. (3.2b), and hence it can be called
a basic feasible solution.

It is possible to obtain the other basic solutions from the canonical system of
Eq. (3.19). We can perform an additional pivotal operation on the system after it is
in canonical form, by choosing a]’,’q (which is nonzero) as the pivot term, g > m, and
using any row p (among 1, 2, ..., m). The new system will still be in canonical form
but with x, as the pivotal variable in place of x,. The variable x,, which was a basic
variable in the original canonical form, will no longer be a basic variable in the new
canonical form. This new canonical system yields a new basic solution (which may
or may not be feasible) similar to that of Eq. (3.20). It is to be noted that the values of
all the basic variables change, in general, as we go from one basic solution to another,
but only one zero variable (which is nonbasic in the original canonical form) becomes
nonzero (which is basic in the new canonical system), and vice versa.

Example 3.3 Find all the basic solutions corresponding to the system of equations

2 +3xy —2x3 = Txy =1 ")
X=Xy +x3+5x, =4 (IIIy)
SOLUTION  First we reduce the system of equations into a canonical form with x,,
X,, and x5 as basic variables. For this, first we pivot on the element a;; = 2 to obtain
x+§x—x—zx—l I—lI
1 13 11
5 17 7
0-— Exz + 2x; + ?x4 = 3 oI, =11, - I,
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Then we pivot on a’22 = —%, to obtain
x; +045x;+ 16x, =17 Izzll—%H2
0+ xy —4x3 —13x, =11 I, = 211,
0+0—8x; —24x, = -24 11, =11, + %II2

Finally, we pivot on a’33 to obtain the required canonical form as

XZ - X4 =1 113 = IIZ + 41113
X3+ 3%, =3 0, = —%le

From this canonical form, we can readily write the solution of x;, x,, and x; in
terms of the other variable x, as

x1=2—X4
X, =14x
.)C3=3—3X4

If Eqgs. (1), (Ily), and (IIL,) are the constraints of a linear programming problem,
the solution obtained by setting the independent variable equal to zero is called a basic
solution. In the present case, the basic solution is given by

x =2, x, =1, x3 =3  (basic variables)

and x, = 0 (nonbasic or independent variable). Since this basic solution has all x; >0
(G=1,2,3,4),itis a basic feasible solution.

If we want to move to a neighboring basic solution, we can proceed from the
canonical form given by Eqs. (I3), (II5), and (IIL;). Thus, if a canonical form in terms
of the variables x|, x,, and x, is required, we have to bring x, into the basis in place
of the original basic variable x;. Hence, we pivot on a;’4 in Eq. (IIL). This gives the
desired canonical form as

1
X =2 I, = II, — I,
X4+ l)C =1 I, = lIH
4 3 3 4 3 3

This canonical system gives the solution of x;, x,, and x, in terms of x; as

X —1+1x
1= 3%
1

=2 -

X4=1—%XS
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and the corresponding basic solution is given by
x =1, X, =2, x, =1 (basic variables)

x3=0 (nonbasic variable)
This basic solution can also be seen to be a basic feasible solution. If we want to
move to the next basic solution with x;, x3, and x, as basic variables, we have to bring

x3 into the current basis in place of x,. Thus, we have to pivot a; in Eq. (II;). This
leads to the following canonical system:

1
X1 +.XZ=3 IS=I4+§IIS

X3 + 3X2 = 6 IIS = 3II4

X, —x,=—1 Iy =1I, - %IIS

The solution for x,, x5, and x, is given by

x;=3-x,

from which the basic solution can be obtained as

x; =3, x3=6, x,=-1 (basic variables)
x,=0 (nonbasic variable)
Since all the x; are not nonnegative, this basic solution is not feasible.
Finally, to obtain the canonical form in terms of the basic variables x,, x;, and x,,
we pivot on a’l’2 in Eq. (I5), thereby bringing x, into the current basis in place of x;.

This gives

Xy +x =2 01, = 101, + I,

This canonical form gives the solution for x,, x5, and x, in terms of x, as

X, =3 —x
X3 = =3+ 3x
X4=2—x1

and the corresponding basic solution is

X, =3, X3 = =3, x, =2 (basic variables)

x=0 (nonbasic variable)
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This basic solution can also be seen to be infeasible due to the negative value
for x;.

3.8 MOTIVATION OF THE SIMPLEX METHOD

Given a system in canonical form corresponding to a basic solution, we have seen
how to move to a neighboring basic solution by a pivot operation. Thus, one way to
find the optimal solution of the given linear programming problem is to generate all
the basic solutions and pick the one that is feasible and corresponds to the optimal
value of the objective function. This can be done because the optimal solution, if one
exists, always occurs at an extreme point or vertex of the feasible domain. If there are
m equality constraints in n variables with n > m, a basic solution can be obtained by
setting any of the n — m variables equal to zero. The number of basic solutions to be
inspected is thus equal to the number of ways in which m variables can be selected
from a set of » variables, that is,

ny\ _ n!
m) " (n—m)m!

For example, if n = 10 and m = 5, we have 252 basic solutions, and if n = 20
and m = 10, we have 184756 basic solutions. Usually, we do not have to inspect
all these basic solutions since many of them will be infeasible. However, for large
values of n and m, this is still a very large number to inspect one by one. Hence, what
we really need is a computational scheme that examines a sequence of basic feasible
solutions, each of which corresponds to a lower value of funtil a minimum is reached.
The simplex method of Dantzig is a powerful scheme for obtaining a basic feasible
solution; if the solution is not optimal, the method provides for finding a neighboring
basic feasible solution that has a lower or equal value of f. The process is repeated
until, in a finite number of steps, an optimum is found.

The first step involved in the simplex method is to construct an auxiliary prob-
lem by introducing certain variables known as artificial variables into the standard
form of the linear programming problem. The primary aim of adding the artificial
variables is to bring the resulting auxiliary problem into a canonical form from which
its basic feasible solution can be obtained immediately. Starting from this canonical
form, the optimal solution of the original linear programming problem is sought in
two phases. The first phase is intended to find a basic feasible solution to the orig-
inal linear programming problem. It consists of a sequence of pivot operations that
produces a succession of different canonical forms from which the optimal solution
of the auxiliary problem can be found. This also enables us to find a basic feasible
solution, if one exists, to the original linear programming problem. The second phase
is intended to find the optimal solution to the original linear programming problem.
It consists of a second sequence of pivot operations that enables us to move from
one basic feasible solution to the next of the original linear programming problem.
In this process, the optimal solution to the problem, if one exists, will be identified.
The sequence of different canonical forms that is necessary in both the phases of
the simplex method is generated according to the simplex algorithm described in the
next section. That is, the simplex algorithm forms the main subroutine of the simplex
method.
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3.9 SIMPLEX ALGORITHM

The starting point of the simplex algorithm is always a set of equations, which includes
the objective function along with the equality constraints of the problem in canoni-
cal form. Thus the objective of the simplex algorithm is to find the vector X >0 that
minimizes the function f (X) and satisfies the equations:

Lxp +0xy + - 4+ 0x,,, +af | Xy + - +af x, = b

1" 1" "
Ox; + Ly + -+ 0x,, + ay, Xy + o Hap,x, =D,

"
m,m+1

Ox; +0x, + -+ Ix,, +d X,y + - +dp,x, = bl

0x1 + OXZ + -+ Oxm —f

1 /!

Xyl T 00+ X = -, (3.21)

mn-"n

"
+ Cm+l

where al’.jf ,c//,b!, and f' are constants. Notice that (—f) is treated as a basic variable in
the canonical form of Eq. (3.21). The basic solution that can readily be deduced from

Eq. (3.21)is
x; = b, i=1,2,...,m
f=1
x; =0, i=m+1,m+2,...,n (3.22)
If the basic solution is also feasible, the values of x;, i =1, 2, ..., n, are nonneg-
ative and hence
b;’ZO, i=1,2,....m (3.23)

In phase I of the simplex method, the basic solution corresponding to the canon-
ical form obtained after the introduction of the artificial variables will be feasible for
the auxiliary problem. As stated earlier, phase II of the simplex method starts with a
basic feasible solution of the original linear programming problem. Hence the initial
canonical form at the start of the simplex algorithm will always be a basic feasible
solution.

We know from Theorem 3.6 that the optimal solution of a linear programming
problem lies at one of the basic feasible solutions. Since the simplex algorithm is
intended to move from one basic feasible solution to the other through pivotal oper-
ations, before moving to the next basic feasible solution, we have to make sure that
the present basic feasible solution is not the optimal solution. By merely glancing at
the numbers ¢, j = 1,2, ..., n, we can tell whether or not the present basic feasible
solution is optimal. Theorem 3.7 provides a means of identifying the optimal point.

3.9.1 Identifying an Optimal Point

Theorem 3.7 A basic feasible solution is an optimal solution with a minimum objec-
tive function value of f(;’ if all the cost coefficients cj’/ ,j=m+1,m+2, ...,n,inEq.
(3.21) are nonnegative.

Proof: From the last row of Eq. (3.21), we can write that

n
4+ Y =f (3.24)

i=m+1
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Since the variables x,,_ , X,,,2, - .., X, are presently zero and are constrained to be
nonnegative, the only way any one of them can change is to become positive. But if
clf’ >0fori=m+1,m+2, ..., n, then increasing any x; cannot decrease the value
of the objective function f. Since no change in the nonbasic variables can cause f
to decrease, the present solution must be optimal with the optimal value of f equal

to f'.
0
A glance over ¢’ can also tell us if there are multiple optima. Let all ¢' >0,
i=m+1,m+2, ....k=1,k+1, ...,n, andletc;c’ = 0 for some nonbasic variable x;.

Then if the constraints allow that variable to be made positive (from its present value
of zero), no change in fresults, and there are multiple optima. It is possible, however,
that the variable may not be allowed by the constraints to become positive; this may
occur in the case of degenerate solutions. Thus as a corollary to the discussion above,
we can state that a basic feasible solution is the unique optimal feasible solution if
c” > 0 for all nonbasic variables X, j=m+1,m+2, ..., n If, after testing for opti-
mality, the current basic feasible solution is found to be nonoptimal, an improved basic
solution is obtained from the present canonical form as follows.

3.9.2 Improving a Nonoptimal Basic Feasible Solution

From the last row of Eq. (3.21), we can write the objective function as

m n
o 7z "
=5 +20ixi+ Z ¢ X
i=1

Jj=m+1

=f;' for the solution given by Egs. (3.22) (3.25)

If at least one cj’/ is negative, the value of f can be reduced by making the corre-
sponding x; > 0. In other words, the nonbasic variable X;, for which the cost coefficient
c]’F is negative, is to be made a basic variable in order to reduce the value of the objective
function. At the same time, due to the pivotal operation, one of the current basic vari-
ables will become nonbasic and hence the values of the new basic variables are to be
adjusted in order to bring the value of fless than f;’. If there are more than one ¢/’ <0,
the index s of the nonbasic variable x, which is to be made basic is chosen such that

/

Cs

" = minimum c;’ <0 (3.26)

Although this may not lead to the greatest possible decrease in f (since it may not
be possible to increase x, very far), this is intuitively at least a good rule for choosing
the variable to become basic. It is the one generally used in practice, because it is
simple and it usually leads to fewer iterations than just choosing any ¢/’ < 0. If there
is a tie-in applying Eq. (3.26), (i.e. if more than one cj’/ has the same minimum value),
we select one of them arbitrarily as ¢!’

Having decided on the variable x; to become basic, we increase it from zero,
holding all other nonbasic variables zero, and observe the effect on the current basic
variables. From Eq. (3.21), we can obtain

x; =0 —alx, b/ >0
12 " /"
X, = by — ay . x,, by >0
: (3.27)
S " 1"
Xm = bm = Qs Xss bm >0

f=fl+d%, <0 (3.28)
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Since ¢!/ < 0 Eq. (3.28) suggests that the value of x, should be made as large as
possible in order to reduce the value of fas much as possible. However, in the process

of increasing the value of x,, some of the variables x;(i = 1, 2, ..., m) in Eq. (3.27)
may become negative. It can be seen that if all the coefficients ag <0,i=1,2, ...,
m, then x, can be made infinitely large without making any x; < 0,i=1,2, ..., m.

In such a case, the minimum value of fis minus infinity and the linear programming
problem is said to have an unbounded solution.

On the other hand, if at least one a;; is positive, the maximum value that x; can
take without making x; negative is b’ /a’. If there are more than one @/’ > 0, the largest
value x,” that x, can take is given by the minimum of the ratios b/ /a/! for which @/ > 0.

Thus
b b’
X; = — = minimum | —; (3.29)
(268 al>0 a

The choice of r in the case of a tie, assuming that all b’ > 0, is arbitrary. If any b’
for which a;; > 0 is zero in Eq. (3.27), x, cannot be increased by any amount. Such a
solution is called a degenerate solution.

In the case of a nondegenerate basic feasible solution, a new basic feasible solu-
tion can be constructed with a lower value of the objective function as follows. By
substituting the value of x} given by Eq. (3.29) into Egs. (3.27) and (3.28), we obtain

X, = X;

x;=b'—alx; >0, i=1,2,...,m and i#r

x, =0 (3.30)
xj=0, j=m+1m+2,...,n and j#s
f=R+cix <fy (3.31)

which can readily be seen to be a feasible solution different from the previous one.
Since @) > 0 in Eq. (3.29), a single pivot operation on the element @/ in the system
of Eq. (3.21) will lead to a new canonical form from which the basic feasible solution
of Eq. (3.30) can easily be deduced. Also, Eq. (3.31) shows that this basic feasible
solution corresponds to a lower objective function value compared to that of Eq. (3.22).
This basic feasible solution can again be tested for optimality by seeing whether all
c;’ > 0 in the new canonical form. If the solution is not optimal, the entire procedure
of moving to another basic feasible solution from the present one has to be repeated.
In the simplex algorithm, this procedure is repeated in an iterative manner until the
algorithm finds either (i) a class of feasible solutions for which f— —oco or (ii) an
optimal basic feasible solution with all clf’ >0,i=1,2, ..., n. Since there are only
a finite number of ways to choose a set of m basic variables out of n variables, the
iterative process of the simplex algorithm will terminate in a finite number of cycles.
The iterative process of the simplex algorithm is shown as a flowchart in Figure 3.14.

Example 3.4
Maximize F = x| + 2x, + x5

subject to
2x)+xy —x3 <2
=2x; +xy—5x3 2 =6
4x)+x, +x3 56
x; >0, i=1,2,3
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—| Start with a basic feasible solution

Find s such that
¢y =min (c;)
i

Is¢” <09 No Solution is
s ) optimal, stop

Yes
Areallal, <07 )\ Y [ Solution is
i=12..m unbounded, stop
No

Find the ratio (] /aj;)
for aj, >0

Find r such that

. n
by min (bi )
w = al 4

Ay 8js > 0 s

Obtain new canonical form including the
objective function equation by pivoting on aj,

Figure 3.14 Flowchart for finding the optimal solution by the simplex algorithm.

SOLUTION We first change the sign of the objective function to convert it to a
minimization problem and the signs of the inequalities (where necessary) so as to
obtain nonnegative values of b; (to see whether an initial basic feasible solution can
be obtained readily). The resulting problem can be stated as

Minimize f = —x; —2x, — X3
subject to

2x; —x, +5x3 56
4.X1 +x2+x3 S6

x>0, i=1to3



132 Linear Programming I: Simplex Method

By introducing the slack variables x, >0, x5 >0, and x4 >0, the system of
equations can be stated in canonical form as

2x; 4+ Xy — X3+ X4 =2
2x) — Xy — 5x5 + X5 =6
4x) + Xy + X3 + x¢ =6
—x—=2x,—x3 —f =0 (ED)

where x,, x5, x¢, and —f can be treated as basic variables. The basic solution corre-
sponding to Eq. (E1) is given by

X, =2, x5=6, x4=06 (basic variables)
x; =x, =x3 =0 (nonbasic variables)

=0 (E2)

which can be seen to be feasible.

Since the cost coefficients corresponding to nonbasic variables in Eq. (E1) are
negative (¢! = —1,c = =2,c = —1), the present solution given by Eq. (E2) is not
optimum. To improve the present basic feasible solution, we first decide the variable

(x,) to be brought into the basis as
= min(c;' <0)=c)=-2
Thus x, enters the next basic set. To obtain the new canonical form, we select the

pivot element a!/ such that
b” b//
r . i
"= n}“&( //)
aV‘Y ai.r> alS

In the present case, s = 2 and a’l’2

b;’/qg’z =6/1, x, = x,. By pivoting an a
obtained as

1 H /" "o _
a?,d ay, are >0. Since b\ /al, =2/1 and

1,» the new system of equations can be

2+ 1xy — x5+ x4 =2
4%, +0xy) +4x3 + x4 +x5 =38
22, +0xy +2x3 — x4+ x4 =4
36, +0xy —=3x3+2x, —f=4 (E3)

The basic feasible solution corresponding to this canonical form is

x,=2, x5=8, x4=4 (basic variables)
x, =x3=x, =0 (nonbasic variables)

f=—4 (E4)

Since ¢!’ = -3, the present solution is not optimum. As ¢’ = min(c!’ < 0) = ¢},

X, = x5 enters the next basis.
To find the pivot element aj;, we find the ratios b’ /a!’ for a;! > 0. In Eq. (E3),

rs?
" 1
only ay, and ay, are >0, and hence

b/2/ 3 b;/ 4
— = Z and T = E
an; a3



Since both these ratios are same, we arbitrarily select a’2’3 as the pivot element.
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Pivoting on a’2’3 gives the following canonical system of equations:

5 1
3x1+1x2+0x3+zx4+1x5 =4
Ix; + 0x, + 1x +lx +lx =2

1 2 3T M T s =

Ox; + Ox, + Ox3 — %x4— %x5 +xs =0

6x, + 0%, + O + %M + %xs —f=10 (E5)

The basic feasible solution corresponding to this canonical system is given by

x2 :4,

X3:2,

xs =0 (basic variables)

x; =x, =x5; =0 (nonbasic variables)

f=-10

(E6)

Since all ¢’ are >0 in the present canonical form, the solution given in (E6) will
be optimum. Usually, starting with Eq. (E1), all the computations are done in a table
form as shown below:

Basic Variables
variables X X Xy x4 x5 xg  —=f b b'/dl for & >0

X, 2 -1 1 0 o0 0 2 2« Smallerone (x,
Pivot drops from next
element basis)

Xs 2 -1 5 0 1 0 0 6

X, 4 1 1 0 0 0 6 6

—f -1 =2 -1 0 0 0 1
1

Most negative ¢/’ (x, enters next basis)
Result of pivoting:

x, 2 1 -l 1 0 0 0o 2

xs 4 0 1 I 0 0 8 2 (Select this arbitrarily.
Pivot X5 drops from next
element basis)

Xg 2 2 -1 0 1 0 4 2

—-f 3 0 -3 2 0o o0
1

Most negative ¢!’ (x; enters the next basis)
Result of pivoting:

X, 3 1 0 2 : 0 0 4

X 1 0 1 H H 0 0 2

X 0 0 0 -3 -3 1 0

—f 6 0 0 z 3 0 1 10

All ¢! are >0 and hence the present solution is optimum.



134 Linear Programming I: Simplex Method
Example 3.5 Unbounded Solution
Minimize f = =3x; —2x,

subject to
X —x <1
x>0, x>0

SOLUTION Introducing the slack variables x; >0 and x, > 0, the given system of
equations can be written in canonical form as

Xp =X+ X3 =1
—3x; — 2x, -f=0 (E1)

The basic feasible solution corresponding to this canonical form is given by

x3=1, x4 =6 (basic variables)
x; =x, =0 (nonbasic variables)
f=0 (E2)
Since the cost coefficients corresponding to the nonbasic variables are negative,
the solution given by Eq. (E2) is not optimum. Hence the simplex procedure is applied

to the canonical system of Eq. (E1) starting from the solution, Eq. (E2). The compu-
tations are done in table form as shown below:

Basic Variables b;,/a:.;
variables x, X, X, Xy —f b for a >0
X3 -1 1 0 0 1 1 < Smaller value
Pivot (x5 leaves the
element basis)
Xy 3 -2 0 1 0 6 2
—f -3 -2 0 0
)
Most negative cl’.’ (x, enters the next basis)
Result of pivoting:
X 1 -1 1 0 0
X, 0 -3 1 0 3 3 (x, leaves
Pivot the basis)
element
—f 0 -5 3 0 1 3
T

Most negative ¢!’ (x, enters the next basis)
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Result of pivoting:

x, 1 0 -2 1 0 4 Both @]/ are negative
(i.e. no variable
leaves the basis)

X, 0 1 -3 1 0

—f 0 0 -12 5 1 18

Most negative ¢!’ (x; enters the next basis)

At this stage we notice that x; has the most negative cost coefficient and hence it
should be brought into the next basis. However, since all the coefficients al’.g are nega-
tive, the value of fcan be decreased indefinitely without violating any of the constraints
if we bring x5 into the basis. Hence the problem has no bounded solution. In general,
if all the coefficients of the entering variable x, (a}') have negative or zero values at
any iteration, we can conclude that the problem has an unbounded solution.

Example 3.6 Infinite Number of Solutions  To demonstrate how a problem having
infinite number of solutions can be solved, Example 3.2 is again considered with a
modified objective function:

Minimize f = —40x, — 100x,
subject to
10x; + 5x, <2500
4x, + 10x, < 2000
2x; + 3x, £900

.XIZO, XZZO

SOLUTION By adding the slack variables x; >0, x, >0 and x5 > 0, the equations
can be written in canonical form as follows:

10x; + 5x; + x5 = 2500
4x, + 10x, + x4 = 2000
2x; + 3x, + X5 =900
— 40x; — 100x, -f=0

The computations can be done in table form as shown below:

Variables -f b

Basic b /al
variables  x, X, Xy X, Xs for a!>0
X3 10 5 1 0 0 0 2500 500
X, 4 0 1 0 0 2000 200« Smallervalue
Pivot ele- (x4 leaves the basis)
ment
X5 2 3 0 0 1 0 900 300
—f —-40 -100 0O 0 O 1 0

1

Most negative ¢’ (x, enters the basis)
1
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Result of pivoting:
X 8 0 1 - 1% 0 0 1500
4
X s 1 0 o 0 0 200
X5 s 0 0 -2 1 0 300
—f 0 0 0 10 0 1 20000

Since all clf’ > 0, the present solution is optimum. The optimum values are
given by

x, =200, x3=1500, x5=300 (basic variables)
x; =x4, =0 (nonbasic variables)

Fonin = —20,000

Important note: It can be observed from the last row of the preceding table that
the cost coefficient corresponding to the nonbasic variable x;(c}) is zero. This is an
indication that an alternative solution exists. Here x; can be brought into the basis and
the resulting new solution will also be an optimal basic feasible solution. For example,
introducing x, into the basis in place of x; (i.e. by pivoting on a’1’3), we obtain the new
canonical system of equations as shown in the following tableau:

Basic Variables b jd!
variables X, X, x; Xy x5 —f by for a! >0
1 1 1500
X1 1 0 g _R 0 T
x, 0 1 -~ 3 0 125
X5 0 0 - -3 0 150
—f 0 0 0 10 0 1 20000

The solution corresponding to this canonical form is given by

X = %, xy =125, x5 =150 (basic variables)

x3 =x, =0 (nonbasic variables)
Jmin = —20,000
Thus, the value of fhas not changed compared to the preceding value since x; has

a zero cost coefficient in the last row of the preceding table. Once two basic (optimal)
feasible solutions, namely,

200 125
X, =41500 and X, =39 0
0 0

300 150
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are known, an infinite number of nonbasic (optimal) feasible solutions can be obtained
by taking any weighted average of the two solutions as

X* =X, + (1 - VX,

‘
J

-

X (1-1=2 1 [a-» %
x5 200A + (1 —A)125 125 4+ 75\
X" =9x; ¢ =1 15001, F=14 15000 ¢
X, 0 0
X 300A + (1 —A)150 150 + 150\
0<A<1

It can be verified that the solution X* will always give the same value of —20 000
for fforall0< A< 1.

3.10 TWO PHASES OF THE SIMPLEX METHOD

The problem is to find nonnegative values for the variables x;, x,, ..., x, that satisfy
the equations

apXxy +apx; + - +ax, =b

a21x1 + a22x2 + -+ a2n.xn = b2

Xy + appx; + - +a,,x, =b, (3.32)
and minimize the objective function given by
cixp+ Xy + o ex, =f (3.33)
The general problems encountered in solving this problem are

1. An initial feasible canonical form may not be readily available. This is the case
when the linear programming problem does not have slack variables for some
of the equations or when the slack variables have negative coefficients.

2. The problem may have redundancies and/or inconsistencies, and may not be
solvable in nonnegative numbers.

The two-phase simplex method can be used to solve the problem.

Phase I of the simplex method uses the simplex algorithm itself to find whether
the linear programming problem has a feasible solution. If a feasible solution exists,
it provides a basic feasible solution in canonical form ready to initiate phase II of the
method. Phase II, in turn, uses the simplex algorithm to find whether the problem has
a bounded optimum. If a bounded optimum exists, it finds the basic feasible solution
that is optimal. The simplex method is described in the following steps.

1. Arrange the original system of Eq. (3.32) so that all constant terms b; are pos-
itive or zero by changing, where necessary, the signs on both sides of any of
the equations.
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2. Introduce to this system a set of artificial variables y,, y,, ..., y,, (which serve
as basic variables in phase I), where each y; >0, so that it becomes

apxy tapx, + - tapx, +y =b,
Ay Xy + dypXy + -+ + 4y, X, +¥ =b,
Apm1Xy + AypXn + et QynXn + Ym = bm
b; >0 (3.34)

Note thatin Eq. (3.34), for a particular i, the a;;’s and the b; may be the negative
of what they were in Eq. (3.32) because of step 1.
The objective function of Eq. (3.33) can be written as

Cixp + Xy + o+ x, + (=) =0 (3.35)

3. Phase I of the method. Define a quantity w as the sum of the artificial variables
W=y +y,+ -+, (3.36)

and use the simplex algorithm to find x; >0 (i=1,2, ...,n)and y; >0 (i =1,
2, ..., m) which minimize w and satisfy Egs. (3.34) and (3.35). Consequently,
consider the array

apxy tapx; + - +ax, +y =b,
Ay X| + dyXy + 00+ ay,X, +¥ =b,
Xy + AppXo + et QX +ym = bm
C1X| + CpXy + - + €, X, +(=f)=0
Yi+y+ e+, +(=w)=0 (3.37)

This array is not in canonical form; however, it can be rewritten as a canonical
system with basic variables y,, y,, ..., y,,, —f, and —w by subtracting the sum
of the first m equations from the last to obtain the new system

apxy tapx; + - tapx, +y, =b,
Ay Xy + apxy + -+ +ayx, +¥ =b,
Xy + AppXo + et QynXn +ym =0y
Xy + Cyxy + - )X, +(=H=0
dix; +dyxy, +--+dx, +(—w) = —w, (3.38)
where
dl'z _(ali+a2i+“'+ami), l: 1,2, Lo, (3.39)
_WO = _(bl + b2 i bm) (340)

Equation (3.38) provide the initial basic feasible solution that is necessary for
starting phase I.
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In Eq. (3.37), the expression of w, in terms of the artificial variables y,, y,, ...,
¥, 1s known as the infeasibility form. w has the property that if as a result of
phase I, with a minimum of w > 0, no feasible solution exists for the original
linear programming problem stated in Egs. (3.32) and (3.33), and thus the pro-
cedure is terminated. On the other hand, if the minimum of w =0, the resulting
array will be in canonical form and hence initiate phase II by eliminating the w
equation as well as the columns corresponding to each of the artificial variables
Vi Y25 .-, from the array.

. Phase II of the method. Apply the simplex algorithm to the adjusted canonical

system at the end of phase I to obtain a solution, if a finite one exists, which
optimizes the value of f.

The flowchart for the two-phase simplex method is given in Figure 3.15.

Example 3.7

Minimize f = 2x; + 3x, + 2x3 — x4 + x5

subject to the constraints

3.X] —3XZ+4X3+2X4—)C5 =0
Xy X +x3+3x, +x5=2

x>0, i=1t5

SOLUTION

Step 1.

Step 2.

Step 3.

As the constants on the right-hand side of the constraints are already nonneg-
ative, the application of step 1 is unnecessary.

Introducing the artificial variables y; >0 and y, >0, the equations can be
written as follows:
3x) = 3%y +4x3 + 2x4 — x5+ ¥y =0
X1+.XZ+.X3+3X4+X5 +y2 =2
2x) 4+ 3xy + 2x3 — x4 + X5 —-f=0 (ED)

By defining the infeasibility form w as

w=y +ty

the complete array of equations can be written as

3x; — 3%y +4x3 +2x4 — x5+, =0
2x; 4 3%y + 2x3 — x4 + X5 -f=0

yi+ty,—w=0 (E2)

This array can be rewritten as a canonical system with basic variables as y,,
¥,, —f, and —w by subtracting the sum of the first two equations of (E2) from
the last equation of (E2). Thus the last equation of (E2) becomes

—4x; +2x, = 5x3 = Sxy + Ox5g —w=-2 (E3)
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No feasible
solution
exists for
the original
linear
programming
problem,
Stop

Yes

Start with the linear
programming problem
in standard form

Since this canonical system [first three equations of (E2), and (E3)] provides
an initial basic feasible solution, phase I of the simplex method can be started.
The phase I computations are shown below in table form.

Make right-hand-side constants
non-negative

Yes, Go to phase 11

Is the system of equations
in canonical form already?

(block B)

A

No

Add artificial variables y;
and formulate the
infeasibility form w = Xy,

1

Bring the resulting equations
including —f and —w into
canonical form with respect
to the artificial variables

Find s such that

d;= min (d)
J
Yes - No
isd;>07?

Choose r such that
b/ min (b{' )
ar ~ s> 0 \ay,

and use a random choice
in the case of a tie

Drop all x; such
that dj’-’z 0; Also

Go to
Phase II
(Block B)

Replace r—th basic
variable by x; by —
pivoting on the element a

Figure 3.15 Flowchart for the two-phase simplex method.
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From block C

Find s such that
¢g=min (c;)
i

B
——— From block A

Present basic Yes
feasible solution iscy>07?

is optimal, Stop

No
Solution is Yes
unbounded, Allaj; <07?
Stop
No

b’ min (bl{/ )
—_— = I
Choose r such that a aj,>0 a,

Use a random choice in the case of a tie

Replace r—th basic variable by x, by
pivoting on the element a;,

Figure 3.15 (Continued)

Admissible Artificial
Basic variables variables
variables x; X, X3 Xy Xs y; Yy, b Valueofd!/a] for a! >0
M2 3 -3 4 2 -1 1 0 0 0 « Smaller value (y,
Pivot drops from next basis)
element
2
¥, 1 1 1 3 1 0 1 2 3
—f 2 3 2 -1 1 0 0
-w -4 2 -5 =5 o 0 0 =2
T 1

Most negative

Since there is a tie between d} and d}/, d}/ is selected arbitrarily as the most neg-
ative dlf’ for pivoting (x, enters the next basis). Result of pivoting:
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3 3 1 1
Xy > 3 2 =3 2 o 0
_1o|u -5 0 2 =2 1 2 Ly dropsfrom
Y2 2 2 2 2 11 Y2 Arop
- next basis
Pivot
element
7 3 1 1
-5 5 3 2 2 0
7 11 5 5
w3 T3 R -2
)

Most negative d!’ (x, enters next basis)
1

Result of pivoting (since y; and y, are dropped from basis, the columns corre-
sponding to them need not be filled):

6 7 2 6 6
X4 11 0 11 ! 11 Dropped 11 2
7 10 4 4
-7 1 _10 3 4 4
%2 11 11 0 11 11 5
98 118 4 6
f 2 0 22 0 2 11
—w 0 0 0 0 0 0

Step 4. Atthis stage we notice that the present basic feasible solution does not contain
any of the artificial variables y; and y,, and also the value of w is reduced to
0. This indicates that phase I is completed.

Step 5. Now we start phase II computations by dropping the w row from further con-
sideration. The results of phase II are again shown in table form:

Original variables

Basic Value of b /a!! for
variables x; X, X3 X, X5 Constant b7 ! >0
1 15
6 7 2 6 6
5 z 1 = 5 6
Y4 11 0 11 11 11 2
1 5 4 4
Xy -1 B |2 = -« Smaller value (x,
11 11 11 11 .
B drops from next basis)
ivot
element
98 118 4 6
f » 0 5 0 2 11

1

Most negative ¢’ (x5 enters next basis)

Result of pivoting:

4 2 2

Xy g —g 1 1 0 g
7 11 4

X5 —g ? -2 0 1 g
21 2 2

- 5 5 > 0 0 -5

Now, since all ¢/ are nonnegative, phase II is completed. The (unique) optimal
solution is given by
Xy =x, =x3 =0 (nonbasic variables)
4
5

, X5 = (basic variables)
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3.11 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of a linear programming problem
is given in Example 17.3.
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REVIEW QUESTIONS
3.1 Define a line segment in n-dimensional space.
3.2 What happens when m = n in a (standard) LP problem?
3.3 How many basic solutions can an LP problem have?
3.4 State an LP problem in standard form.
3.5 State four applications of linear programming.
3.6 Why is linear programming important in several types of industries?
3.7 Define the following terms: point, hyperplane, convex set, extreme point.
3.8 What is a basis?
3.9 What is a pivot operation?
3.10 What is the difference between a convex polyhedron and a convex polytope?
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3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

What is a basic degenerate solution?

What is the difference between the simplex algorithm and the simplex method?
How do you identify the optimum solution in the simplex method?

Define the infeasibility form.

What is the difference between a slack and a surplus variable?

Can a slack variable be part of the basis at the optimum solution of an LP problem?
Can an artificial variable be in the basis at the optimum point of an LP problem?
How do you detect an unbounded solution in the simplex procedure?

How do you identify the presence of multiple optima in the simplex method?
What is a canonical form?

Answer true or false:

(a) The feasible region of an LP problem is always bounded.

(b) An LP problem will have infinite solutions whenever a constraint is redundant.
(¢) The optimum solution of an LP problem always lies at a vertex.

(d) A linear function is always convex.

(e) The feasible space of some LP problems can be nonconvex.

(f) The variables must be nonnegative in a standard LP problem.

(g) The optimal solution of an LP problem can be called the optimal basic solution.

(h) Every basic solution represents an extreme point of the convex set of feasible solu-
tions.

(i) We can generate all the basic solutions of an LP problem using pivot operations.

(j) The simplex algorithm permits us to move from one basic solution to another basic
solution.

(k) The slack and surplus variables can be unrestricted in sign.
(I) An LP problem will have an infinite number of feasible solutions.
(m) An LP problem will have an infinite number of basic feasible solutions.

(n) The right-hand-side constants can assume negative values during the simplex pro-
cedure.

(o) All the right-hand-side constants can be zero in an LP problem.

(p) The cost coefficient corresponding to a nonbasic variable can be positive in a basic
feasible solution.

(q) If all elements in the pivot column are negative, the LP problem will not have a
feasible solution.

(r) A basic degenerate solution can have negative values for some of the variables.

(s) If a greater-than or equal-to type of constraint is active at the optimum point, the
corresponding surplus variable must have a positive value.

(t) A pivot operation brings a nonbasic variable into the basis.
(u) The optimum solution of an LP problem cannot contain slack variables in the basis.

(v) If the infeasibility form has a nonzero value at the end of phase I, it indicates an
unbounded solution to the LP problem.

(w) The solution of an LP problem can be a local optimum.
(x) In a standard LP problem, all the cost coefficients will be positive.
(y) In a standard LP problem, all the right-hand-side constants will be positive.

(z) In a LP problem, the number of inequality constraints cannot exceed the number
of variables.

(aa) A basic feasible solution cannot have zero value for any of the variables.
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State the following LP problem in standard form:
Maximize f = —2x; —x, + 5x3

subject to
X —2x, +x3 <8

3x; — 2x, > —18

2x; +x, —2x3 < —4

State the following LP problem in standard form:
Maximize f = x, — 8x,
subject to
3x,+2x, 26
9x, + 7x, <108
2x; = 5x, > =35

X,X, unrestricted in sign

Solve the following system of equations using pivot operations:
6x; —2x, +3x; =11
4x; + Txy +x3 =21
5x) + 8xy +9x; = 48

It is proposed to build a reservoir of capacity x; to better control the supply of water to
an irrigation district [3.16, 3.17]. The inflow to the reservoir is expected to be 4.5 x 10°
acre—ft during the wet (rainy) season and 1.1 x 10° acre—ft during the dry (summer) sea-
son. Between the reservoir and the irrigation district, one stream (A) adds water to and
another stream (B) carries water away from the main stream, as shown in Figure 3.16.
Stream A adds 1.2 x 10° and 0.3 x 10° acre—ft of water during the wet and dry seasons,
respectively. Stream B takes away 0.5 X 10° and 0.2 x 10 acre—ft of water during the
wet and dry seasons, respectively. Of the total amount of water released to the irrigation
district per year (x,), 30% is to be released during the wet season and 70% during the
dry season. The yearly cost of diverting the required amount of water from the main
stream to the irrigation district is given by 18(0.3x,) + 12(0.7x,). The cost of building
and maintaining the reservoir, reduced to a yearly basis, is given by 25x,. Determine
the values of x; and x, to minimize the total yearly cost.

Solve the following system of equations using pivot operations:
4x; —Txy + 2x3 = =8
3x; +4x, — S5x3 = -8
Sx;+x, —8x3 = =34
What elementary operations can be used to transform
26 +x,+x3=9
X +x,+x; =6

2x; +3x;3+x3, =13
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Inflow to reservoir

Stream A

Stream B
Main stream

Figure 3.16 Reservoir in an irrigation district.

' Irrigation district
H (Water received: x;)

into
x =3

Xy =2
X, +3x, +x;=10
Find the solution of this system by reducing into canonical form.
3.7 Find the solution of the following LP problem graphically:
Maximize f = 2x, + 6x,

subject to
X +x, <1

2%, +x, <2

x 20, x>0

3.8 Find the solution of the following LP problem graphically:

Minimize f = —3x; + 2x,



3.9

3.10

3.11

3.12

3.13
3.14

Problems

subject to
0<x <4

1<x,<6

X +x, <5
Find the solution of the following LP problem graphically:
Minimize f = 3x, + 2x,

subject to
8x; +x, 28
2% +x, 26
X +3x, 26
X, +6x, >8

x,20,x, >0
Find the solution of the following problem by the graphical method:
P 2.2
Minimize f = xjx;

subject to

where e is the base of natural logarithms.

Prove Theorem 3.6.

147

For Problems 3.12-3.42, use a graphical procedure to identify (a) the feasible region, (b)
the region where the slack (or surplus) variables are zero, and (c) the optimum solution.

Maximize f = 6x+7y
subject to
Tx + 6y <42
5x+9y <45
x—y<4

x>0, y>0

Rework Problem 3.12 when x and y are unrestricted in sign.

Maximize f = 19x+ 7y

subject to
Tx+ 6y <42

S5x+9y <45
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3.15 Rework Problem 3.14 when x and y are unrestricted in sign.

3.16 Maximize f =x+2y

subject to
x—y>-8

S5x—-y>0
x+y>8
—x+6y>12
5x+2y <68

x <10

x>0, y>0

3.17 Rework Problem 3.16 by changing the objective to Minimize f = x — y.
3.18 Maximize f =x+2y

subject to
x—y>-8

Sx—=y>0
x+y>8
—x+6y>12
S5x +2y <68

x<10

x>0, y>0

3.19 Rework Problem 3.18 by changing the objective to Minimize f= x —y.

3.20 Maximize f = x + 3y

subject to
—4x+3y <12

x+y<7
x—4y<2

x>0, y>0

3.21 Maximize f =x+ 3y

subject to
—4x+3y <12

x+y<7
x—4y <2

x and y are unrestricted in sign
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3.22 Rework Problem 3.20 by changing the objective to Maximize f = x + y.
3.23
Maximize f =x+ 3y

subject to
—4x+3y <12

x+y<7
x—4y>2

x>0, y>0

3.24
Minimize f =x— 8y

subject to
3x+2y>6
x—y<6
9x+7y <108
3x+7y <70
2x -5y >-35

x>0,y>0

3.25 Rework Problem 3.24 by changing the objective to Maximize f = x — 8y.
3.26
Maximize f =x — 8y
subject to
3x+2y>6
x—y<6
9x + 7y < 108
3x+7y <70
2x -5y > -35
x>0, y is unrestricted in sign
3.27
Maximize f = 5x—2y
subject to
3x+2y>6
x—y<6
9x + 7y < 108
3x+7y <70
2x—5y>-35
x>0,y>0

3.28
Minimize f =x—4y

149
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subject to
x—y>-4

4x+5y <45
5x -2y <20
5x+2y<10

x>0, y>0

3.29 Maximize f = x — 4y

subject to
x—y>-4
4x+5y <45
S5x -2y <20

5x+2y<10

x>0,y is unrestricted in sign
3.30 Minimize f = x — 4y
subject to
x—y>-4
4x+5y <45
S5x -2y <20
Sx+2y>10
x>0, y>0
3.31 Rework Problem 3.30 by changing the objective to Maximize f = x — 4y.
3.32 Minimize f = 4x + 5y

subject to
10x+y > 10

S5x+4y > 20
3x+7y > 21
x+ 12y > 12
x>0, y>0
3.33 Rework Problem 3.32 by changing the objective to Maximize = 4x + 5y.
3.34 Rework Problem 3.32 by changing the objective to Minimize f = 6x + 2y.
3.35 Minimize f = 6x + 2y

subject to
10x+y>10

Sx+4y >20
3x+7y>21
x+ 12y > 12

x and y are unrestricted in sign
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3.36 Minimize f = 5x+ 2y
subject to
3x+4y >24

x—y<3

x+4y>4

3x+y>3

x20, y20

3.37 Rework Problem 3.36 by changing the objective to Maximize f = 5x + 2y.
3.38 Rework Problem 3.36 when x is unrestricted in sign and y > 0.
3.39 Maximize f = 5x+ 2y
subject to
3x+4y <24
x—y<3
x+4y<4
3x+y>3

x>0, y>0

3.40 Maximize f =3x+ 2y
subject to
9x + 10y < 330
21x—4y > =36
x+2y>6
6x—y<T72
3x+y<54
x>0, y>0

3.41 Rework Problem 3.40 by changing the constraint x + 2y > 6 to x + 2y <6.
3.42 Maximize f = 3x+ 2y
subject to
9x + 10y < 330
2lx—4y > -36
x+2y>6
6x—y <72
3x+y<54

x>0, y>0

3.43 Maximize f = 3x+ 2y

151
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subject to
21x —4y > =36

x+2y>6
6x—y <72
x>0, y>0

3.44 Reduce the system of equations

2x; + 3%, —2x3 = Tx, =2
X+ Xy —x3+3x, =12
X=X, +x3+5x, =8
into a canonical system with x,, x,, and x; as basic variables. From this derive all other
canonical forms.

3.45
Maximize f = 240x; + 104x, + 60x; + 19x,

subject to
20x; + 9x, + 6x3 +x, <20

10x; + 4x, + 2x;3 +x, < 10

>0, i=lto4

Find all the basic feasible solutions of the problem and identify the optimal solution.

3.46 A progressive university has decided to keep its library open round the clock and gath-
ered that the following number of attendants are required to reshelve the books:

Minimum number of

Time of day (h) attendants required
04 4
4-8 7
8-12 8
12-16 9
16-20 14
20-24 3

If each attendant works eight consecutive hours per day, formulate the problem of find-
ing the minimum number of attendants necessary to satisfy the requirements above as
a LP problem.

3.47 A paper mill received an order for the supply of paper rolls of widths and lengths as
indicated below:

Number of
rolls Width of Length
ordered roll (m) (m)

1 6 100

1 8 300

1 9 200

The mill produces rolls only in two standard widths, 10 and 20 m. The mill cuts the
standard rolls to size to meet the specifications of the orders. Assuming that there is no
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3.49
3.50
3.51

3.52

3.53

3.54
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limit on the lengths of the standard rolls, find the cutting pattern that minimizes the trim
losses while satisfying the order above.

Solve the LP problem stated in Example 1.6 for the following data: [ = 2m,
W, =3000N, W, =2000N, W; = 1000N, and w;, = w, = w; =200N.

Find the solution of Problem 1.1 using the simplex method.
Find the solution of Problem 1.15 using the simplex method.

Find the solution of Example 3.1 using (a) the graphical method and (b) the simplex
method.

In the scaffolding system shown in Figure 3.17, loads x, and x, are applied on beams
2 and 3, respectively. Ropes A and B can carry a load of W, = 3001b. each; the middle
ropes, C and D, can withstand a load of W, =200 1b. each, and ropes E and F are capable
of supporting a load W5 = 1001b. each. Formulate the problem of finding the loads x;
and x, and their location parameters x; and x, to maximize the total load carried by the
system, x,; + x,, by assuming that the beams and ropes are weightless.

LS i

A B
12 ft

Beam 1

‘-1—»- C X1 D

2ft oo 10— x4 l X4

Beam 2

|z N F

21t -~ 8 — X3 ] ] e—
Beam 3

Figure 3.17 Scaffolding system with three beams.

A manufacturer produces three machine parts, A, B, and C. The raw material costs
of parts A, B, and C are $5, $10, and $15 per unit, and the corresponding prices of
the finished parts are $50, $75, and $100 per unit. Part A requires turning and drilling
operations, while part B needs milling and drilling operations. Part C requires turning
and milling operations. The number of parts that can be produced on various machines
per day and the daily costs of running the machines are given below:

Number of parts that can

Machine part be produced on
Turning Drilling Milling
lathes machines machines
A 15 15
B 20 30
C 25 10
Cost of running the $250 $200 $300

machines per day

Formulate the problem of maximizing the profit.
Solve Problems 3.54-3.90 by the simplex method.
Problem 1.22
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3.55 Problem 1.23
3.56 Problem 1.24
3.57 Problem 1.25
3.58 Problem 3.7

3.59 Problem 3.12
3.60 Problem 3.13
3.61 Problem 3.14
3.62 Problem 3.15
3.63 Problem 3.16
3.64 Problem 3.17
3.65 Problem 3.18
3.66 Problem 3.19
3.67 Problem 3.20
3.68 Problem 3.21
3.69 Problem 3.22
3.70 Problem 3.23
3.71 Problem 3.24
3.72 Problem 3.25
3.73 Problem 3.26
3.74 Problem 3.27
3.75 Problem 3.28
3.76 Problem 3.29
3.77 Problem 3.30
3.78 Problem 3.31
3.79 Problem 3.32
3.80 Problem 3.33
3.81 Problem 3.34
3.82 Problem 3.35
3.83 Problem 3.36
3.84 Problem 3.37
3.85 Problem 3.38
3.86 Problem 3.39
3.87 Problem 3.40
3.88 Problem 3.41
3.89 Problem 3.42
3.90 Problem 3.43

3.91 The temperatures measured at various points inside a heated wall are given below:
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Distance from the heated 0 20 40 60 80 100
surface as a percentage of
wall thickness, x;

Temperature, #; (°C) 400 350 250 175 100 50

It is decided to use a linear model to approximate the measured values as
t=a+bx 341

where ¢ is the temperature, x the percentage of wall thickness, and a and b the coef-
ficients that are to be estimated. Obtain the best estimates of a and b using linear
programming with the following objectives.

(a) Minimize the sum of absolute deviations between the measured values and those
given by Eq. (3.41): Y la + bx; — t,l.
(b) Minimize the maximum absolute deviation between the measured values and those
given by Eq. (3.41):
Max |a+bx;—t, |

3.92 A snack food manufacturer markets two kinds of mixed nuts, labeled A and B. Mixed
nuts A contain 20% almonds, 10% cashew nuts, 15% walnuts, and 55% peanuts. Mixed
nuts B contain 10% almonds, 20% cashew nuts, 25% walnuts, and 45% peanuts. A
customer wants to use mixed nuts A and B to prepare a new mix that contains at least
41b. of almonds, 51b. of cashew nuts, and 6 1b. of walnuts, for a party. If mixed nuts A
and B cost $2.50 and $3.00 per pound, respectively, determine the amounts of mixed
nuts A and B to be used to prepare the new mix at a minimum cost.

3.93 A company produces three types of bearings, B,, B,, and B;, on two machines, A,
and A,. The processing times of the bearings on the two machines are indicated in the
following table:

Processing time (min)

Machine for bearing:
B, B, B,
A 10 6 12
A, 8 4 4

The times available on machines A, and A, per day are 1200 and 1000 minutes, respec-
tively. The profits per unit of B,, B,, and B, are $4, $2, and $3, respectively. The
maximum number of units the company can sell are 500, 400, and 600 for B}, B,, and
B;, respectively. Formulate and solve the problem for maximizing the profit.

3.94 Two types of printed circuit boards A and B are produced in a computer manufacturing
company. The component placement time, soldering time, and inspection time required
in producing each unit of A and B are given below:

Circuit board  Time required per unit (min) for:

Component

placement Soldering  Inspection
A 16 10 4
B 10 12 8

If the amounts of time available per day for component placement, soldering, and
inspection are 1500, 1000, and 500 person—minutes, respectively, determine the
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number of units of A and B to be produced for maximizing the production. If each unit
of A and B contributes a profit of $10 and $15, respectively, determine the number of
units of A and B to be produced for maximizing the profit.

3.95 A paper mill produces paper rolls in two standard widths; one with width 20 in. and
the other with width 50in. It is desired to produce new rolls with different widths as
indicated below:

Number of rolls

Width (in.) required
40 150
30 200
15 50
6 100

The new rolls are to be produced by cutting the rolls of standard widths to minimize the
trim loss. Formulate the problem as an LP problem.

3.96 A manufacturer produces two types of machine parts, P, and P,, using lathes and
milling machines. The machining times required by each part on the lathe and the
milling machine and the profit per unit of each part are given below:

Machine time (h) required
Machine part by each unit on: Cost per unit

Lathe  Milling machine

P, 5 2 $200
P, 4 4 $300

If the total machining times available in a week are 500 hours on lathes and 400 hours
on milling machines, determine the number of units of P, and P, to be produced per
week to maximize the profit.

3.97 A bank offers four different types of certificates of deposits (CDs) as indicated below:

Total interest at

CD type Duration (yr) maturity (%)
1 0.5 5
2 1.0 7
3 2.0 10
4 4.0 15

If a customer wants to invest $50 000 in various types of CDs, determine the plan that
yields the maximum return at the end of the fourth year.

3.98 The production of two machine parts A and B requires operations on a lathe (L), a shaper
(8), a drilling machine (D), a milling machine (M), and a grinding machine (G). The
machining times required by A and B on various machines are given below.

Machine time required

Machine part (hours per unit) on:
L S D M G
A 0.6 0.4 0.1 0.5 0.2
B 0.9 0.1 0.2 0.3 0.3

The number of machines of different types available is given by L: 10,5:3,D:4, M : 6,
and G : 5. Each machine can be used for eight hours a day for 30 days in a month.
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(a) Determine the production plan for maximizing the output in a month

(b) If the number of units of A is to be equal to the number of units of B, find the

optimum production plan.

3.99 A salesman sells two types of vacuum cleaners, A and B. He receives a commission of
20% on all sales, provided that at least 10 units each of A and B are sold per month.
The salesman needs to make telephone calls to make appointments with customers and
demonstrate the products in order to sell the products. The selling price of the products,
the average money to be spent on telephone calls, the time to be spent on demonstrations,

and the probability of a potential customer buying the product are given below:

Money to be spent Time to be spent
on telephone in demonstrations Probability of a
Vacuum Selling price calls to find a to a potential potential customer
cleaner per unit potential customer customer (h) buying the product
A $250 $3 3 0.4
B $100 $1 1 0.8

In a particular month, the salesman expects to sell at most 25 units of A and 45 units of
B. If he plans to spend a maximum of 200 hours in the month, formulate the problem

of determining the number of units of A and B to be sold to maximize his income.

3.100 An electric utility company operates two thermal power plants, A and B, using three
different grades of coal, C;, C,, and C;. The minimum power to be generated at plants A
and B is 30 and 80 MWh, respectively. The quantities of various grades of coal required
to generate 1 MWh of power at each power plant, the pollution caused by the various
grades of coal at each power plant, and the costs of coal are given in the following table:

Quantity of coal
required to generate

1 MWh at the power Pollution caused at Cost of coal
Coal type plant (tons) power plant at power plant
A B A B A B
o 2.5 1.5 1.0 1.5 20 18
C, 1.0 2.0 1.5 2.0 25 28
C, 3.0 2.5 2.0 2.5 18 12

Formulate the problem of determining the amounts of different grades of coal to be used
at each power plant to minimize (a) the total pollution level, and (b) the total cost of

operation.

3.101 A grocery store wants to buy five different types of vegetables from four farms in a
month. The prices of the vegetables at different farms, the capacities of the farms, and
the minimum requirements of the grocery store are indicated in the following table:

Price ($/ton) of vegetable type

Maximum (of all

1 2 3 4 5 types combined)
Farm (Potato) (Tomato) (Okra) (Eggplant) (Spinach) they can supply
1 200 600 1600 800 1200 180
2 300 550 1400 850 1100 200
3 250 650 1500 700 1000 100
4 150 500 1700 900 1300 120
Minimum amount 100 60 20 80 40

required (tons)
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Formulate the problem of determining the buying scheme that corresponds to a mini-
mum cost.

3.102 A steel plant produces steel using four different types of processes. The iron ore, coal,
and labor required, the amounts of steel and side products produced, the cost informa-
tion, and the physical limitations on the system are given below:

Side
Iron ore Coal Labor Steel products

Process required required required produced produced

type (tons/day) (tons/day) (person-days)  (tons/day) (tons/day)

1 5 3 6 4 1

2 8 5 12 6 2

3 3 2 5 2 1

4 10 7 12 6 4

Cost $50/ton $10/ton $150/ $350/ton $100/ton

person-day

Limitations ~ 600 tons 250 tons No limitations  All steel Only 200 tons

available available on availability ~ produced can be sold

per month per month of labor canbe sold  per month
Assuming that a particular process can be employed for any number of days in a 30-day
month, determine the operating schedule of the plant for maximizing the profit.

3.103 Solve 3.7 using MATLAB (simplex method).

3.104 Solve Problem 3.12 using MATLAB (simplex method).

3.105 Solve Problem 3.24 using MATLAB (simplex method).

3.106 Find the optimal solution of the LP problem stated in Problem 3.45 using MATLAB
(simplex method).

3.107 Find the optimal solution of the LP problem described in Problem 3.101 using MAT-

LAB.



Linear Programming II:
Additional Topics and Extensions

4.1 INTRODUCTION

If a Linear Programming (LP) problem involving several variables and constraints is
to be solved by using the simplex method described in Chapter 3, it requires a large
amount of computer storage and time. Some techniques, which require less compu-
tational time and storage space compared to the original simplex method, have been
developed. Among these techniques, the revised simplex method is very popular. The
principal difference between the original simplex method and the revised one is that
in the former we transform all the elements of the simplex table, while in the latter
we need to transform only the elements of an inverse matrix. Associated with every
LP problem, another LP problem, called the dual, can be formulated. The solution of
a given LP problem, in many cases, can be obtained by solving its dual in a much
simpler manner.

As stated above, one of the difficulties in certain practical LP problems is that the
number of variables and/or the number of constraints is so large that it exceeds the stor-
age capacity of the available computer. If the LP problem has a special structure,
a principle known as the decomposition principle can be used to solve the problem
more efficiently. In many practical problems, one will be interested not only in finding
the optimum solution to a LP problem, but also in finding how the optimum solu-
tion changes when some parameters of the problem, such as cost coefficients change.
Hence, the sensitivity or postoptimality analysis becomes very important.

An important special class of LP problems, known as transportation problems,
occurs often in practice. These problems can be solved by algorithms that are more
efficient (for this class of problems) than the simplex method. Karmarkar’s method is
an interior method and has been shown to be superior to the simplex method of Dantzig
for large problems. The quadratic programming problem is the best-behaved nonlinear
programming problem. It has a quadratic objective function and linear constraints and
is convex (for minimization problems). Hence the quadratic programming problem
can be solved by suitably modifying the linear programming techniques. All these
topics are discussed in this chapter.

4.2 REVISED SIMPLEX METHOD

We notice that the simplex method requires the computing and recording of an entirely
new tableau at each iteration. But much of the information contained in the table is
not used; only the following items are needed.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization
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1.

2.

The relative cost coefficients c; to compute!
¢, = min(c;) 4.1)

¢, determines the variable x, that has to be brought into the basis in the next
iteration.

By assuming that ¢, < 0, the elements of the updated column

N

als
— Qs
As — 2s

_ms

and the values of the basic variables

b,
- b
Xp = ‘2 -

bm

have to be calculated. With this information, the variable x, that has to be
removed from the basis is found by computing the quantity

5 (b
— =min{ — “4.2)
A, a;>0 s

and a pivot operation is performed on a,,. Thus, only one nonbasic column K_Y
of the current tableau is useful in finding x,. Since most of the linear program-
ming problems involve many more variables (columns) than constraints (rows),
considerable effort and storage is wasted in dealing with the A, for j # s. Hence,
it would be more efficient if we can generate the modified cost coefficients c;
and the column A, from the original problem data itself. The revised simplex
method is used for this purpose; it makes use of the inverse of the current basis
matrix in generating the required quantities.

Theoretical Development. Although the revised simplex method is applicable for
both phase I and phase II computations, the method is initially developed by consid-
ering linear programming in phase II for simplicity. Later, a step-by-step procedure is
given to solve the general linear programming problem involving both phases I and II.

Let the given linear programming problem (phase II) be written in column form as

Minimize
JX) =cix; +cxy+ -+ cx, (4.3)
subject to
AX=Ax +Ax, +--+Ax,=b 4.4)
Xz *+)

The modified values of b, ays and c; are denoted by overbars in this chapter (they were denoted by primes
in Chapter 3).
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where the jth column of the coefficient matrix A is given by

Assuming that the linear programming problem has a solution, let

B=[A A, Al

\jm

be a basis matrix with

X; C;
_ )2 N e
Xp =47 and ¢ =
mx1 : mx1

representing the corresponding vectors of basic variables and cost coefficients, respec-
tively. If X is feasible, we have

X;=B'b=b>0

As in the regular simplex method, the objective function is included as the
(m+ 1)th equation and —f is treated as a permanent basic variable. The augmented
system can be written as

n
Y Px+P, (=N =q (4.6)
i=1
where
a2j 0 bz
Pf: Yo j=1t0}’l, Pn+1 =19 andq:
Apj 0 bm
C. 1 0

J

Since B is a feasible basis for the system of Eq (4.4), the matrix D defined by

B 0
= [le Pj2 ij Pl= [CT 1]

m+1xm+1 B

will be a feasible basis for the augmented system of Eq (4.6). The inverse of D can be
found to be
D-! = B! 0
B R

Definition. The row vector

T
41

T
B =" ={"" 4.7)
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is called the vector of simplex multipliers relative to the fequation. If the computations

correspond to phase I, two vectors of simplex multipliers, one relative to the fequation,
and the other relative to the w equation are to be defined as

\NT
a1
0]
rtT=cIT3B_l =3 ¢
”m
|
T
0]
0y
c'=d;B' =4 "¢
O-m

By premultiplying each column of Eq. (4.6) by D~!, we obtain the following
canonical system of equations?:

i1 b,
Xi2 b,
Jjnonbasic
xjm bm
-f + Z agx; = —f
Jjnonbasic
where _
A ] B~ 0] [A
Ih=DP = | (4.8)
¢ - 1 ¢

From Eq. (4.8), the updated column Xj can be identified as
A _p-l
A, =B7A; (4.9)

and the modified cost coefficient Ej as

¢;=¢— thAj (4.10)

~

ZPremultiplication of ijj by D! gives

—1 _ B 0 Aj
D ijj— i C,- X;

B! A, x; if x; is a basic variable
= ’ X, = | AP . .
—nTAj +e D! P.x; ifx; is notabasic variable.
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_Equations (4.9) and (4.10) can be used to perform a simplex iteration by generat-
ing A; and ¢; from the original problem data, A; and c;.

Once Kj and ¢; are computed, the pivot element a,, can be identified by using Eqs.
(4.1) and (4.2). In the next step, P is introduced into the basis and P;, is removed.
This amounts to generating the inverse of the new basis matrix. The computational
procedure can be seen by considering the matrix:

_ P

——

ays

PPy PP, e e, ay
o _J

J
-

@.11)

" v
D I :
m+1xXm+1 m+1xXxm+1 a

ms

Cc

L Ky .

where e; is a (m + 1)-dimensional unit vector with a one in the ith row. Premultiplica-
tion of the above matrix by D! yields

_ —1 -
€€ €€t D s

M m+1xm+1 @,
m+1xm+1 :

a rs

element

m+1x1 |

By carrying out a pivot operation on a,,, this matrix transforms to

[[el €€, ﬂ €11 "'em+]] D;elw er] (413)

where all the elements of the vector f are, in general, nonzero and the second
partition gives the desired matrix D} .3 It can be seen that the first partition
(matrix I) is included only to illustrate the transformation, and it can be dropped in

3This can be verified by comparing the matrix of Eq. (4.13) with the one given in Eq. (4.11). The columns
corresponding to the new basis matrix are given by

Dnew = [lePjZ Pj,,l PSPer ijPrH—l]
brought in
place of P,

These columns are modified and can be seen to form a unit matrix in Eq. (4.13). The sequence of pivot
operations that did this must be equivalent to multiplying the original matrix, Eq. (4.11), by D;;W. Thus,
the second partition of the matrix in Eq. (4.13) gives the desired D;elw.
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actual computations. Thus, in practice, we write the m + 1 X m + 2 matrix

Ay

Ao

and carry out a pivot operation on a,,. The first m + 1 columns of the resulting matrix

will give us the desired matrix D7, .

Procedure. The detailed iterative procedure of the revised simplex method to solve
a general linear programming problem is given by the following steps.

1. Write the given system of equations in canonical form, by adding the artificial

variables x,, |, X5, ..., X,,,,» and the infeasibility form for phase I as shown
below:

apXy +apXy + -+ apx, + X, =D,

Ay X| + dxpXy + o+ + 4y, X, X2 =D,

) (4.14)

A X1 + QupXy + -+ + a,,X, +xn+m = bm

Clxl +CZ)C2+"'+Cnxn _f =0

dl.xl + d2.X2 + oo + dn.xn —-Ww = _WO

Here the constants b;, i=1 to m, are made nonnegative by changing, if nec-
essary, the signs of all terms in the original equations before the addition of
the artificial variables x,,; i=1 to m. Since the original infeasibility form is
given by

(4.15)

W= Xp41 +xn+2 + - +xn+m

the artificial variables can be eliminated from Eq. (4.15) by adding the first m
equations of Eq. (4.14) and subtracting the result from Eq. (4.15). The resulting
equation is shown as the last equation in Eq. (4.14) with

=~ Z a; and w, = i b, (4.16)
} i=1

Equations (4.14) are written in tableau form as shown in Table 4.1.

2. The iterative procedure (cycle 0) is started with x,_;, x5, ..., X,,,,» —f, and
—w as the basic variables. A table is opened by entering the coefficients of
the basic variables and the constant terms as shown in Table 4.2. The starting
basis matrix is, from Table 4.1, B=1, and its inverse B~! = [ﬂij] can also be
seen to be an identity matrix in Table 4.2. The rows corresponding to —f and
—w in Table 4.2 give the negative of simplex multipliers z; and o; (i =1 to m),
respectively. These are also zero since ¢z =dgz =0 and hence

a' =B =0

T _ 3Tp-1 _
c =d;B™ =0
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Table 4.1 Original System of Equations.

Admissible (original) variable Artificial variable Objective variable
i e X ] Kutt Kng2 Xt i -w Constant
Initial
1 b
ap ayp a Ay 1 b]
2
a a a a
21 2 e 2
A LA A T A
At L) Ay A 1 b,
¢ Py ¢ ¢ 0 0 0 1 0 0
d, d, d; A 0 0 0 0 1 —w,
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Table 4.2 Table at the Beginning of Cycle 0.

Columns of the canonical form Value of the
Basic variables  x,,; X000 Xy Xm -f -w basic variable X,
Xnt1 1 b,
Xn+2 1 b,
xn+r l br
xn+m 1 bm
«———— Inverse of the basis «——
—f 0 0 0 0 1 0
—w 0 0 0 0 1 —-wy=—X2 b,

“This column is blank at the beginning of cycle 0 and filled up only at the end of cycle 0.

In general, at the start of some cycle k (k=0 to start with) we open a table
similar to Table 4.2, as shown in Table 4.4. This can also be interpreted as
composed of the inverse of the current basis, B~! = [B;;], two rows for the sim-
plex multipliers 7; and o, a column for the values of the basic variables in the
basic solution, and a column for the variable x,. At the start of any cycle, all
entries in the table, except the last column, are known.

3. The values of the relative cost factors c_zf/- (for phase I) or Ej (for phase II) are
computed as

= _ T
dj=d;— 0o A,
- _ _ T
¢ =¢ 7L'Aj

and entered in a table form as shown in Table 4.3. For cycle 0, 7 = 0 and hence
d;=d,. ~ ~

4. If the current cycle corresponds to phase I, find whether all d; > 0. If all d; > 0
and w;, > 0, there is no feasible solution to the linear programming problem, so
the process is terminated. If all dj > 0 and w,, = 0, the current basic solution is

Table 4.3 Relative Cost Factor Ej or Ej.

Variable X;

Cycle number  x,; X, X, Xp X0 X
0 d, d, d, 0 0 0
1

Phase I Use the values of ¢; (if phase I) or z; (if phase II) of the

current cycle and compute

dj- = dj - (alalj + 050y + - + zrmamj)

or
I+1

¢;=c¢;— (may + myay + -+ + 7,a,,)
Phase 1147+ 2 '

_ j m“mj
Enter d; or Ej in the row corresponding to the current cycle and

choose the pivot column s such that Es = min ;lj (if phase I) or
¢, = min Ej (if phase II)




4.2 Revised Simplex Method 167

a basic feasible solution to the linear programming problem and hence phase 11
is started by (i) dropping all variables x; with Ej > 0, (ii) dropping the w row
of the tableau, and (iii) restarting the cycle (step 3) using phase Il rules.

If some d; < 0, choose x; as the variable to enter the basis in the next cycle
in place of the present rth basic variable (r will be determined later) such that

d, = min(d; < 0)
On the other hand, if the current cycle corresponds to phase II, find whether
all Ej > 0. If all Ej > 0, the current basic feasible solution is also an optimal
solution and hence terminate the process. If some ¢; < 0, choose x; to enter the
basic set in the next cycle in place of the rth basic variable (7 to be found later),
such that

¢, =min(c; < 0)

5. Compute the elements of the x, column from Eq. (4.9) as
A, =B7'A = A,

that is,

Ay, = Priags + Prodog + 0+ By

Ay = Pr1@ys + Prolag + o+ + Py

s = Py + ﬁm2a2x + et ﬁmmamx

and enter in the last column of Table 4.2 (if cycle 0) or Table 4.4 (if cycle k).

Table 4.4 Table at the Beginning of Cycle k.

Columns of the original canonical form Value of the

Basic variable Xyl X —f —w basic variable X

[ﬁ,:f] = [a,‘,nﬂ']

« Inverse of the basis —

m
Xy B - Pim b, a, = z‘iﬂn%
i=
_ m
xjr ﬂrl ﬂrm br Ay = Zl ﬂriais
i=
_ m
x./’m ﬂml ﬁmm bm s = 2] ﬂmiais
i=
_ m
_f TRy TRy, 1 _fO Cy =6 — Zﬂiais
i=1
(—7rj = +cn+j) i
-w I ™ 1 _WO ds = ds - gaiais
i=
(—o;=+d,,))

“This column is blank at the start of cycle k and is filled up only at the end of cycle .
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Table 4.5 Table at the Beginning of Cycle k+ 1.

Columns of the canonical form Value of the
Basic variables Xt Xm —f -w basic variable  x;
- —%
* - * -
le —dy rl ﬂlm — Q1P bl _alsbr
* * 7
Xs rl o ﬂrm br
- * - * T - 7
xjm ﬁml - amsﬂrl ﬁmm - amsﬂrm bm - amsbr
— —k
. . _
_f -7y — G rl Ty = csﬂrm 1 _fO - Csbr
— — —_—
* * by
—-w - ds rl Oy — dsﬂrm 1 —Wo — dsbr

pi="Lri=1tom) and b, =2

Ay

“This column is blank at the start of the cycle.

6. Inspect the signs of all entries a,, i=1tom. If all g,

< 0, the class of solutions

(A% s —

x, > 0 arbitrary

xj; = b, —ay - x, if x;; 1s a basic variable, and x; =0 if x; is a nonbasic variable
(j # 5), satisfies the original system and has the property

=f 4+Cx — —00 as x.— +oo
f fO svs s

Hence terminate the process. On the other hand, if some a;; > 0, select the
variable x, that can be dropped in the next cycle as

b -
— = min(b,/a;,)
A, is>0

In the case of a tie, choose r at random.

7. To bring x, into the basis in place of x,, carry out a pivot operation on the

element a,, in Table 4.4 and enter the result as shown in Table 4.5. As usual,
the last column of Table 4.5 will be left blank at the beginning of the current
cycle k + 1. Also, retain the list of basic variables in the first column of Table 4.5
the same as in Table 4.4, except that j, is changed to the value of s determined
in step 4.

8. Go to step 3 to initiate the next cycle, k+ 1.

Example 4.1
Maximize F = x; + 2x, + x3

subject to
2% +x—-x3L2
4x, +x,+x3 56

x;20,x>20,x3>20
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SOLUTION This problem can be stated in standard form as (making all the constants
b; positive and then adding the slack variables):

Minimize
subject to
2%+ Xy — X3+ =2
2X] - .xZ + SX3 +.X5 = 6
(E2)
4.x1 +.X2 +.X3 +.x6 = 6

x>0, i=1t06
where x,, x5, and x4 are slack variables. Since the set of equations (E2) are in canonical

form with respect to x,, x5, and x5, x; =0 (i=1, 2, 3) and x, =2, x5 =6, and xg =6 can
be taken as an initial basic feasible solution and hence there is no need for phase 1.

Step 1 All the equations (including the objective function) can be written in canonical

form as
2XI+XZ—.X3+.X4 :2
2x; — X, + 5x3 +x;5 =6
(E3)
4x1 +x2 +X3 +x6 =6

These equations are written in tableau form in Table 4.6.

Step 2 The iterative procedure (cycle 0) starts with x,, x5, x4, and — f as basic vari-
ables. A tableau is opened by entering the coefficients of the basic variables
and the constant terms as shown in Table 4.7. Since the basis matrix is B=1,
its inverse B~! = [ ;71=1. The row corresponding to —fin Table 4.7 gives the
negative of simplex multipliers z;, i=1, 2, 3. These are all zero in cycle 0.
The entries of the last column of the table are, of course, not yet known.

Step 3 The relative cost factors ¢; are computed as

- T, _ .
¢ =¢ IIAj—Cj, j=1to 6

since all ; are zero. Thus

ci=c=-1
52—02—_2
E3—C3—_1
c,=c;,=0
ES=C5=O
E6=c6=0

These cost coefficients are entered as the first row of a table (Table 4.8).
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Table 4.6 Detached Coefficients of the Original System.

Admissible variables

X Xy X3 X4 Xs Xg —f Constants
2 1 -1 1 0 0 2
2 -1 5 0 1 0 6
4 1 1 0 0 1 6

-1 -2 -1 0 0 0 1 0

Table 4.7 Table at the Beginning of Cycle 0.

Columns of the canonical form Value of the basic
Basic variables  x, Xs X —f variable (constant) x?

Pivot element

X5 0 1 0 0 6 552 =-1

Xg 0 0 1 0 6 562 =1
Inverse of the basis = [, ]

~f 0 0 0 ! 0 ©="2

“This column is entered at the end of step 5.

Table 4.8 Relative Cost Factors Ej.

Variable X;

Cycle number X X, X3 Xy X5 X6
Phase I
Cycle 0 -1 -1
Cycle 1 3 0

Cycle 2 6 0 0

Y =3 S )
Rl O O

Step 4 Find whether all ¢; > 0 for optimality. The present basic feasible solution is
not optimal since some c; are negative. Hence select a variable x; to enter
the basic set in the next cycle such that ¢; = min(c; < 0) = ¢, in this case.
Therefore, x, enters the basic set.

Step 5 Compute the elements of the x; column as
A, = [1A,

where [f;] is available in Table 4.7 and A in Table 4.6.

These elements, along with the value of c,, are entered in the last column of
Table 4.7.
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Step 6 Select a variable (x,) to be dropped from the current basic set as

In this case,

b _2_,
a, |1
by _6_
agy 1

Therefore, x, = x4.

171

Step 7 To bring x, into the basic set in place of x,, pivot on a,, =ay, in Table 4.7.
Enter the result as shown in Table 4.9, keeping its last column blank. Since a

new cycle must be started, we go to step 3.

Step 3 The relative cost factors are calculated as

¢ = ¢ — (may; + myay + myay;)

where the negative values of 7, 7,, and 75 are given by the row of —f in
Table 4.9, and g;; and c; are given in Table 4.6. Here 7, =-2, 7, =0, and

ﬂ'3 :0.
G=e—may =—1-(=2)(2) =3
ci=c3—map=—1-(-2)(-1)=-3

64 =Cy — Ay =O—(—2)(1) =2

2
2
|

Enter these values in the second row of Table 4.8.
Step 4

Since all Ej are not >0, the current solution is not optimum. Hence, select

a variable (x,) to enter the basic set in the next cycle such that ¢, = min

(¢; < 0) = ¢; in this case. Therefore, x; = x3.

Table 4.9 Table at the Beginning of Cycle 1.

Columns of the original canonical form Value of the
Basic variables X, Xs —f  basic variable x34
X, 1 0 0 2 ay; = —1
Pivot element
X6 -1 0 1 4 Gy =2
«Inverse of the basis=[f;] —
-f 2=—m, 0=-x, 0=—m,4 1 4 c3=-3

“This column is entered at the end of step 5.
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Step 5 Compute the elements of the x, column as
Ks = [ﬂg,']As

where [f;] is available in Table 4.9 and A in Table 4.6:

Enter these elements and the value of ¢, = ¢; = —3 in the last column of

Table 4.9.
Step 6 Find the variable (x,) to be dropped from the basic set in the next cycle as

b, . (b
— =mmn| —
Ay >0 Aig

Here
b
__5:§:2
ass 4
b
__6=‘_‘=2
ag; 2

Since there is a tie between x5 and x4, we select x, = x5 arbitrarily.

Step 7 To bring x; into the basic set in place of x5, pivot on a,, = as; in Table 4.9.
Enter the result as shown in Table 4.10, keeping its last column blank. Since
a new cycle must be started, we go to step 3.

Step 3 The simplex multipliers are given by the negative values of the numbers
appearing in the row of —f in Table 4.10. Therefore, 7, = —%, 7wy =

—%, and 73 = 0. The relative cost factors are given by

Then
- 1 3
C=cC —ma; —ay =—1-— <_7> 2) - <_Z) 2)=6
- 1 3
Cy = Cy = Mdyp = Mylyy = =2 = (‘j) - (_Z) -H=0
_ I 3
C3 = C3 = Mdy3 = Mylyy = =1 = <——) (=D - (_Z> 5)=0

2
&=y = may - may =0- (- (- (-2) @ =4
c5=c5—7r1a15—7r2a25=0—< )

Cp = C6 — 15 — Mylye = 0 — <—%> 0) - (—% 0)=0

These values are entered as third row in Table 4.8.
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Columns of the original canonical form Value of the
Basic variables Xy X5 Xg —f basic variable  x“
X, 2 H 0 0 4
X H H 0 0 2
X -2 -2 1 1 0
—f 3 : 0 1 10

“This column is blank at the beginning of cycle 2.

Step 4 Since all ¢; are >0, the present solution will be optimum. Hence the optimum

solution is given by

X, =4,x3 =2,x4 = 0 (basic variables)

x; = x, = x5 = 0 (nonbasic variables)

fmin =-10

4.3 DUALITY IN LINEAR PROGRAMMING

Associated with every linear programming problem, called the primal, there is another
linear programming problem called its dual. These two problems possess very inter-
esting and closely related properties. If the optimal solution to any one is known, the
optimal solution to the other can readily be obtained. In fact, it is immaterial which
problem is designated the primal since the dual of a dual is the primal. Because of
these properties, the solution of a linear programming problem can be obtained by
solving either the primal or the dual, whichever is easier. This section deals with
the primal—dual relations and their application in solving a given linear programming

4.3.1

problem.

Symmetric Primal-Dual Relations

A nearly symmetric relation between a primal problem and its dual problem can be
seen by considering the following system of linear inequalities (rather than equations).

Primal Problem

ap Xy + a1rXy + .-

Ay Xy + AypXy + +-+

amlxl + amzxz + -

C1Xp + cpxy +

+ A1pXy 2 b]
+ AxpXy 2 b2

(4.17)
+a,,x, > b,

mn’'n

et CnXn :f

(x; 20,i=1 to n, and f is to be minimized)

Dual Problem. As a definition, the dual problem can be formulated by transposing
the rows and columns of Eq. (4.17) including the right-hand side and the objective
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function, reversing the inequalities and maximizing instead of minimizing. Thus, by
denoting the dual variables as y,, y,, ..., y,,, the dual problem becomes

apyy +axyy, + -+ a,y, < €1

apyy +apy, + -+ anx, <6

(4.18)

Ay + ay Yy + o+ Ay, Y, <

by +byy, + - +b,y, =0

(y; 20,i=1 to m,and v is to be minimized)

Equations (4.17) and (4.18) are called symmetric primal-dual pairs and it is easy
to see from these relations that the dual of the dual is the primal.

4.3.2 General Primal-Dual Relations

Although the primal-dual relations of Section 4.3.1 are derived by considering a
system of inequalities in nonnegative variables, it is always possible to obtain the
primal-dual relations for a general system consisting of a mixture of equations,
less than or greater than type of inequalities, nonnegative variables or variables
unrestricted in sign by reducing the system to an equivalent inequality system of
Eq. (4.17). The correspondence rules that are to be applied in deriving the general
primal—dual relations are given in Table 4.11 and the primal—dual relations are shown

in Table 4.12.

Table 4.11 Correspondence Rules for Primal-Dual Relations.

Primal quantity

Corresponding dual quantity

Objective function: Minimize ¢TX
Variable x; >0

Variable x; unrestricted in sign

Jth constraint, A; X =5, (equality)
Jjth constraint, A X> b (mequallty)
Coefficient matrlx A= [A . A,
Right-hand-side vector b

Cost coefficients ¢

Maximize Y'b

ith constraint YTA, < ¢, (inequality)

ith constraint YTA, = ¢, (equality)

Jth variable y; unrestricted in sign

Jth variable y; >0

Coefficient matrix AT=[A,, ..., A 1T
Right-hand-side vector ¢

Cost coefficients b

Table 4.12 Primal-Dual Relations.

Primal problem

Corresponding dual problem

n
Minimize f = Z ¢;x; subject to
=

Zau/ b, i=12....m

n
Yag 2b, i=m +1,m +2,...,m
J=1
where
x>0,i=12...,n7;
and
x; unrestricted in sign, i=n"+ 1, n" +2, ..., n

m
Maximize v = Y, y;b; subject to

i=1

m
Z Yidy; =

. % *
¢y j=n +1,n"4+2,...,n

Zyz%— ¢, j=12,..

Where
v 20 i=m" +1L,m +2, ...,m
and
y; unrestricted in sign, i=1,2, ..., m
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Table 4.13 Primal-Dual Relations Where m"* =m and n* =n.

Primal problem Corresponding dual problem
n m
Minimize f = Y, ¢;x; Maximize v = ), b,y
i=1 i=1
subject to subject to
n m
Zaiij=bi,i=l,2,...,m Zyia,-jSCj,jzl,l...,n
j=1 i=1
where where
x,>20,i=12,...,n y; is unrestricted in sign, i=1, 2,---, m
In matrix form In matrix form
Minimize f=c¢"X Maximize v=Y"h
subject to subject to
AX=b ATY <c
where where
X>0 Y is unrestricted in sign

4.3.3 Primal-Dual Relations when the Primal Is in Standard Form

If m" =mand n" = n, primal problem shown in Table 4.12 reduces to the standard form
and the general primal—dual relations take the special form shown in Table 4.13. It is
to be noted that the symmetric primal—dual relations, discussed in Section 4.3.1, can
also be obtained as a special case of the general relations by setting m“ =0 and n" =n
in the relations of Table 4.12.

Example 4.2  Write the dual of the following linear programming problem:
Maximize f = 50x; + 100x,

subject to
2x; +x, <1250

2x; + 5x, < 1000
2x; + 3x, <900
X, <150

n=2m=4

where
x>0 and x, >0

SOLUTION Let y,, y,, ¥3, and y, be the dual variables. Then the dual problem can
be stated as
Minimize v = 1250y, + 1000y, + 900y; + 150y,

subject to

2y, 4+ 2y, +2y; > 50
yi + 5y, +3y; +y, > 100
Whereyl > 07y2 > O’yS > 07 and V4 > 0.

Notice that the dual problem has a lesser number of constraints compared to the
primal problem in this case. Since, in general, an additional constraint requires more
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computational effort than an additional variable in a linear programming problem, it
is evident that it is computationally more efficient to solve the dual problem in the
present case. This is one of the advantages of the dual problem.

4.3.4 Duality Theorems

The following theorems are useful in developing a method for solving LP problems
using dual relationships. The proofs of these theorems can be found in Ref. [4.10].

Theorem 4.1 The dual of the dual is the primal.

Theorem 4.2 Any feasible solution of the primal gives an f value greater than or at
least equal to the v value obtained by any feasible solution of the dual.

Theorem 4.3 If both primal and dual problems have feasible solutions, both have
optimal solutions and minimum f= maximum v.

Theorem 4.4 If either the primal or the dual problem has an unbounded solution, the
other problem is infeasible.

4.3.5 Dual Simplex Method

There exist a number of situations in which it is required to find the solution of a
linear programming problem for a number of different right-hand-side vectors b®.
Similarly, in some cases, we may be interested in adding some more constraints to a
linear programming problem for which the optimal solution is already known. When
the problem has to be solved for different vectors b, one can always find the desired
solution by applying the two phases of the simplex method separately for each vector
b®. However, this procedure will be inefficient since the vectors b"” often do not differ
greatly from one another. Hence the solution for one vector, say, b may be close
to the solution for some other vector, say, b®. Thus a better strategy is to solve the
linear programming problem for b(") and obtain an optimal basis matrix B. If this basis
happens to be feasible for all the right-hand-side vectors, that is, if

B~'b® > 0 for alli (4.19)

then it will be optimal for all cases. On the other hand, if the basis B is not feasible for
some of the right-hand-side vectors, that is, if

B~ 'b” <0 for some r (4.20)
then the vector of simplex multipliers
x' =c¢;B! 4.21)

will form a dual feasible solution since the quantities

= _ T
c=c¢—=m Aj >0
are independent of the right-hand-side vector b"”). A similar situation exists when the
problem has to be solved with additional constraints.
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In both the situations discussed above, we have an infeasible basic (primal) solu-
tion whose associated dual solution is feasible. Several methods have been proposed,
as variants of the regular simplex method, to solve a linear programming problem
by starting from an infeasible solution to the primal. All these methods work in an
iterative manner such that they force the solution to become feasible as well as opti-
mal simultaneously at some stage. Among all the methods, the dual simplex method
developed by Lemke [4.2] and the primal-dual method developed by Dantzig et al.
[4.3] have been most widely used. Both these methods have the following important
characteristics:

1. They do not require the phase I computations of the simplex method. This is a
desirable feature since the starting point found by phase I may be nowhere near
optimal, since the objective of phase I ignores the optimality of the problem
completely.

2. Since they work toward feasibility and optimality simultaneously, we can
expect to obtain the solution in a smaller total number of iterations.

We shall consider only the dual simplex algorithm in this section.

Algorithm.  As stated earlier, the dual simplex method requires the availability of
a dual feasible solution that is not primal feasible to start with. It is the same as the
simplex method applied to the dual problem but is developed such that it can make use
of the same tableau as the primal method. Computationally, the dual simplex algorithm
also involves a sequence of pivot operations, but with different rules (compared to the
regular simplex method) for choosing the pivot element. _

Let the problem to be solved be initially in canonical form with some of the ; < 0,
the relative cost coefficients corresponding to the basic variables ¢; =0, and all other
¢; > 0. Since some of the b; are negative, the primal solution will be infeasible, and
since all ¢; > 0, the corresponding dual solution will be feasible. Then the simplex
method works according to the following iterative steps.

1. Select row r as the pivot row such that
b, =minb,; < 0 (4.22)

2. Select column s as the pivot column such that

_ _
& —min (T’> (4.23)
—d, a,<0 —arj

If all a,; > 0, the primal will not have any feasible (optimal) solution.
3. Carry out a pivot operation on a,.

4. Test for optimality: If all Ei > 0, the current solution is optimal and hence stop
the iterative procedure. Otherwise, go to step 1.

Remarks:

1. Since we are applying the simplex method to the dual, the dual solution will
always be maintained feasible, and hence all the relative cost factors of the
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primal (c;) will be nonnegative. Thus, the optimality test in step 4 is valid

because it guarantees that all Ei are also nonnegative, thereby ensuring a feasi-
ble solution to the primal.

2. We can see that the primal will not have a feasible solution when all a,; are
nonnegative from the following reasoning. Let (x;, x,, ..., x,,) be the set of
basic variables. Then the rth basic variable, x,, can be expressed as

It can be seen that if b, <0 and a,; > 0 for all j, x, cannot be made nonnegative
for any nonnegative value of x;. Thus, the primal problem contains an equation
(the rth one) that cannot be satisfied by any set of nonnegative variables and
hence will not have any feasible solution.

The following example is considered to illustrate the dual simplex method.

Example 4.3
Minimize f = 20x; + 16x,

subject to

x =225
X, > 6

2x) +x, 2 17

X +x,>12
x;20,x,>0

SOLUTION By introducing the surplus variables xs, x,, x5, and x4, the problem can
be stated in canonical form as

Minimize f
with

_.xl +.)C3 = _2.5

—X, + x4 =-6
—2x; — X, + X5 =-17
(EL)
_xl —_ x2 +,)C6 = —12
20x; + 16x, -f=0

x>0, i=1106

The basic solution corresponding to (E1) is infeasible since x; =-2.5, x4, =—6,
x5 =—17, and x4 =—12. However, the objective equation shows optimality since the
cost coefficients corresponding to the nonbasic variables are nonnegative (¢; =20,
¢, =16). This shows that the solution is infeasible to the primal but feasible to the
dual. Hence the dual simplex method can be applied to solve this problem as follows.
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Step 1 Write the system of equations (E1) in tableau form:

Basic Variables

variables X X, X3 x, x5 x5 —f b

X3 -1 0 1 0 0 0 0 -2.5

X, 0 -1 0 1 0 0 0 =6

x5 -1 0 0 1 0 0 =17« Minimum,

pivot row
Pivot element

X -1 -1 0 0 0 1 0 -I2

—f 20 16 0 0 0 0 1 0
Select the pivotal row r such that

b, =min(h; < 0) = by = —17
in this case. Hence r=3.
Step 2 Select the pivotal column s as
< N
— =mm\|\ —
Uy a,<0 _arj
Since _ _
c 2 c 1
4 =_0=10, 2 =—6=16, and s =1
—asz —az 1

Step 3 The pivot operation is carried on as; in the preceding table, and the result is

as follows:
Basic Variables
variables  x; X, Xy X4 Xs X —f Z,
X 0 3 I 0o -2 0 0
x4 0 0 1 0 0 0 —6«<Minimum,
pivot row
Pivot element
X, 1 3 o o0 -3 o o I
X 0 -3 0o 0 - 1 0 -
—f 0 6 0 0 10 0 1 -170

Step 4 Since some of the Ei are <0, the present solution is not optimum. Hence, we
proceed to the next iteration.

Step 1 The pivot row corresponding to minimum (Ei < 0) can be seen to be 2 in the
preceding table.
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Step 2 Since a,, is the only negative coefficient, it is taken as the pivot element.
Step 3 The result of pivot operation on a,, in the preceding table is as follows:

Basic Variables
variables  x;  x, x5 Xy Xs X —f Ei

1 1

X3 0 0 1 2 -3 0 0 3

X, 0 1 0 -1 0 0 0 6
1 1 11

Xy 1 0 0 2 -5 0 o 3

Xg 0 0 0 - % - % 1 0 - % «— Minimum,

pivot row
Pivot element
—f 0 0 0 6 10 0 1 -206

Step 4 Since all Zi are not >0, the present solution is not optimum. Hence, we go to
the next iteration.

Step 1 The pivot row (corresponding to minimum Ei < 0) can be seen to be the fourth
rOW.
Step 2 Since

Cy
— =12 and —
—Ayy —dys

=20

the pivot column is selected as s =4.
Step 3 The pivot operation is carried on a,, in the preceding table, and the result is

as follows:
Basic Variables

variables X X, X3 Xy X5 X6 —f Ei
X 0 0 1 0 -1 1 0 2
X, 0 1 0 0 -2 0 7
X 1 0 0 0 — 1 0 5
Xy 0 0 0 1 -2 0 1
—f 0 0 0 0 4 12 1 212

Step 4 Since all Zi are >0, the present solution is dual optimal and primal feasible.
The solution is

x1=5 x="7 x= g, x, =1 (dual basic variables)

X5 =xg =0 (dual nonbasic variables)

fmin =212

44 DECOMPOSITION PRINCIPLE

Some of the linear programming problems encountered in practice may be very large
in terms of the number of variables and/or constraints. If the problem has some special



4.4 Decomposition Principle 181

structure, it is possible to obtain the solution by applying the decomposition principle
developed by Dantzing and Wolfe [4.4]. In the decomposition method, the original
problem is decomposed into small subproblems and then these subproblems are solved
almost independently. The procedure, when applicable, has the advantage of making
it possible to solve large-scale problems that may otherwise be computationally very
difficult or infeasible. As an example of a problem for which the decomposition prin-
ciple can be applied, consider a company having two factories, producing three and
two products, respectively. Each factory has its own internal resources for production,
namely, workers and machines. The two factories are coupled by the fact that there
is a shared resource that both use, for example, a raw material whose availability is
limited. Let b, and b; be the maximum available internal resources for factory 1, and
let b, and b5 be the similar availabilities for factory 2. If the limitation on the common
resource is b, the problem can be stated as follows:

Minimize f (x|, Xy, X3, Y, ¥2) = €1 X| + CXy + C3X3 + ¢4 + C5),

subject to

’allxl +apx%, tapx;+auy, +a;sy,| <b

Ay Xy + axnXs, + ayxz <b, (4.4
azixy +axnx, +azx, < by

Ay Yy +agny, | < by
as;y; + asyy, | < bs

where x; and y; are the quantities of the various products produced by the two factories
(design variables) and the a; are the quantities of resource i required to produce 1 unit
of product j.

x; >0, Vi = 0

((=123) (=12

An important characteristic of the problem stated in Eq. (4.24) is that its con-
straints consist of two independent sets of inequalities. The first set consists of a
coupling constraint involving all the design variables, and the second set consists of
two groups of constraints, each group containing the design variables of that group
only. This problem can be generalized as follows:

Minimize f(X) = ¢/ X, + 6 X, + - + ¢, X, (4.25a)
subject to
AX; +AX, + - +A X, =b, (4.25b)
B X, = b,
BaX. =b: (4.25¢)
BX, =b,

X, >0,X,20,,X,>0
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where .
X1 Xml+1
X Xm1+2
Xl =3 s X2 = ’ ’
Xl Xml+m2

xml+m2+---+mp_]+l
Xp =9 xm1+m2+~-~+mp,]+2

X
§ ml+m2+ +m,_+m,

X,

14

It can be noted that if the size of the matrix A, is (r, X m;,) and that of B, is (r, X m),
the problem has Y’} r, constraints and }7_, m, variables.

Since there are a large number of constraints in the problem stated in Eq. (4.25), it
may not be computationally efficient to solve it by using the regular simplex method.
However, the decomposition principle can be used to solve it in an efficient man-
ner. The basic solution procedure using the decomposition principle is given by the
following steps.

1. Define p subsidiary constraint sets using Eq. (4.25) as

B, X, =b,
B, X, =b, (4.26)
B,X,=b,
The subsidiary constraint set
BX; =b, k=12,....p 4.27)

represents r, equality constraints. These constraints along with the requirement
X, > 0 define the set of feasible solutions of Eq. (4.27). Assuming that this set
of feasible solutions is a bounded convex set, let s, be the number of vertices
of this set. By using the definition of convex combination of a set of points,*

4If XM and X® are any two points in an n-dimensional space, any point lying on the line segment joining
X® and X is given by a convex combination of X’ and X® as

X(w)=pXV+1-wX?®, 0<pu<l1

This idea can be generalized to define the convex combination of r points X, X®, ..., X as

Xty piys s ) = 1 XU+ X o gy XO

where pt; +py +--+pu,=land0<p,<1,i=1,2, -, 1.
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any point X, satisfying Eq. (4.27) can be represented as

X, = /’lk,lX(]k) + ﬂk,2X(2k) + o+ Mk,stg:) (4.28)

Hip + Ma + o+ g, = 1 (4.29)

O0<y,; <1, i=1,2,...,8, k=12,...,p (4.30)

where X(lk), X(zk), e Xg’:) are the extreme points of the feasible set defined by

Eq. (4.27). These extreme points X(lk),X(zk), ...,ng);k =1,2,...,p, can be
found by solving the Eq. (4.27).
2. These new Eq. (4.28) imply the complete solution space enclosed by the con-

straints
B ka = b k

X, >0, k=12 ...p 4.31)

By substituting Eq. (4.28) into Eq. (4.25), it is possible to eliminate the
subsidiary constraint sets from the original problem and obtain the following

equivalent form: \

1 52
Minimize f(X) = ¢] <Z ,uL,-XEI)> +cf <Z ﬂz,,.x?))
i=1

i=1

sp
T ®)
+te (Z 1, X )
i=1

subject to

w20, i=12,....5, j=12,....p 4.32)
Since the extreme points X(lk), X;k), el Xﬁlz) are known from the solution of the
set B, X, =b;, X;>0,k=1,2, ..., p,andsince ¢, and A}, k=1,2, ..., p, are
known as problem data, the unknowns in Eq. (4.32) are K i=1, 2, ce S
j=12,...,p. Hence u i will be the new decision variables of the modified
problem stated in Eq. (4.32).

3. Solve the linear programming problem stated in Eq. (4.32) by any of the known

techniques and find the optimal values of y;;. Once the optimal values yj‘i are
determined, the optimal solution of the original problem can be obtained as
Xj

X
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where
sk

X;p=Y XY k=12 ...p

i=1

Remarks:

1. It is to be noted that the new problem in Eq. (4.32) has (r, + p) equality con-
straints only as against r, + ZI/Z: | T in the original problem of Eq. (4.25). Thus,
there is a substantial reduction in the number of constraints due to the applica-
tion of the decomposition principle. At the same time, the number of variables
might increase from }’_ my to }¥_ s;, depending on the number of extreme
points of the different subsidiary problems defined by Eq. (4.31). The modified
problem, however, is computationally more attractive since the computational
effort required for solving any linear programming problem depends primarily
on the number of constraints rather than on the number of variables.

2. The procedure outlined above requires the determination of all the extreme
points of every subsidiary constraint set defined by Eq. (4.31) before the opti-
mal values ;4’.';. are found. However, this is not necessary when the revised
simplex method is used to implement the decomposition algorithm [4.5].

3. If the size of the problem is small, it will be convenient to enumerate all the
extreme points of the subproblems and use the simplex method to solve the
problem. This procedure is illustrated in the following example.

Example 4.4 A fertilizer mixing plant produces two fertilizers, A and B, by mix-
ing two chemicals, C; and C,, in different proportions. The contents and costs of the
chemicals C; and C, are as follows:

Contents
Chemical Ammonia Phosphates Cost ($/1b)
C, 0.70 0.30 5
C, 0.40 0.60 4

Fertilizer A should not contain more than 60% of ammonia and B should contain
at least 50% of ammonia. On the average, the plant can sell up to 1000 Ib/h and due
to limitations on the production facilities, not more than 600 Ib. of fertilizer A can be
produced per hour. The availability of chemical C; is restricted to 500 Ib/h. Assuming
that the production costs are same for both A and B, determine the quantities of A and
B to be produced per hour for maximum return if the plant sells A and B at the rates
of $6 and $7 per pound, respectively.

SOLUTION Let x; and x, indicate the amounts of chemicals C; and C, used in fer-
tilizer A, and y, and y, in fertilizer B per hour. Thus, the total amounts of A and B
produced per hour are given by x; +x, and y; +y,, respectively. The objective function
to be maximized is given by

f = selling price — cost of chemical C; and C,
= 6(x; +x3) +7(y; +y2) = 50x; +y) —4(x; +2)
The constraints are given by

(x; +x,) + (y; +y,) <1000 (amount that can be sold)
X +» <500  (availability of C))
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X1+ X, 600 (production limitations on A)

17 5%t 14—0x2 16—0(xl +x,) (A should not contain more
than 60% of ammonia)
%yl + 14—0y2 < 15_0(y‘ +¥,) (Bshould contain at least

50%of ammonia)
Thus, the problem can be restated as
Maximize f = x| + 2x, + 2y, + 3y,

subject to

X1+X2 +y1+y2 < 1000
X + ¥y <500

.X]+.X2 S6OO
X, —2x, <0
=21+ n<0

x>0, y,20, i=1,2

This problem can also be stated in matrix notation as follows:

Maximize f(X) = ¢/ X| + ¢; X,

subject to
A X, +AX, <b,
B X, <b,
B,X, <b,
X, >0, X,2>0
where

o= ap o= i)
’A2=H {5}

11 600
| ],b1={ },Bz={—21},bz={0},

e
Il
—~
= =
N =
_ =
e
[ e}

Il
/—"\
\ﬁ,_/

||

Step 1 We first consider the subsidiary constraint sets
B,X, <b;, X, 20

B2X2 S bz, X2 Z 0

185

(EL)

(E2)

(E3)

(E4)

(E5)

(E6)

(E7)
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X2 2
R (400, 200) ;7'777
00,600 X -2xp=0 2000 ¢ T (1000, 2000)

4

1000 C

P L’

(0,0 S
X ¢ Frrdrr V1
X1 + X, = 600 U (1000, 0)

(@) (b)

Figure 4.1 Vertices of feasible regions. To make the feasible region bounded, the constraint
¥, <1000 is added in view of Eq. (E2).

The convex feasible regions represented by (E6) and (E7) are shown in
Figure 4.1a and b, respectively. The vertices of the two feasible regions are

given by
XV = point P = 0
! 0

X" = point 0 = 0
2 600

Xgl) = point R = {388}
X(lz) = point § = {8}
X(zz) =point T = {;888}
X(32) =point U = { ]0(())0}

Thus, any point in the convex feasible sets defined by Egs. (E6) and (E7) can
be represented, respectively, as

x - {0V, 0\ [400) _ 40044
PRI o TH2Y 600 £ T 31200 [ T\ 6004, + 20045

with
M+ Hpp s =1, 0<pyu;<1, i=1,273
(E8)
and
Xy = iy {8} + p {;888} + 13 {10(;)0} = {1000“;20;02)?0#23}
with
Moy + Moy + Moz = 1, 0<u,; <1, i=1273

(E9)
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Step 2 By substituting the relations of (E8) and (E9), the problem stated in Egs. (ES)
can be rewritten as

o 400u
Maximize f(y; 1, g ---» Haz3) = (1 2) { 1 }

6004,, + 20045

42 3 {1000k + 10004
200015,

= 80045 + 12004,, + 800045, + 20001,

subject to
[1 1] { 400p,5 }
1 0] \ 6004, + 20045
.\ [1 1] {1000;;22 + 1000;423} . {1000}
10 200015, = 500
that is,
6004, + 60045 + 300045, + 10004, < 1000
4004,5 + 1000415, + 10004153 < 500
Hip+ M+ pp3 =1
Hot + My + pp3 =1
with

Hip 20,415 20,0013 20, piy) 20,090 20, pip3 20

The optimization problem can be stated in standard form (after adding the
slack variables @ and f) as

Minimizef = —1200/112 - 800[4]3 - 8000#22 - 2000”23
subject to

6004, + 6004;5 + 300044, + 100043 + & = 1000
40041,5 + 1000415, + 10004155 + f = 500
Hip+ i+ p3 =1
Hay + Hyy + py3 =1
u; 20@0@=12j=123), «a=20, =0 (E10)

Step 3 The problem (E10) can now be solved by using the simplex method.

4.5 SENSITIVITY OR POSTOPTIMALITY ANALYSIS

In most practical problems, we are interested not only in optimal solution of the LP
problem, but also in how the solution changes when the parameters of the problem
change. The change in the parameters may be discrete or continuous. The study of the
effect of discrete parameter changes on the optimal solution is called sensitivity analy-
sis and that of the continuous changes is termed parametric programming. One way to
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determine the effects of changes in the parameters is to solve a series of new problems
once for each of the changes made. This is, however, very inefficient from a compu-
tational point of view. Some techniques that take advantage of the properties of the
simplex solution are developed to make a sensitivity analysis. We study some of these
techniques in this section. There are five basic types of parameter changes that affect
the optimal solution:

1. Changes in the right-hand-side constants b,

2. Changes in the cost coefficients c;

3. Changes in the coefficients of the constraints a;;
4. Addition of new variables

5. Addition of new constraints

In general, when a parameter is changed, it results in one of three cases:

1. The optimal solution remains unchanged; that is, the basic variables and their
values remain unchanged.

2. The basic variables remain the same, but their values are changed.
3. The basic variables as well as their values are changed.

4.5.1 Changes in the Right-Hand-Side Constants b;

Suppose that we have found the optimal solution to a LP problem. Let us now change
the b; to b; + Ab; so that the new problem differs from the original only on the
right-hand side. Our interest is to investigate the effect of changing b; to b; + Ab; on
the original optimum. We know that a basis is optimal if the relative cost coefficients
corresponding to the nonbasic variables ¢; are nonnegative. By considering the
procedure according to which ¢; are obtained, we can see that the values of ¢; are not
related to the b;. The values of ¢; depend only on the basis, on the coefficients of the
constraint matrix, and the original coefficients of the objective function. The relation
is given in Eq. (4.10):

G=ci—m'Aj=c;— ¢;BT'A, (4.33)

Thus, changes in b; will affect the values of basic variables in the optimal solution
and the optimality of the basis will not be affected provided that the changes made in
b; do not make the basic solution infeasible. Thus, if the new basic solution remains
feasible for the new right-hand side, that is, if

X, =B~ '(b+Ab)>0 (4.34)

then the original optimal basis, B, also remains optimal for the new problem. Since
the original solution, say?

31t is assumed that the variables are renumbered such that the first m variables represent the basic variables
and the remaining n — m the nonbasic variables.
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is given by
X, =B7'b (4.35)

Equation (4.34) can also be expressed as
x—x+ZﬂUAb >0, i=12,....m (4.36)

where

=18y (4.37)

Hence the original optimal basis B remains optimal provided that the changes
made in b;, Ab;, satisfy the inequalities (4.36). The change in the value of the ith
optimal basic variable, Ax;, due to the change in b, is given by

X}, — Xz = AX; =B7'Ab
that is,
Ax; = 2 BiAb;, i=1.2,....m (4.38)

Finally, the change in the optimal value of the objective function (Af) due to the
change Ab; can be obtained as

Af = cyAX,; = cjB'Ab = z'Ab = )’ 7,Ab; (4.39)
j=1

Suppose that the changes made in b; (Ab;) are such that the inequality (4.34)
is violated for some variables so that these variables become infeasible for the new
right-hand-side vector. Our interest in this case will be to determine the new opti-
mal solution. This can be done without reworking the problem from the beginning by
proceeding according to the following steps:

1. Replace the Z of the original optimal tableau by the new values, B/ =B (b +
Ab) and change the signs of all the numbers that are lymg in the rows in which
the infeasible variables appear, that is, in rows for which b < 0.

2. Add artificial variables to these rows, thereby replacing the infeasible variables
in the basis by the artificial variables.

3. Go through the phase I calculations to find a basic feasible solution for the
problem with the new right-hand side.

4. If the solution found at the end of phase I is not optimal, we go through the
phase II calculations to find the new optimal solution.

The procedure outlined above saves considerable time and effort compared to the
reworking of the problem from the beginning if only a few variables become infea-
sible with the new right-hand side. However, if the number of variables that become
infeasible are not few, the procedure above might also require as much effort as the
one involved in reworking of the problem from the beginning.

Example 4.5 A manufacturer produces four products, A, B, C, and D, by using
two types of machines (lathes and milling machines). The times required on the two
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machines to manufacture 1 unit of each of the four products, the profit per unit of the
product, and the total time available on the two types of machines per day are given

below:

Time required per unit (min) for product: Total time available
Machine A B C D per day (min)
Lathe machine 7 10 4 9 1200
Milling machine 3 40 1 1 800
Profit per unit ($) 45 100 30 50

Find the number of units to be manufactured of each product per day for maxi-
mizing the profit.

Note: This is an ordinary LP problem and is given to serve as a reference problem
for illustrating the sensitivity analysis.

SOLUTION Let x;, x,, x5, and x, denote the number of units of products A, B, C,
and D produced per day. Then the problem can be stated in standard form as follows:

Minimize f = —45x; — 100x, — 30x3 — 50x;,
subject to
7x1 + IOXZ + 4X3 + 9X4 S 1200

3x; +40x, + x5 + x, < 800
x;20,i=1to4
By introducing the slack variables x5 > 0 and x¢ > 0, the problem can be stated in

canonical form and the simplex method can be applied. The computations are shown
in table form below:

Basic Variables Ratio l_Ji [a;
variables X, X, X3 Xy x5 x4 —f Zi fora;; >0
X5 7 10 4 9 1 0 0 1200 120
X 3 1 1 0 1 0 800 20« Smallerone,x,

leaves the basis
Pivot element

-f —45 —-100 -30 =50 0 O 1 0
T

Minimum Ej < 0; x, enters the next basis

Result of pivot operation:

x4 ? 0 % % 1 _i 0 1000 42& < Smaller one,
x5 leaves the basis
Pivot element

75 55 95 5
—f -2 0 -2 -2 0 -2 1 2000
1

Minimum Ej < 0, x4 enters the basis
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Result of pivot operation:

3 4 1 4,000 800

= = 1 = - — — « Smaller on

Xy 0 5 5 0 > Smaller o e,
x4 leaves the basis
Pivot element

2 1 1 9 120
*2 35 1 70 0 350 350 0 7 1200

25 50 38 8 52,000

/ 7 0 7 0 7 7 ! 7

1

Minimum ¢ < 0, x; enters the basis

Result of pivot operation:

5 7 4 1 800
B3 0 : CR - .
1 1 1 2 40
no5 ! O % wmos 03
The optimum solution is given by
Xy = 43—0, X3 = 83& (basic variables)
X| = x, = x5 = xg = 0 (nonbasic variables)
—28,000 . $28,000
Jinin = ———— or maximum profit = ————
3 3
From the final tableau, one can find that
= h 1
_ )X 3 _ the optimum solution
Xp = { xz} - { 40 } ~ vector of basic variables in (ED)
3
c -30 coefficients corresponding
cp = { 3} = { } = to the basic variables (E2)
] —100 vector of original cost
B = 4 10| _ corresponding to the basic variables (E3)
~ |1 40| — matrix of original coefficients

by P 4 _1 inverse of the coefficient
B! = [ ; 3 ; 2] = 151 125 = matrix B, which appears (E4)
23 P

= = in the final tableau also

4 1

m =B~ = (=30 - 100) l B ;5]
T 75

{—2 } negatives of which appear

= in the final tableau also (ES)
simplex multipliers, the

Example 4.6 Find the effect of changing the total time available per day on the two
machines from 1200 and 800 minutes to 1500 and 1000 minutes in Example 4.5.
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SOLUTION Equation (4.36) gives
X+Zﬁ,]Ab >0, i=12..,m (4.36)

where x; is the optimum value of the ith basic variable. (This equation assumes that
the variables are renumbered such that x, to x,, represent the basic variables.)

If the variables are not renumbered, Eq. (4.36) will be applicable for i=3 and
2 in the present problem with Ab; =300 and Ab, =200. From Egs. (E1) to (ES) of
Example 4.5, the left-hand sides of Eq. (4.36) become

800 5000
X+ Pr3lby + by = == + —(300) - —(200) ST

40 2500
X2 + ﬁ23Ab3 + ﬂ22Ab2 = ? - E(SOO) + _(200) 150

Since both these values are >0, the original optimal basis B remains optimal even
with the new values of ;. The new values of the (optimal) basic variables are given
by Eq. (4.38) as

X, _
X}, = {x;} =Xz +AX; =X +B7'ADb
2

800 4 1000
_{3}+l15 15]{300}_{3}
) % -1 2 200 [ 30

3 150 75 3

and the optimum value of the objective function by Eq. (4.39) as

200

28,000 3
fmm fmm + Af fmm + CTAXB - 3 + (=30 - 100) { 13_0 }
3

35,000
3

Thus, the new profit will be $35 000/3.

4.5.2  Changes in the Cost Coefficients ¢;

The problem here is to find the effect of changing the cost coefficients from ¢; to
¢;+ Ac; on the optimal solution obtained with ¢;. The relative cost coefficients corre-

sponding to the nonbasic variables, x,,,, X,,.;», .- ., X, are given by Eq. (4.10):
. Ty _ .
C=¢—x Aj—cj—Zﬂ,-aij,J—m+1,m+2,...,n (4.40)
i=1

where the simplex multipliers z; are related to the cost coefficients of the basic vari-
ables by the relation
' =ciB™!

that is,

m

=Y ey i=12...m (4.41)
k=1
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From Egs. (4.40) and (4.41), we obtain

¢ = <—Z ,,(chﬂkt)—cj— Ck(Z“z/ﬂki>’
1 i=1

k=
i=m+1,m+2,...,n 4.42)

If the ¢; are changed to ¢; + Ac;, the original optimal solution remains optimal,
provided that the new values of Cjs c satisfy the relation

E; =c¢j+Ac; — Z(Ck + Acy) <2 a,’jﬂki) >0
k=1 i=1
=G +A¢— ) Ag, <2 aijﬂk,) > 0,
k=1 i=1

jEm+1lm+2,.n (4.43)

where ¢; indicate the values of the relative cost coefficients corresponding to the orig-
inal optimal solution.

In particular, if changes are made only in the cost coefficients of the nonbasic
variables, Eq. (4.43) reduces to

Ej+chZO, j=m+1,m+2,...,n (4.44)

If Eq. (4.43) is satisfied, the changes made in ¢;, Ac;, will not affect the optimal
basis and the values of the basic variables. The only change that occurs is in the optimal
value of the objective function according to

Af = ) xAc (4.45)
j=1

and this change will be zero if only the ¢; of nonbasic variables are changed.

Suppose that Eq. (4.43) is violated for some of the nonbasic variables. Then it is
possible to improve the value of the objective function by bringing any nonbasic vari-
able that violates Eq. (4.43) into the basis provided that it can be assigned a nonzero
value. This can be done easily with the help of the previous optimal table. Since some
of the E} are negative, we start the optimization procedure again by using the old opti-
mum as an initial feasible solution. We continue the iterative process until the new
optimum is found. As in the case of changing the right-hand-side b;, the effectiveness
of this procedure depends on the number of violations made in Eq. (4.43) by the new
values ¢; + Ac;.

In some of the practical problems, it may become necessary to solve the optimiza-
tion problem with a series of objective functions. This can be accomplished without
reworking the entire problem for each new objective function. Assume that the opti-
mum solution for the first objective function is found by the regular procedure. Then
consider the second objective function as obtained by changing the first one and eval-
uate Eq. (4.43). If the resulting E]/» > 0, the old optimum still remains as optimum and
one can proceed to the next objective function in the same manner. On the other hand,
if one or more of the resulting ¢ c <0, we can adopt the procedure outlined above and
continue the iterative process usmg the old optimum as the starting feasible solution.
After the optimum is found, we switch to the next objective function.
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Example 4.7 Find the effect of changing c; from —30 to —24 in Example 4.5.

SOLUTION Here Ac; =6 and Eq. (4.43) gives that

¢ =2+ Ac, — Acslay By +az fisl = 2 +0-6 [3 (—%) +7 (%)] =3
Ei =E4 + AC4 - AC3[az4ﬂ32 +a34ﬂ33] = 53—0 +0— 6 [1 (—%) +9 (%)] = %

6,6 = E6 + AC6 - AC3[a26ﬂ32 + a36ﬂ33] = % + 0 - 6 [l <—%) + O <%):| = %
The change in the value of the objective function is given by Eq. (4.45) as

28,000 L 4800 _ 23,200
3 3 3

Af = Acyxy = 4800 so that f =

Since EJ'- is negative, we can bring x,; into the basis. Thus, we start with the opti-

mal table of the original problem with the new values of relative cost coefficients and
improve the solution according to the regular procedure.

Basic Variables B Ratio Ei/ﬁ,-j
variables X, X, X3 Xy Xs X6 -f b; for Eij >0
5 7 4 1 800
Pivot element
1 1 1 2 40
5 8 86 16 23,200
-f -3 LU S A -
)
3 7 4 1
1 2 ; 7
—f 0 1 5 6 1 1 8000

Since all the relative cost coefficients are nonnegative, the present solution is opti-
mum with

x; =160, x, = 8 (basic variables)
X3 = x4 = x5 = x5 = 0 (nonbasic variables)

Sonin = —8000 and maximum profit = $8000

4.5.3 Addition of New Variables

Suppose that the optimum solution of a LP problem with n variables x|, x,, ..., x, has
been found and we want to examine the effect of adding some more variables x,,,,
k=1, 2, ..., on the optimum solution. Let the constraint coefficients and the cost
coefficients corresponding to the new variables x,,; be denoted by a; ,,,;, i=1tom
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and c,,,, respectively. If the new variables are treated as additional nonbasic variables
in the old optimum solution, the corresponding relative cost coefficients are given by

m
Cork = Curk = D Tl (4.46)
i=1
where 7|, ,, ..., &, are the simplex multipliers corresponding to the original opti-

mum solution. The original optimum remains optimum for the new problem also
provided that c,,; >0 for all k. However, if one or more ¢, ; <0, it pays to bring
some of the new variables into the basis, provided that they can be assigned a nonzero
value. For bringing a new variable into the basis, we first have to transform the coef-
ficients ;. into @, ., so that the columns of the new variables correspond to the
canonical form of the old optimal basis. This can be done by using Eq. (4.9) as

An+k = B_l An+k

mxXm

mx1 mx1
that is,
m
ai,n+k = Z ﬁijaj,n+k, i=1tom (447)
=

where B! = [B;;] is the inverse of the old optimal basis. The rules for bringing a new
variable into the basis, finding a new basic feasible solution, testing this solution for
optimality, and the subsequent procedure is same as the one outlined in the regular
simplex method.

Example 4.8 In Example 4.5, if a new product, E, which requires 15 minutes of
work on the lathe and 10 minutes on the milling machine per unit, is available, will it
be worthwhile to manufacture it if the profit per unit is $40?

SOLUTION Let x;, be the number of units of product E manufactured per day. Then
¢, =—40, a;;, =15, and a,, = 10; therefore,

T = ¢, — magk — myayk = —40 + (%) (15) + (§> (10)=2">0
Since the relative cost coefficient ¢, is nonnegative, the original optimum solu-
tion remains optimum for the new problem also and the variable x;, will remain as a
nonbasic variable. This means that it is not worth manufacturing product E.

4.54 Changes in the Constraint Coefficients a;;

Here the problem is to investigate the effect of changing the coefficient g to a; + Aa;;
after finding the optimum solution with a;. There are two possibilities in this case.
The first possibility occurs when all the coefficients a;;, in which changes are made,
belong to the columns of those variables that are nonbasic in the old optimal solution.
In this case, the effect of changing a; on the optimal solution can be investigated
by adopting the procedure outlined in the preceding section. The second possibility
occurs when the coefficients changed a;; correspond to a basic variable, say, x;, of
the old optimal solution. ddd The following procedure can be adopted to examine the
effect of changing a; ;, to a; jo + Aq; ;.

1. Introduce a new variable x,,, | to the original system with constraint coefficients

ai’n+l = ai!jo + Aai’jo (4.48)
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and cost coefficient
Cpy1 = Cjo (original value itself) (4.49)

2. Transform the coefficients @; ,,; to g, ,,| by using the inverse of the old optimal
basis, B~ =[], as

Ainy1 = Z Bija; ypr, i=1ltom (4.50)
j=1

3. Replace the original cost coefficient (cj,) of x;, by a large positive number N,
but keep ¢,,; equal to the old value ¢;.

4. Compute the modified cost coefficients using Eq. (4.43):

m m
E,/‘ =¢;+ Ac; — Z Acy <2 aijﬂki> ,
=1

i=1

j=m+1lm+2,-  nn+1 4.51)

where Ay =0fork=1,2, ..., jo—1jo+1, ..., mand Acjy=N—cy,.

5. Carry the regular iterative procedure of simplex method with the new objective
function and the augmented matrix found in Egs. (4.50) and (4.51) until the new
optimum is found.

Remarks:

1. The number N has to be taken sufficiently large to ensure that x;, cannot be
contained in the new optimal basis that is ultimately going to be found.

2. The procedure above can easily be extended to cases where changes in coeffi-
cients a; of more than one column are made.

3. The present procedure will be computationally efficient (compared to rework-
ing of the problem from the beginning) only for cases where there are not too
many basic columns in which the a;; are changed.

Example 4.9 Find the effect of changing A, from {;} to {1?)} in Example 4.5
(i.e. changes are made in the coefficients a;; of nonbasic variables only).

SOLUTION The relative cost coefficients of the nonbasic variables (of the original
optimum solution) corresponding to the new a;; are given by

¢ =¢— II'TAj, j = nonbasic (1,4, 5, 6)

~

Since A, is changed, we have

= 6
R & S I EE

As ¢, is positive, the original optimum solution remains optimum for the new
problem also.

Example 4.10  Find the effect of changing A from {;} to {Z} in Example 4.5.
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SOLUTION The relative cost coefficient of the nonbasic variable x, for the new A,

is given by

5
Cl =C1—7[TA1 =—45—(—2?2—§> {6} =_13_3

Since ¢, is negative, x; can be brought into the basis to reduce the objective func-
tion further. For this we start with the original optimum tableau with the new values

of Xl given by

4 _1 20 _6 14
- _ 15 15 5 15 15 s
A, =B7lA, = = =4 b
-t 2 6 L 44 15
150 75 30 25 150
Basic Variables
variables X X, X3 Xy Xs Xg —f b; (b;/a;,)
14 7 4 1 300 4000
x3 B o 1 3 5 5 0 7 o
19 1 1 2 2000
¥ 150 1 0 30 150 75 0 19
Pivot element
13 50 2 2 28,000
f 3 0 0 3 3 3 1 3
T
140 49 6 5 3,200
X 0 T n 0w w0 Ty
150 5 1 4 2,000
X1 1 19 0 19 19 19 0 19
-f 0 650 295 135 30 1 186,000

19

19

19

19

19

Since all ¢; are nonnegative, the present tableau gives the new optimum solution as

x3 =3200/19 (basic variables)

X, =x4 =Xx5 = x5 =0 (nonbasic variables)

x, = 2000/19,
186,000
fmin - _T

4.5.5 Addition of Constraints

$186,000

and maximum profit = T

Suppose that we have solved a LP problem with m constraints and obtained the optimal
solution. We want to examine the effect of adding some more inequality constraints
on the original optimum solution. For this we evaluate the new constraints by substi-
tuting the old optimal solution and see whether they are satisfied. If they are satisfied,
it means that the inclusion of the new constraints in the old problem would not have
affected the old optimum solution, and hence the old optimal solution remains optimal
for the new problem also. On the other hand, if one or more of the new constraints are
not satisfied by the old optimal solution, we can solve the problem without reworking
the entire problem by proceeding as follows.

1. The simplex tableau corresponding to the old optimum solution expresses all
the basic variables in terms of the nonbasic ones. With this information, elim-
inate the basic variables from the new constraints.



198

Linear Programming II: Additional Topics and Extensions

2. Transform the constraints thus obtained by multiplying throughout by —1.

3. Add the resulting constraints to the old optimal tableau and introduce one arti-
ficial variable for each new constraint added. Thus, the enlarged system of
equations will be in canonical form since the old basic variables were elim-
inated from the new constraints in step 1. Hence a new basis, consisting of the
old optimal basis plus the artificial variables in the new constraint equations,
will be readily available from this canonical form.

4. Go through phase I computations to eliminate the artificial variables.

5. Go through phase II computations to find the new optimal solution.

Example 4.11 1f each of the products A, B, C, and D require, respectively, 2, 5, 3, and
4 minutes of time per unit on grinding machine in addition to the operations specified
in Example 4.5, find the new optimum solution. Assume that the total time available
on grinding machine per day is 600 minutes and all this time has to be utilized fully.

SOLUTION The present data correspond to the addition of a constraint that can be
stated as

2x; + 5%, + 3x3 + 4x4 = 600 (E1)
By substituting the original optimum solution,

40 800
=73 BE5

3’ x1=X4=x5=x6=0

the left-hand side of Eq. (E1) gives

20) +5 (“3—0) +3 (83&) +4(0) = 22 2 600

Thus, the new constraint is not satisfied by the original optimum solution. Hence,
we proceed as follows.

Step 1 From the original optimum table, we can express the basic variables as

= _ 3 Iy —tx+ Ly
37 3 371 3% 575 T 576
40 1 1 1 1
Xy = — — =X; + —=X; + —X; — —X,
2= 5 T 3N T et 5N T 5%

Thus Eq. (E1) can be expressed as

40 1 1 1 2
2x,+5 ( X+ 35X+ 5% 75x6>

+3 (@ - §x1 - %x4— 14—5x5 + %x6) + 4x, = 600

that is,
19 17 23 1 800 (E2)

E.X4 - EXS + E.Xe = —T
Step 2 Transform this constraint such that the right-hand side becomes positive,
that is,

=X+ =X+ TXg — X = —/— (E3)
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Step 3 Add an artificial variable, say, x,, the new constraint given by Eq. (E3) and
the infeasibility form w =x, into the original optimum tableau to obtain the
new canonical system as follows:

Basic Variables
variables X X, X3 X, X5 Xe X, —f -w . (b/ay)
5 7 4 1 800
| 1 1 2 40
19 17 23 1 800 1600
X G oo 5 % 5 0 0 F I
Pivot element
25 50 2 2 28,00
- 3 oo 5 3 5 0 1 0 =
19 17 23 1 800
—-Ww - z 0 0 - g - % G 0 0 1 - T

Step 4 Eliminate the artificial variable by applying the phase I procedure:

Basic Variables

variables X Xy X3 X4 X5 X X -f  -w Ei
X 0o 0 1 = = -2 -4 0 0 o
X, o 1 0 - - = - 0 0 =
X, 1 0 0 ° 2 -z < 0 0 L
-w 0 0 0 0 0 0 0 0 1 0

Thus, the new optimum solution is given by

1600 200 2400 . .
o’ Xy = 1o X3 = To (basic variables)

x4 = x5 = xg = 0 (nonbasic variables)

164,000 . $164,000
T and maximum profit = BT

)Cl:

fmin =

4.6 TRANSPORTATION PROBLEM

This section deals with an important class of LP problems called the transportation
problem. As the name indicates, a transportation problem is one in which the objec-
tive for minimization is the cost of transporting a certain commodity from a number
of origins to a number of destinations. Although the transportation problem can be
solved using the regular simplex method, its special structure offers a more convenient
procedure for solving this type of problems. This procedure is based on the same the-
ory of the simplex method, but it makes use of some shortcuts that yield a simpler
computational scheme.

Suppose that there are m origins R}, R,, -+, R, (e.g. warehouses) and n destina-
tions, Dy, D,, ---, D,, (e.g. factories). Let a; be the amount of a commodity available at



200 Linear Programming II: Additional Topics and Extensions

origini (i=1,2, ..., m)and bj be the amount required at destinationj (j=1, 2,..., n).
Let ¢;; be the cost per unit of transporting the commodity from origin i to destination
J- The objective is to determine the amount of commodity (x;;) transported from origin
i to destination j such that the total transportation costs are minimized. This problem
can be formulated mathematically as

Minimize f = )" )" ¢; (4.52)
i=1 j=1

subject to .
Dxy=a,  i=12...,m (4.53)

j=1
x;=b, j=12,...n (4.54)

i=1
x; 20, i=12,...,m j=12,...,n (4.55)

Clearly, this is a LP problem in mn variables and m + n equality constraints.

Equation (4.53) state that the total amount of the commodity transported from the
origin i to the various destinations must be equal to the amount available at origin
i(i=1,2, ..., m), while Eq. (4.54) state that the total amount of the commodity
received by destination j from all the sources must be equal to the amount required at
the destination j (j=1, 2, ..., n). The nonnegativity conditions Eq. (4.55) are added
since negative values for any x; have no physical meaning. It is assumed that the total
demand equals the total supply, that is,

i a; = 2 b; (4.56)
i=1 j=1

Equation (4.56), called the consistency condition, must be satisfied if a solution
is to exist. This can be seen easily since

Sa-3(20)-2(Zx)-Zn s
i=1 i=1 \ j=1 j=1 j=1

i=1

The problem stated in Egs. (4.52)—(4.56) was originally formulated and solved
by Hitchcock in 1941 [4.6]. This was also considered independently by Koopmans in
1947 [4.7]. Because of these early investigations the problem is sometimes called the
Hitchcock—Koopmans transportation problem. The special structure of the transporta-
tion matrix can be seen by writing the equations in standard form:

x11+X12+---+x1n =a1
.le +x22 + .- +x2n = az (58a)
Xyl T Xpp + 00+ X, =a,
X1 + X + X1 =b,
X2 + X2 + X0 =b, (58b)

X1 + X, +x
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CiX1 + CpXpp + o+ 0 Xy, + Cop Xy + oot + Oy, o

t C1 X+ F Cp X =f (58¢)
We notice the following properties from Eq. (4.58):

1. All the nonzero coefficients of the constraints are equal to 1.
2. The constraint coefficients appear in a triangular form.

3. Any variable appears only once in the first m equations and once in the next n
equations.

These are the special properties of the transportation problem that allow devel-
opment of the transportation technique. To facilitate the identification of a starting
solution, the system of equations (4.58) is represented in the form of an array, called
the transportation array, as shown in Figure 4.2. In all the techniques developed for
solving the transportation problem, the calculations are made directly on the trans-
portation array.

Computational Procedure. The solution of a LP problem, in general, requires a
calculator or, if the problem is large, a high-speed digital computer. On the other hand,
the solution of a transportation problem can often be obtained with the use of a pencil
and paper since additions and subtractions are the only calculations required. The basic
steps involved in the solution of a transportation problem are

1. Determine a starting basic feasible solution.

2. Test the current basic feasible solution for optimality. If the current solution is
optimal, stop the iterative process; otherwise, go to step 3.

To Destination j Amount
; available
rom 1 2 3 n a;
1
| X1 X12 X13 e X1n
a
cqq Cc12 €13 Cln !
2] (&%) €23 “2n %
Origin
i 3| x3 X3 33 "l Y
€31 32 €33 Gn| B
m Xml Xm2 X3 mn
Cml Cm2 Cm3 Cmn Am
Amount
required by by by bn
b

Figure 4.2 Transportation array.
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4.7

3. Select a variable to enter the basis from among the current nonbasic variables.

4. Select a variable to leave from the basis from among the current basic variables
(using the feasibility condition).

5. Find a new basic feasible solution and return to step 2.

The details of these steps are given in Ref. [4.10].

KARMARKAR’S INTERIOR METHOD

Karmarkar proposed a new method in 1984 for solving large-scale linear program-
ming problems very efficiently. The method is known as an interior method since it
finds improved search directions strictly in the interior of the feasible space. This is in
contrast with the simplex method, which searches along the boundary of the feasible
space by moving from one feasible vertex to an adjacent one until the optimum point
is found. For large LP problems, the number of vertices will be quite large and hence
the simplex method would become very expensive in terms of computer time. Along
with many other applications, Karmarkar’s method has been applied to aircraft route
scheduling problems. It was reported [4.19] that Karmarkar’s method solved problems
involving 150 000 design variables and 12 000 constraints in one hour while the sim-
plex method required four hours for solving a smaller problem involving only 36 000
design variables and 10 000 constraints. In fact, it was found that Karmarkar’s method
is as much as 50 times faster than the simplex method for large problems.
Karmarkar’s method is based on the following two observations:

1. If the current solution is near the center of the polytope, we can move along the
steepest descent direction to reduce the value of fby a maximum amount. From
Figure 4.3, we can see that the current solution can be improved substantially
by moving along the steepest descent direction if it is near the center (point 2)
but not near the boundary point (points 1 and 3).

2. The solution space can always be transformed without changing the nature of
the problem so that the current solution lies near the center of the polytope.

X2

Minimum value off\

- x|

Figure 4.3 Improvement of objective function from different points of a polytope.
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It is well known that in many numerical problems, by changing the units of data
or rescaling (e.g. using feet instead of inches), we may be able to reduce the numerical
instability. In a similar manner, Karmarkar observed that the variables can be trans-
formed (in a more general manner than ordinary rescaling) so that straight lines remain
straight lines while angles and distances change for the feasible space.

4.7.1 Statement of the Problem

Karmarkar’s method requires the LP problem in the following form:

Minimize f = ¢'X

subject to
[alX=0
Xi+x+ - +x,=1
X>0 (4.59)
where X = {x, x,,...,x,}T, e={c,,c5,...,c,}T, and [a] is an m X n matrix. In addi-

tion, an interior feasible starting solution to Eq. (4.59) must be known. Usually,

T
x= {111
nn n
is chosen as the starting point. In addition, the optimum value of f must be zero for the
problem. Thus

I\T
e } = interior feasible
n

S | =
S | =

X0 = {
0

fmin

Although most LP problems may not be available in the form of Eq. (4.59) while
satisfying the conditions of Eq. (4.60), it is possible to put any LP problem in a form
that satisfies Egs. (4.59) and (4.60) as indicated below.

(4.60)

4.7.2 Conversion of an LP Problem into the Required Form
Let the given LP problem be of the form
Minimize d'X
subject to

[¢]X=Db
X>0 (4.61)

To convert this problem into the form of Eq. (4.59), we use the procedure
suggested in Ref. [4.20] and define integers m and n such that X will be an
(n—3)-component vector and [a] will be a matrix of order m — 1 Xn —3. We now
define the vector z = {z, 25,"**, 2,3} " as

7= (4.62)

= | M4
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where f is a constant chosen to have a sufficiently large value such that

n-3
B> x, (4.63)
i=1

for any feasible solution X (assuming that the solution is bounded). By using
Eq. (4.62), the problem of Eq. (4.61) can be stated as follows:

Minimize fd'z

subject to
- 1
]z = =b
B
z2>0 (4.64)
We now define a new vector z as
z
7 = p—2
p—1
Zn
and solve the following related problem instead of the problem in Eq. (4.64):
Minimize {fd* 0 0 M)z
subject to
_n nh 0
[l 0 =2b (2b—[ale)]  _ { }
0 0 n 0 1
eTZ +2,0+2,1+2,= 1 (4.65)

z>0

where e is an (m — 1)-component vector whose elements are all equal to 1, z,_, is a
slack variable that absorbs the difference between 1 and the sum of other variables,
Z,_; 1s constrained to have a value of 1/n, and M is given a large value (corresponding
to the artificial variable z,) to force z, to zero when the problem stated in Eq. (4.61)
has a feasible solution. Eq. (4.65) are developed such that if z is a solution to these
equations, X = fz will be a solution to Eq. (4.61) if Eq. (4.61) have a feasible solu-
tion. Also, it can be verified that the interior point z=(1/n)e is a feasible solution to
Eq. (4.65). Equation (4.65) can be seen to be the desired form of Eq. (4.61) except for
a 1 on the right-hand side. This can be eliminated by subtracting the last constraint
from the next-to-last constraint, to obtain the required form:

Minimize {fd" 0 0 M)z

[@] 0 b (gb—[a]e) z={0}
-l -1 (n-1) -1 0

e zZ+z, ,+7,,+z,=1 (4.66)

subject to

z>0
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Note: When Eq. (4.66) are solved, if the value of the artificial variable z,, > 0, the
original problem in Eq. (4.61) is infeasible. On the other hand, if the value of the slack
variable z,_, =0, the solution of the problem given by Eq. (4.61) is unbounded.

Example 4.12 Transform the following LP problem into a form required by
Karmarkar’s method:
Minimize 2x; + 3x,

subject to

3, +x,—2x3=3
x>0, i=1,2,3

SOLUTION It can be seen that

X

31 =2 3
d= {2 3 O}T’[a] = [5 _2 0] 7b: {2}’ andX: x2
X3

We define the integers m and n as n =6 and m =3 and choose f =10 so that

<

i—i Z
10 |

3

Noting that e= {1, 1, 1}T, Eq. (4.66) can be expressed as

Minimize {20 30 0 0 O M}z

37 -6
SO0 2o

{-{1 11} -1 5 -1}z=0

subject to

1+ +23+24+25+ 3 =1
T
z={11 2 23 24 5 26} >0

where M is a very large number. These equations can be seen to be in the desired form.

4.7.3 Algorithm

Starting from an interior feasible point X!’, Karmarkar’s method finds a sequence of
points X®, X®, ... using the following iterative procedure:
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1. Initialize the iterative process. Begin with the center point of the simplex as the
initial feasible point .
X0 = {l 1. l} '

nn n

Set the iteration number as k=1.

2. Test for optimality. Since f=0 at the optimum point, we stop the procedure if
the following convergence criterion is satisfied:

"XV < e (4.67)

where € is a small number. If Eq. (4.67) is not satisfied, go to step 3.

3. Compute the next point, X%+ For this, we first find a point Y**1 in the trans-
formed unit simplex as

Y&+ — {l l...l}T
nn n

_a(U] = [PI"(PIPID ' [PDIDXD)]e
llellv/n(m — 1)

where llcll is the length of the vector ¢, [/] the identity matrix of order n,
[D(X®)] an n x n matrix with all off-diagonal entries equal to 0, and diagonal
entries equal to the components of the vector X® as

(4.68)

(DX, =2, i=1,2,...n (4.69)

[P] is an (m+ 1) X n matrix whose first m rows are given by [a] [D(X®)] and
the last row is composed of 1’s:

[a][DX®)]
P] = 4.7
[P] [1 | | (4.70)
and the value of the parameter a is usually chosen as a = 1 to ensure con-

vergence. Once Y**1 is found, the components of the new point X**1 are
determined as
%) (k+1)
20y
(k+1) _ i i -
X; _—Z" ® o’ i=1,2,...,n “4.71)

r=17r Jr
Set the new iteration number as k=k+ 1 and go to step 2.
Example 4.13 Find the solution of the following problem using Karmarkar’s
method:
Minimize f = 2x; +x, — X3

subject to

xz—)C3 =O
X1 +XZ+X3:1

x>0, i=1,23 (E.1)

Use the value of € =0.05 for testing the convergence of the procedure.
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SOLUTION The problem is already in the required form of Eq. (4.59), and hence
the following iterative procedure can be used to find the solution of the problem.

Step 1 We choose the initial feasible point as

X =

W= W= W=

and set k=1.
Step 2 Since If (X))l = I§| > (.05, we go to step 3.

Step 3 Since[a]=1{0,1, -1}, c¢={2,1,-1}T, llcll = \/(2)2 + ()2 +(=1)? = \/8 we
find that

(e) S wi=
S wim O
o o

[DXM)] = l

W=

[al[DXM)] =10

[allDXD)]
[P] =

W=
——

1

3
0
1

—_ W=
o

W | —
—

11|

2 17! 9
EN) -0
PP = |° =12,
0 3 0 1
4 3
1 ] 2
[DXM)Je={0 3 0|3 1p=9 3
L -1 _1
0 0 :

(1 = [PT*(PIPTH~ [PDIDXM)]e

_ 2
100 0190 L 3
| Y N Y | e N A N P
3 oLt 1 1 3

001 -1 3 _1
| 3 3

A= = W=

| |

W= W= WIN
|
|

W= W= WIN
VI Ol Ols

A= = W=
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Using a = i, Eq. (4.68) gives

YO =

W= W= W=

I,

I Ol Ol

1 —
V36

34
108
37
108
37

108

Noting that

c M@ _ 1 (3 1 (37
Tt =3 (%) +3 () +

Equation (4.71) can be used to find

l(ﬂ)_l
3\108) " 3

34 34

RUNC 324 108

@1 = i Vi 33 l_J3
[ - 324 (7 ) 108
>y 22 I

=1 324 108

Set the new iteration number as k =k + 1 =2 and go to step 2. The procedure
is to be continued until convergence is achieved.

Notes

1. Although X® =Y® in this example, they need not be, in general, equal to one
another.

2. The value of fat X is

@y—o (34 37 _3_u My = 18
fX )_2<108>+108 108_27<f(X )_27

4.8 QUADRATIC PROGRAMMING

A quadratic programming problem can be stated as

Minimize f(X) = CTX + %XTDX (4.72)
subject to
AX<B (4.73)
X>0 (4.74)
where
X1 ‘1 b,
X c b
X={72t c={72% B={ "1,
X C b
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dy dy - dy, app dip vt 4y

d d e d a a eoa
D= .21 22 2n , and A = .21 22 2n

dnl an o dnn A1 Qo " Gy

In Eq. (4.72) the term X"DX/2 represents the quadratic part of the objective func-
tion with D being a symmetric positive-definite matrix. If D =0, the problem reduces
to a LP problem. The solution of the quadratic programming problem stated in Eqs.
(4.72)—(4.74) can be obtained by using the Lagrange multiplier technique. By intro-
ducing the slack variables s2 i=1,2, , m, in Eq. (4.73) and the surplus variables

=1,2,...,nin Eq. (4. 74) the quadrat1c programming problem can be written as
(see Eq. (4. 72)) subject to the equality constraints

AX+s7=b, i=12,....m (4.75)
—x+6=0, j=12....n (4.76)
where
ai
A= a.iz
a

The Lagrange function can be written as
LX,8.T.2,0) = C"X + 3X'DX + Y 4(ATX + 53— b)
i=1
+ ) 0, (—x; + 1) 4.77)
J=1

The necessary conditions for the stationariness of L give

oL
ax_c+zul+2/1,a,] 0,=0, j=12 ...n (4.78)
OL 945, =0, i=1,2,...,m (4.79)
as;

oL .

o0 =204=0 J=12 o (4.80)
OL ATX42-b =0, i=12...,m (4.81)
all 1 1

L _ s il

a—ej——xj+tj—, j=12,...,n (4.82)

Y,=5>>0, i=12,....m (4.83)
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Equation (4.81) can be written as
ATX-b=-ss=-Y, i=12...m (4.84)
Multiplying Eq. (4.79) by s; and Eq. (4.80) by #;, we obtain
Ast=A4Y; =0, i=12....m (4.85)
e,zj?:o, j=12,...,n (4.86)
Combining Eqs. (4.84) and (4.85), and Eqgs. (4.82) and (4.86), we obtain

M(ATX = b)) =0, i=1,2,....m (4.87)
Ox; =0, j=12,....n (4.88)

Thus, the necessary conditions can be summarized as follows:

cj—0j+ixidij+i/1iaij=0, j=1L2,...,n (4.89)
Af:)l(—bi:ljlYi, i=12,....m (4.90)
x>0, j=L2,...,n (4.91)

Y,>20, i=12,...,m (4.92)

4,20, i=12,....m (4.93)

0,20, j=12,....n (4.94)

AY, =0, i=12,....m (4.95)

0x;=0, j=12,....n (4.96)

We can notice one important thing in Eqs. (4.89)—(4.96). With the exception of
Egs. (4.95) and (4.96), the necessary conditions are linear functions of the variables x;,
Y;, 4;, and 6;. Thus, the solution of the original quadratic programming problem can
be obtained by finding a nonnegative solution to the set of m + n linear equations given
by Eqgs. (4.89) and (4.90), which also satisfies the m + n equations stated in Eqgs. (4.95)
and (4.96).

Since D is a positive-definite matrix, f (X) will be a strictly convex function,®
and the feasible space is convex (because of linear equations), any local minimum
of the problem will be the global minimum. Further, it can be seen that there are 2
(n+ m) variables and 2 (n + m) equations in the necessary conditions stated in Egs.
(4.89)—(4.96). Hence the solution of the Egs. (4.89), (4.90), (4.95), and (4.96) must
be unique. Thus, the feasible solution satisfying all the Egs. (4.89)—(4.96), if it exists,
must give the optimum solution of the quadratic programming problem directly. The
solution of the system of equations above can be obtained by using phase I of the sim-
plex method. The only restriction here is that the satisfaction of the nonlinear relations,
Egs. (4.95) and (4.96), has to be maintained all the time. Since our objective is just to

6See Appendix A for the definition and properties of a convex function.
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find a feasible solution to the set of Egs. (4.89)—(4.96), there is no necessity of phase
IT computations. We shall follow the procedure developed by Wolfe [4.21] to apply
phase 1. This procedure involves the introduction of n nonnegative artificial variables
z; into the Eq. (4.89) so that

n m
G0+ ) xdy+ Y Aay+5=0, j=12,...n (4.97)
i=1 i=1
Then we minimize 0
F=Yg (4.98)
j=1

subject to the constraints

i=1
ATX+Y,=b, i=12....m
X>0, Y>0, 1>0, 6>0

Aiaij+zj=0, j=12,...,n
1

=

While solving this problem, we have to take care of the additional conditions

)’ZY1=0’ j=1,2,...,m
0x,=0,  j=12...n (4.99)

Thus, when deciding whether to introduce Y; into the basic solution, we first have
to ensure that either 4, is not in the solution or 4; will be removed when Y; enters the
basis. Similar care has to be taken regarding the variables 6; and x;. These additional
checks are not very difficult to make during the solution procedure.

Example 4.14
Minimize f = —4x; + xf —2x1Xy + 2x§
subject to
2x,4+x, <6
x; —4x, L0

x>0, x>0

SOLUTION By introducing the slack variables ¥, =s? and Y, =s and the surplus
variables 6, = tf and 0, = t%, the problem can be stated as follows:

e} o] )
2 2

o)

—.X]+01 =0

subject to

—x,+6,=0 (E1)
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By comparing this problem with the one stated in Eqgs. (4.72)—(4.74), we find that

2 =2 2 1
(;l=—4’ C2=0,D= 5 4,A= | _4,

() a3}

The necessary conditions for the solution of the problem stated in Eq. (E1) can be
obtained, using Egs. (4.89)—(4.96), as
—4—-0,+2x; —2x,+24,+ 4, =0
0-0,—2x;+4x,+ A, —44,=0
26, +x, -6 ==Y,
x—4x,-0=-Y, (E2)

X, >0,x,>0,Y,>0,Y,>0,4, >0,

4y >0,0,>0,0,>0 (E3)

MY, =0, 0,x, =0
(If Y; is in the basis, 4; cannot be in the basis, and if X; is in the basis, Hj cannot be
in the basis to satisfy these equations.) Equation (E2) can be rewritten as
2x1—2XQ+ZA]+AZ—01+Z]=4
2x1 + X2 + Yl = 6
X, — 4%, +Y,=0 (ES)
where z; and z, are artificial variables. To find a feasible solution to Eqgs. (E2)—(E4)

by using phase I of simplex method, we minimize w = z; + z, with constraints stated
in Egs. (ES), (E3), and (E4). The initial simplex tableau is shown below:

Basic Variables Ei /a,
variables X, X, A A 6, 6, Y Y, zy zb w b fora,>0
Y, 2 1 0 0 0 O 1 0 0 0 0 6 6
Y, 1 4 0 0 0 O 0O 1 0 0 0 O
7 2 -2 2 1 -1 0 0 0 1 0 0 4
2 -2 I =4 0 -1 0 0 0 1 0 0 O<Smaller
one
—-w 0 -2 -3 3 1 1 O 0 0 o 1 -4
x, selected for 1 1

entering next basis Most negative
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According to the regular procedure of simplex method, 4, enters the next basis
since the cost coefficient of 4, is most negative and z, leaves the basis since the ratio
b;/a;, is smaller for z,. However, A, cannot enter the basis, as Y, is already in the basis
[to satisfy Eq. (E4)]. Hence, we select x, for entering the next basis. According to this
choice, z, leaves the basis. By carrying out the required pivot operation, we obtain the
following tableau:

Basic Variables Zi Ja,,
variables x;, x, A, A, 0, 0, Y, Y, zz z w b fora;>0
5 1 1 1 12
one
Y, -1 0 1 -4 0 -1 0 1 0 1 0 O
5 1 1
74 1 0 > - 1 -1 -3 0O 0 1 3 0 4 4
1 1 1 1
)C2 b 5 1 Z - 1 0 - Z 0 0 0 4_1 0 0
—w -1 0 -2 1 1 L0 0 0 L 1 -4
1 1
x; selected Most negative

to enter the basis

This table shows that A, has to enter the basis and Y, or x, has to leave the basis.
However, A, cannot enter the basis since Y, is already in the basis [to satisfy the
requirement of Eq. (E4)]. Hence x, is selected to enter the basis and this gives Y,
as the variable that leaves the basis. The pivot operation on the element % results in
the following tableau:

Basic Variables l_ai /a,
variables x;, x, A, 4, 0, 0, Y Y, zz z w b fora;>0
1 2 1 2 1 12
X1 1 0 _B g 0 R) g 0 0 _E 0 ?
9 18 9 2 9 12 8
13 7 3 2 3 8 18
24 0 0 ? —g -1 —g —g 0 1 g 0 g ? « Smaller
one
1 4 1 1 1 6
X o1 I - o -t L 00 o ¢ o6
13 7 3 2 2 8
1

Most negative

From this table we find that A; enters the basis (this can be permitted this time
since Y, is not in the basis) and z; leaves the basis. The necessary pivot operation
gives the following table:
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Basic Variables ~ Zi /a,
variables x;, x, A A, 6, 0, Y, Y, z 2 w b, fora,>0
LR

v o010 -5 55 5 05 [ 0g

—w 0 0 O 0 0 0 0 0 1 1 1 0

Since both the artificial variables z; and z, are driven out of the basis, the present
table gives the desired solution as x; = 2 X, = u Y,= ﬁ,/ll =2 (basic variables),
A, =0, Y, =0, 6, =0, 6, =0 (nonbasic variables). Thus, the solution of the original
quadratic programming problem is given by

x _ 32 « _ 14

88
X =3 X, =3 and Jin =G, X5) = -3

13

SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of a linear programming problem
using the interior point method is given in Example 17.3. Also, the MATLAB solu-
tion of a quadratic programming problem (given in Example 4.14) is presented as
Example 17.4.
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REVIEW QUESTIONS
4.1 Is the decomposition method efficient for all LP problems?
4.2 What is the scope of postoptimality analysis?
4.3 Why is Karmarkar’s method called an interior method?
4.4 What is the major difference between the simplex and Karmarkar methods?
4.5 State the form of LP problem required by Karmarkar’s method.
4.6 What are the advantages of the revised simplex method?
4.7 Match the following terms and descriptions:
(a) Karmarkar’s method Moves from one vertex to another
(b) Simplex method Interior point algorithm
(¢) Quadratic programming Phase I computations not required
(d) Dual simplex method Dantzig and Wolfe method
(e) Decomposition method Wolfe’s method
4.8 Answer true or false:

(a) The quadratic programming problem is a convex programming problem.
(b) It is immaterial whether a given LP problem is designated the primal or dual.

(¢) If the primal problem involves minimization of f subject to greater-than constraints,
its dual deals with the minimization of f subject to less-than constraints.

(d) If the primal problem has an unbounded solution, its dual will also have an
unbounded solution.

(e) The transportation problem can be solved by simplex method.
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4.9 Match the following in the context of duality theory:

PROBLEMS

(a) x,; is nonnegative ith constraint is of less-than or
x; is unrestricted equal-to type
Maximization type
(b) ith constraint is of equality type ith variable is unrestricted

(c) ith constraint is of greater-than or  ith variable is nonnegative
equal-to type
(d) Minimization type ith constraint is of equality type

Solve LP problems 4.1-4.3 by the revised simplex method.

4.1

4.2

4.3

4.4

4.5

4.6

Minimize f = —5x; + 2x, + 5x; — 3x,
subject to
2, +x,—x3=6
3x, +8x3+x, =7
x; >0, i=1to4
Maximize f = 15x; + 6x, + 9x; + 2x,
subject to
10x; + 5x, + 25x; + 3x4, < 50
12x) +4x, + 12x3 +x, < 48
Tx; + x4 <35
x; >0, i=1to4
Minimize f = 2x; + 3x, + 2x3 — x; + X5
subject to
3x; = 3x, +4x3+2x, —x5=0
X)Xy +x3+3x, +x5 =2
x; >0, i=12,...,5
Discuss the relationships between the regular simplex method and the revised simplex

method.

Solve the following LP problem graphically and by the revised simplex method:
Maximize [ =x,
subject to
X, +x, <0
—2x,=3x, <6
Xy, X, unrestricted in sign
Consider the following LP problem:

Minimize f = 3x; + x3 + 2x5
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subject to
X +x3—x, +x5=-1

Xy = 2x3 + 3%, + 205 = =2

x>0, i=1t05

Solve this problem using the dual simplex method.

4.7 Maximize f = 4x, + 2x,
subject to
X —2x,>22
X +2x,=38
x —x, <11

x; >0, x, unrestricted in sign

(a) Write the dual of this problem.
(b) Find the optimum solution of the dual.
(c) Verify the solution obtained in part (b) by solving the primal problem graphically.

4.8 A water resource system consisting of two reservoirs is shown in Figure 4.4. The flows
and storages are expressed in a consistent set of units. The following data are available:

Quantity Stream 1 (i=1) Stream 2 (i=2)
Capacity of reservoir i 9 7
Available release from 9 6
reservoir i
Capacity of channel 4 4
below reservoir i
Actual release from X Xy

reservoir i

The capacity of the main channel below the confluence of the two streams is 5 units. If the
benefit is equivalent to $2 x 10° and $3 x 10° per unit of water released from reservoirs

Stream 1

Reservoir 1

Stream 2
Channel 1
(x1)

Reservoir 2

Channel 2
(x2)

Irrigation
district 1

Irrigation
district 2

Main channel
(xy +x2)

Figure 4.4 Water resource system.
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1 and 2, respectively, determine the releases x; and x, from the reserovirs to maximize
the benefit. Solve this problem using duality theory.

4.9 Solve the following LP problem by the dual simplex method:
Minimize f = 2x; + 9x, + 24x; + 8x, + 5x5

subject to
X Xy + 2% — x5 — x5 =1

=2 X3+ X x5 —x; =2

x>0, i=1to7

4.10 Solve Problem 3.1 by solving its dual.

4.11 Show that neither the primal nor the dual of the problem
Maximize f = —x; + 2x,
subject to
—X; +x, £ -2
x—x <1
x>0, x, 20
has a feasible solution. Verify your result graphically.

4.12 Solve the following LP problem by decomposition principle, and verify your result by
solving it by the revised simplex method:

Maximize f = 8x; + 3x, + 8x; + 6x,
subject to

dx; + 3x, + x5 +3x4 < 16
dx; —x, +x3 <12

X +2x, <8

3x, +x, <10

2x3+3x, <9

dxy+x, <12

x>0, i=1to4

4.13 Apply the decomposition principle to the dual of the following problem and solve it:
Minimize f = 10x; + 2x, + 4x; + 8x, + x5
subject to
X +4x, —x; > 16
26 +x,+x; >4
3x; +x, +x5 28
X+ 2x, —x5 220

x>0, i=1t05
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4.15

4.16

4.17

4.18

4.19

4.20
4.21

4.22

4.23

4.24

4.25

4.26
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Express the dual of the following LP problem:

Maximize f = 2x; +x,

subject to
X =2x, 22
X +2x, =38
x —x, <11

x; >0, x, is unrestricted in sign

Find the effect of changing b= { 1;0%0} to { 1 180} in Example 4.5 using sensitivity anal-
120

ysis.

Find the effect of changing the cost coefficients ¢, and ¢, from —45 and —50 to —40 and
—60, respectively, in Example 4.5 using sensitivity analysis.

Find the effect of changing ¢, from —45 to —40 and ¢, from —100 to —90 in Example 4.5
using sensitivity analysis.

If a new product, E, which requires 10 minutes of work on lathe and 10 minutes of work
on milling machine per unit, with a profit of $120 per unit is available in Example 4.5,
determine whether it is worth manufacturing E.

A metallurgical company produces four products, A, B, C, and D, by using copper and
zinc as basic materials. The material requirements and the profit per unit of each of the
four products, and the maximum quantities of copper and zinc available are given below:

Product Maximum quantity
A B C D available
Copper (1b) 4 9 7 10 6000
Zinc (Ib) 2 1 3 20 4000
Profit per unit ($) 15 25 20 60

Find the number of units of the various products to be produced for maximizing the profit.
Solve Problems 4.20-4.28 using the data of Problem 4.19.

Find the effect of changing the profit per unit of product D to $30.

Find the effect of changing the profit per unit of product A to $10, and of product B to
$20.

Find the effect of changing the profit per unit of product B to $30 and of product C to
$25.

Find the effect of changing the available quantities of copper and zinc to 4000 and
6000 1b, respectively.

What is the effect of introducing a new product, E, which requires 6 1b of copper and 3 Ib
of zinc per unit if it brings a profit of $30 per unit?

Assume that products A, B, C, and D require, in addition to the stated amounts of copper
and zinc, 4, 3, 2 and 51b of nickel per unit, respectively. If the total quantity of nickel
available is 2000 Ib, in what way the original optimum solution is affected?

If product A requires 5 Ib of copper and 3 Ib of zinc (instead of 4 1b of copper and 2 1b of
zinc) per unit, find the change in the optimum solution.
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4.27

4.28

4.29

4.30
4.31
4.32
4.36

4.37

4.38

4.39

If product C requires 5 Ib of copper and 4 1b of zinc (instead of 7 Ib of copper and 3 1b of
zinc) per unit, find the change in the optimum solution.

If the available quantities of copper and zinc are changed to 8000 and 5000 Ib, respec-
tively, find the change in the optimum solution.

Solve the following LP problem:
Minimize f = 8x; —2x,
subject to
—4x, +2x, <1
Sx; —4x, <3
x 20, x>0

Investigate the change in the optimum solution of Problem 4.29 when the following
changes are made (a) by using sensitivity analysis and (b) by solving the new problem
graphically:

b =2 433 c¢,=—4

b,=4 434 a,;=-5

¢, =10 435 ay=-2

Perform one iteration of Karmarkar’s method for the LP problem:

Minimize f = 2x;, — 2x, + 5x3

subject to
X —x,=0

X +x+x=1
x>0, i=1,23
Perform one iteration of Karmarkar’s method for the following LP problem:
Minimize f = 3x; + 5x, — 3x;

subject to
X —x3=0

X +x,+x=1
x>0, i=1,2,3
Transform the following LP problem into the form required by Karmarkar’s method:
Minimize f = x; +x, + X3
subject to

X +x,—x;=4
3x,-x,=0

>0, i=1,2,3

A contractor has three sets of heavy construction equipment available at both New York
and Los Angeles. He has construction jobs in Seattle, Houston, and Detroit that require



4.40

441
4.42

Problems 221

New York

Los Angeles o

Figure 4.5 Shipping costs between cities.

two, three, and one set of equipment, respectively. The shipping costs per set between
cities 7 and j (¢;;) are shown in Figure 4.5. Formulate the problem of finding the shipping
pattern that minimizes the cost.

Minimize f(X) = 3x7 + 2x3 + 5x] — 4x,x, — 2x,x3 — 2x,x3 — 2%,
subject to

3x, +5x, +2x; > 10
3x; + 5x3 <15
x>0, i=1,23

by quadratic programming.
Find the solution of the quadratic programming problem stated in Example 1.5.

According to elastic—plastic theory, a frame structure fails (collapses) due to the forma-
tion of a plastic hinge mechanism. The various possible mechanisms in which a portal
frame (Figure 4.6) can fail are shown in Figure 4.7. The reserve strengths of the frame in
various failure mechanisms (Z;) can be expressed in terms of the plastic moment capac-
ities of the hinges as indicated in Figure 4.7. Assuming that the cost of the frame is
proportional to 200 times each of the moment capacities M, M,, M, and M, and 100
times each of the moment capacities M;, M,, and My, formulate the problem of mini-
mizing the total cost to ensure nonzero reserve strength in each failure mechanism. Also,
suggest a suitable technique for solving the problem. Assume that the moment capaci-
ties are restricted as 0 <M; <2 X 10°1b-in., i=1, 2,..., 7. Data: x=100in., y=1501in.,
P, =10001b., and P, =5001b.

Py

3 5

Py ——»

Figure 4.6 Plastic hinges in a frame.
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[~]

Zl=M3+2M4+M5—XP1 ZZ=M2+2M4+M6—xP1 Z3=M2+2M4+M5—XP1
(a) (b) (o)

!

Z4=M3+2M4+M6—)CP1 ZS=M1+M2+M6+M7—yP2 Z()=M]+M3+M5+M7—yP2
(d) () N
Z7=M1+M3+M6+M7—yP2 Zg=M1+M2+M5+M7—yP2 Z9=M1+2M4+2M6+M7

— XPl — yP2
8 (h (@)

[ ]

ZlO=M1 +2M4+2M5 +M7
7XP17yP2

()
Figure 4.7 Possible failure mechanisms of a portal frame.

4.43 Solve the LP problem stated in Problem 4.9 using MATLAB (interior method).
4.44 Solve the LP problem stated in Problem 4.12 using MATLAB (interior method).
4.45 Solve the LP problem stated in Problem 4.13 using MATLAB (interior method).
4.46 Solve the LP problem stated in Problem 4.36 using MATLAB (interior method).
4.47 Solve the LP problem stated in Problem 4.37 using MATLAB (interior method).
4.48 Solve the following quadratic programming problem using MATLAB:

. . _ 2
Maximize f = 2x; +x, — x|

subjectto 2x; +3x, <6, 2x; +x, <4,x, 20,x, >0

4.49 Solve the following quadratic programming problem using MATLAB:
Maximize f = 4x; + 6x, — x7 — X

subjectto x; +x, <2,x, >0, x, >0



Problems
4.50 Solve the following quadratic programming problem using MATLAB:
Minimize f = (x; — 1> +x, =2

subjectto —x;+x,—1=0,x,+x,-2<0,x, 20, x,>0

4.51 Solve the following quadratic programming problem using MATLAB:
Minimize f = x? +x] — 3x,x, — 6x + 5x,

subjectto x; +x, <4, 3x; +6x, <20, x, >0, x, >0
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Nonlinear Programming I:
One-Dimensional Minimization
Methods

5.1 INTRODUCTION

In Chapter 2 we saw that if the expressions for the objective function and the con-
straints are fairly simple in terms of the design variables, the classical methods of
optimization can be used to solve the problem. On the other hand, if the optimiza-
tion problem involves the objective function and/or constraints that are not stated as
explicit functions of the design variables or which are too complicated to manipulate,
we cannot solve it by using the classical analytical methods. The following example is
given to illustrate a case where the constraints cannot be stated as explicit functions of
the design variables. Example 5.2 illustrates a case where the objective function is a
complicated one for which the classical methods of optimization are difficult to apply.

Example 5.1 Formulate the problem of designing the planar truss shown in
Figure 5.1 for minimum weight subject to the constraint that the displacement of any
node, in either the vertical or the horizontal direction, should not exceed a value 6.

SOLUTION Let the density p and Young’s modulus E of the material, the length
of the members /, and the external loads Q, R, and S be known as design data. Let

the member areas A, A,, ..., A;; be taken as the design variables x;, x,, ..., x;;,
respectively. The equations of equilibrium can be derived in terms of the unknown
nodal displacements u,, u,, ..., u;, as' (the displacements u,,, u,,, u,3, and u,, are

! According to the matrix methods of structural analysis, the equilibrium equations for the jth member are
given by [5.1]

(kjJu; = P;

4x4 4x1 4x1

where the stiffness matrix can be expressed as

cosZOj cos 9/ sin 0/. —00529j —cos Gj sin Gj
k] AE | cos 6, sin 6; sin20j —cos 6, sin 6, —sin20j
i l; —coszﬁj —cos §; sin 6 —cosZHj cos 6, sin 6,
’ : 2 : )
cos Gj sin 0/. sin ‘9/ cos Hj sin Hj sin 9/

where 6, is the inclination of the jth member with respect to the x-axis, A; the cross-sectional area of the
Jjth member, /; the length of the jth member, u; the vector of displacements for the jth member, and P, the
vector of loads for the jth member. The formulation of the equilibrium equations for the complete truss
follows fairly standard procedure [5.1].

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization
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Figure 5.1 Planar truss: (a) nodal and member numbers; (b) nodal degrees of freedom.

zero, as they correspond to the fixed nodes)

(4x4 + xg + x7)uy + \/§(x6 — XUy — 4x4u3 — X7u7 + V3x7u5 =0 (E1)

\/5()(6 —xpuy + 3(xg + x7)uy + \/§x7u7 — 3x7ug = —% (E2)

\/§(x8 — Xo)u3 + 3(xg + Xg)uty — \/§x8u7 (E3)

\/g(xs — Xo)uz + 3(xg + xo)uy — \/§x8u7 — 3xgug + \/gxgug = 3xu1p =0 (E4)
401

—Axsusy + (4xs + x;0 + xq)us + \/g(xm — X Dlg — Xjoly — \/gxloum = ?Q (E5)

\/g(xlo - xll)us + 3(x10 +x11)u6 - \/gxloug - 3x10u10 = O (E6)

— X7Uy + V3x7uy — XgUz — \/§x8u4 + (4x; +4x,
+ 3, + xuy — V30, — xg)ug — Axyug = 0 (E7)
\/§x7u1 — 3xqu, — \/§x8u3 — 3xguy — \/g(x7 — xg)u; +3(x; +xg)ug =0 (E8)

— Xolt3 + \/§x9u4 — XjoUs — \/gxlouG — 4dx,yu,

+ (4, + 4y + Xo + X10)itg — V3 — X;0)tyg = 0 (E9)

\/5)(9“3 - SXQM4 - \/gxlous - 3)610146 - \/E(XQ - xlo)ug + 3(.X9 + xlo)ulo
451
— ¢ E10
£ (E10)
It is important to note that an explicit closed-form solution cannot be obtained
for the displacements as the number of equations becomes large. However, given any
vector X, the system of Eqgs. (E1)-(E10) can be solved numerically to find the nodal
displacement u,, u,, ..., uq.
The optimization problem can be stated as follows:

11
Minimize f(X) = )" px; (E11)

i=1
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subject to the constraints
gX) = (X)| -6<0, j=12...10 (E12)
x>0, i=12,...,11 (E13)

The objective function of this problem is a straightforward function of the design
variables as given in Eq. (E11). The constraints, although written by the abstract
expressions g; (X), cannot easily be written as explicit functions of the components
of X. However, given any vector X we can calculate g(X) numerically. Many
engineering design problems possess this characteristic (i.e. the objective and/or the
constraints cannot be written explicitly in terms of the design variables). In such
cases we need to use the numerical methods of optimization for solution.

Example 5.2 The shear stress induced along the z-axis when two spheres are in con-
tact with each other is given by

o _ 1 3 —(1+v) {1 — Ztan™! <1>} (E1)
pmax 2 2 a z
2{1+<§) } a

where a is the radius of the contact area and p,,,,, is the maximum pressure developed
at the center of the contact area (Figure 5.2):

1
) P
a={En 5 (E2)
8§ L, 1
d] dZ
3F )

pmax = 27[a2

where F is the contact force, E; and E, are Young’s moduli of the two spheres, v, and
v, are Poisson’s ratios of the two spheres (if v; = v, v can be used as in Eq. (E1)),
and d, and d, the diameters of the two spheres. In many practical applications, such
as ball bearings, when the contact load (F) is large, a crack originates at the point of
maximum shear stress and propagates to the surface, leading to a fatigue failure. To
locate the origin of a crack, it is necessary to find the point at which the shear stress
attains its maximum value. Formulate the problem of finding the location of maximum
shear stress forv=v,; =v, =0.3.

SOLUTION For v, = v, = 0.3, Eq. (E1) reduces to

0.75 1
A) = + 0.654t - —0.65 E4
fh = an”'~ (E4)

where f=7_/p.. and A = z/a. Since Eq. (E4) is a nonlinear function of the distance,
4, the application of the necessary condition for the maximum of f, df/dA = 0, gives
rise to a nonlinear equation from which a closed-form solution for A* cannot easily be
obtained. In such cases, numerical methods of optimization can be conveniently used
to find the value of A".
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F

PmﬂX
l

Contact area

Figure 5.2 Contact stress between two spheres.

The basic philosophy of most of the numerical methods of optimization is to
produce a sequence of improved approximations to the optimum according to the
following scheme:

1. Start with an initial trial point X.

2. Find a suitable direction S; (i = 1 to start with) that points in the general direc-
tion of the optimum.

3. Find an appropriate step length A7 for movement along the direction S;.
4. Obtain the new approximation X;, ; as

X1 =X; + 4S; 5.1

5. Test whether X, | is optimum. If X, | is optimum, stop the procedure. Other-
wise, set anew i =i + | and repeat step (2) onward.

The iterative procedure indicated by Eq. (5.1) is valid for unconstrained as well
as constrained optimization problems. The procedure is represented graphically for a
hypothetical two-variable problem in Figure 5.3. Equation (5.1) indicates that the effi-
ciency of an optimization method depends on the efficiency with which the quantities
A} and S; are determined. The methods of finding the step length A7 are considered in
this chapter and the methods of finding S; are considered in Chapters 6 and 7.

If £ (X) is the objective function to be minimized, the problem of determining A*
reduces to finding the value 4; = A7 that minimizes f(X;,;) = f (X; +4;S;) = f (1))
for fixed values of X; and S;. Since f becomes a function of one variable A, only, the
methods of finding 7 in Eq. (5.1) are called one-dimensional minimization methods.
Several methods are available for solving a one-dimensional minimization problem.
These can be classified as shown in Table 5.1.
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S, X;
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= X1
Figure 5.3 Iterative process of optimization.
Table 5.1 One-dimensional Minimization Methods.
Analytical methods Numerical methods
(differential calculus methods) | l |
Elimination Interpolation
methods methods
Unrestricted .. ..
Requiring no Requiring
search .. S
derivatives derivatives
Exhaustive search (quadratic) Cl‘lblc
. Direct root
Dichotomous
search
Fibonacci method
. Newton
Golden section Quasi
method
Newton
Secant

We saw in Chapter 2 that the differential calculus method of optimization is an
analytical approach and is applicable to continuous, twice-differentiable functions. In
this method, calculation of the numerical value of the objective function is virtually the
last step of the process. The optimal value of the objective function is calculated after
determining the optimal values of the decision variables. In the numerical methods
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of optimization, an opposite procedure is followed in that the values of the objective
function are first found at various combinations of the decision variables and conclu-
sions are then drawn regarding the optimal solution. The elimination methods can be
used for the minimization of even discontinuous functions. The quadratic and cubic
interpolation methods involve polynomial approximations to the given function. The
direct root methods are root finding methods that can be considered to be equivalent
to quadratic interpolation.

5.2 UNIMODAL FUNCTION

A unimodal function is one that has only one peak (maximum) or valley (minimum)
in a given interval. Thus a function of one variable is said to be unimodal if, given
that two values of the variable are on the same side of the optimum, the one nearer
the optimum gives the better functional value (i.e. the smaller value in the case of a
minimization problem). This can be stated mathematically as follows:

A function f (x) is unimodal if (i) x; <x, <x" implies that f (x,) <f (x,),
and (ii) x, > x; >x" implies that f (x,;) <f (x,), where x" is the minimum
point.

Some examples of unimodal functions are shown in Figure 5.4. Thus a unimodal
function can be a nondifferentiable or even a discontinuous function. If a function is
known to be unimodal in a given range, the interval in which the minimum lies can be
narrowed down provided that the function values are known at two different points in
the range.

For example, consider the normalized interval [0, 1] and two function evaluations
within the interval as shown in Figure 5.5. There are three possible outcomes, namely,
fi <fo fi > 1o, or fi = f,. If the outcome is that f; <f,, the minimizing x cannot lie
to the right of x,. Thus, that part of the interval [x,, 1] can be discarded and a new
smaller interval of uncertainty, [0, x,], results as shown in Figure 5.5a. If f(x;) > f (x,),
the interval [0, x,] can be discarded to obtain a new smaller interval of uncertainty,
[x,, 1] (Figure 5.5b), while if f (x;) = f (x,), intervals [0, x,] and [x,, 1] can both be
discarded to obtain the new interval of uncertainty as [x;, x,] (Figure 5.5¢). Further,
if one of the original experiments? remains within the new interval, as will be the
situation in Figure 5.5a,b, only one other experiment need be placed within the new

Jx) S fx)

i 3

|
|
|
I

-~ X

S

Q o o o ——
R ——————
[OrF [

Q —— ——

a 1 *

(@) (b) (o)

Figure 5.4 Unimodal function.

2Each function evaluation is termed as an experiment or a trial in the elimination methods.
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Figure 5.5 Outcome of first two experiments: (a) f; <f,; (b) f; >f5; (©) f; = /5.

interval in order that the process be repeated. In situations such as Figure 5.5¢c, two
more experiments are to be placed in the new interval in order to find a reduced
interval of uncertainty.

The assumption of unimodality is made in all the elimination techniques. If a
function is known to be multimodal (i.e. having several valleys or peaks), the range of
the function can be subdivided into several parts and the function treated as a unimodal
function in each part.

Elimination Methods

5.3 UNRESTRICTED SEARCH

In most practical problems, the optimum solution is known to lie within restricted
ranges of the design variables. In some cases this range is not known, and hence the
search has to be made with no restrictions on the values of the variables.

5.3.1 Search with Fixed Step Size

The most elementary approach for such a problem is to use a fixed step size and move
from an initial guess point in a favorable direction (positive or negative). The step size
used must be small in relation to the final accuracy desired. Although this method is
very simple to implement, it is not efficient in many cases. This method is described
in the following steps:

. Start with an initial guess point, say, x;.
. Find f; =f(x)).

. Assuming a step size s, find x, = x; + s.

Find f, = f (x,).

. If f, <f}, and if the problem is one of minimization, the assumption of uni-
modality indicates that the desired minimum cannot lie at x <x;. Hence the
search can be continued further along points x3, x4, ... using the unimodality
assumption while testing each pair of experiments. This procedure is continued
until a point, x; = x; + (i — 1)s, shows an increase in the function value.

N AWK =

6. The search is terminated at x;, and either x;_; or x; can be taken as the optimum
point.

7. Originally, if f, > f;, the search should be carried in the reverse direction at
points x_,, X_s, ..., where X_j=x — G —1)s.
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8. If f, = f}, the desired minimum lies in between x; and x,, and the minimum
point can be taken as either x; or x,.

9. If it happens that both f, and f_, are greater than f}, it implies that the desired
minimum will lie in the double interval x_, <x <x,.

5.3.2 Search with Accelerated Step Size

Although the search with a fixed step size appears to be very simple, its major limi-
tation comes because of the unrestricted nature of the region in which the minimum
can lie. For example, if the minimum point for a particular function happens to be
Xopt = 50000 and, in the absence of knowledge about the location of the minimum,
if x; and s are chosen as 0.0 and 0.1, respectively, we have to evaluate the function
5000001 times to find the minimum point. This involves a large amount of compu-
tational work. An obvious improvement can be achieved by increasing the step size
gradually until the minimum point is bracketed. A simple method consists of doubling
the step size as long as the move results in an improvement of the objective function.
Several other improvements of this method can be developed. One possibility is to
reduce the step length after bracketing the optimum in (x;_;, x;). By starting either
from x;_, or x;, the basic procedure can be applied with a reduced step size. This pro-
cedure can be repeated until the bracketed interval becomes sufficiently small. The
following example illustrates the search method with accelerated step size.

Example 5.3 Find the minimum of f = x (x — 1.5) by starting from 0.0 with an initial
step size of 0.05.

SOLUTION The function value at x; is f; = 0.0. If we try to start moving in the
negative x direction, we find that x_, = —0.05 and f_, = 0.0775. Since f_, > f, the
assumption of unimodality indicates that the minimum cannot lie toward the left of
X_,. Thus we start moving in the positive x direction and obtain the following results:

i Value of s X;=x +s fi=f) Isf, >fi_,?
1 — 0.0 0.0 —
2 0.05 0.05 —-0.0725 No
3 0.10 0.10 —-0.140 No
4 0.20 0.20 —-0.260 No
5 0.40 0.40 —-0.440 No
6 0.80 0.80 -0.560 No
7 1.60 1.60 +0.160 Yes

From these results, the optimum point can be seen to be x,,,, # x; = 0.8. In this case, the
points x¢ and x; do not really bracket the minimum point but provide information about it.
If a better approximation to the minimum is desired, the procedure can be restarted from x
with a smaller step size.

5.4 EXHAUSTIVE SEARCH

The exhaustive search method can be used to solve problems where the interval in
which the optimum is known to lie is finite. Let x; and x; denote, respectively, the
starting and final points of the interval of uncertainty.? The exhaustive search method

3Since the interval (xs, xf), but not the exact location of the optimum in this interval, is known to us, the
interval (x,, xp) is called the interval of uncertainty.
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1 | 1
Xg X1 X2 X3 X4 X5 X6 X7 Xg Xf

Figure 5.6 Exhaustive search.

consists of evaluating the objective function at a predetermined number of equally
spaced points in the interval (x,, xf), and reducing the interval of uncertainty using the
assumption of unimodality. Suppose that a function is defined on the interval (x,, x,)
and let it be evaluated at eight equally spaced interior points x; to xg. Assuming that the
function values appear as shown in Figure 5.6, the minimum point must lie, according
to the assumption of unimodality, between points x5 and x,. Thus the interval (x5, x;)
can be considered as the final interval of uncertainty.

In general, if the function is evaluated at n equally spaced points in the original
interval of uncertainty of length L, = x;— x,, and if the optimum value of the function
(among the n function values) turns out to be at point x;, the final interval of uncertainty
is given by )
n+ 1L0

Ln =Xy X = (5.2)

The final interval of uncertainty obtainable for different number of trials in the
exhaustive search method is given below:

Number of trials 2 3 4 5 6 ... n
L,/L, 2/3 2/4 2/5 2/6 2/7 ... 2/(n+1)

Since the function is evaluated at all n points simultaneously, this method can be
called a simultaneous search method. This method is relatively inefficient compared
to the sequential search methods discussed next, where the information gained from
the initial trials is used in placing the subsequent experiments.

Example 5.4 Find the minimum of f= x(x — 1.5) in the interval (0.0, 1.00) to within
10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken as the
approximate optimum point, the maximum deviation could be 1/(n + 1) times the ini-
tial interval of uncertainty. Thus to find the optimum within 10% of the exact value,

we should have ! !
<— or n>9
n+1 10

By taking n = 9, the following function values can be calculated:

i 1 2 3 4 5 6 7 8 9
X; 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

fi=f(&) =014 -026 -036 -044 -050 -054 -0.56 -056 —0.54
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Since x; = xg, the assumption of unimodality gives the final interval of uncertainty
as Ly = (0.7, 0.8). By taking the middle point of L, (i.e. 0.75) as an approximation to
the optimum point, we find that it is, in fact, the true optimum point.

5.5 DICHOTOMOUS SEARCH

The exhaustive search method is a simultaneous search method in which all the
experiments are conducted before any judgment is made regarding the location of
the optimum point. The dichotomous search method, as well as the Fibonacci and the
golden section methods discussed in subsequent sections, are sequential search meth-
ods in which the result of any experiment influences the location of the subsequent
experiment.

In the dichotomous search, two experiments are placed as close as possible at
the center of the interval of uncertainty. Based on the relative values of the objective
function at the two points, almost half of the interval of uncertainty is eliminated. Let
the positions of the two experiments be given by (Figure 5.7)

)
72 2
Ly 6

= — 4+ —

)

where 6 is a small positive number chosen so that the two experiments give signifi-
cantly different results. Then the new interval of uncertainty is given by (Ly/2 + 6/2).
The building block of dichotomous search consists of conducting a pair of experiments
at the center of the current interval of uncertainty. The next pair of experiments is,
therefore, conducted at the center of the remaining interval of uncertainty. This results
in the reduction of the interval of uncertainty by nearly a factor of 2. The intervals
of uncertainty at the end of different pairs of experiments are given in the following

table:
Number of experiments 2 4 6

inal i i 1 1 (Loté [ 1(Lté 6 [
Final interval of uncertainty 5Ly +6) > < > ) +3 > ( =+ 2) + 3

In general, the final interval of uncertainty after conducting n experiments (n even)

is given by
L
L=—24s5(1--1 (5.3)
2n/2 2)1/2
)
fi

e ]
Xg X1 X2 Xf

12 [wolee] 572
| -

Lo/2

|
Ly !

Figure 5.7 Dichotomous search.



5.5 Dichotomous Search 235

The following example is given to illustrate the method of search.

Example 5.5 Find the minimum of f = x(x — 1.5) in the interval (0.0, 1.00) to within
10% of the exact value.

SOLUTION The ratio of final to initial intervals of uncertainty is given by

(from Egq. (5.3))
L, 1 ) 1
—_ = 4 = 1 -
LO 2n/2 LO 2n/2

where 6 is a small quantity, say 0.001, and »n is the number of experiments. If the
middle point of the final interval is taken as the optimum point, the requirement can
be stated as

2L, ~ 10

1 o 1 1
+—(1- < -
22 Lo( 2"/2>_5

Since 6 = 0.001 and L, = 1.0, we have

1L 1\ _1
— (1= < -
72 1000 ( 2n/2> =5

999 1 _ 995 iy 999
1000 2772 = 5000 199

L
1_”<1

i.e.

i.e.

5.0

Since n has to be even, this inequality gives the minimum admissible value of n
as 6.

The search is made as follows. The first two experiments are made at

L
x =229 0500005 = 04995
2 2
L
X, = ?0 + g = 0.5 4 0.0005 = 0.5005

with the function values given by

fi =f(x,) = 0.4995(—1.0005) ~ —0.49957
f, = f(x,) = 0.5005(=0.9995) ~ —0.50025

Since f, <f;, the new interval of uncertainty will be (0.4995, 1.0). The second
pair of experiments is conducted at

X = (0.4995 + 1.0—0.4995)

—0.0005 = 0.74925

X = (0.4995 + w)

+ 0.0005 = 0.75025
which give the function values as

f3 =f(x3) = 0.74925(-0.75075) = —0.5624994375
Jfa =f(xy) =0.75025(-0.74975) = —0.5624999375
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Since f; > f;, we delete (0.4995, x5) and obtain the new interval of uncertainty as
(x3,1.0) = (0.74925,1.0)

The final set of experiments (will be conducted at)

—0.0005 = 0.874125

xs = (0.74925 + 1.0 — 0.74925 )

+0.0005 = 0.875125

g = (0.74925 + 1.0 — 0.74925 )

The corresponding function values are

fs = f(xs) = 0.874125(—0.625875) = —0.5470929844
fs = f(xg) = 0.875125(—0.624875) = —0.5468437342

Since f5 <fq, the new interval of uncertainty is given by (x3, x5) = (0.749 25,
0.875 125). The middle point of this interval can be taken as optimum, and hence

Xon = 0.8121875 and f,, ~ —0.5586327148

5.6 INTERVAL HALVING METHOD

In the interval halving method, exactly one-half of the current interval of uncertainty
is deleted in every stage. It requires three experiments in the first stage and two exper-
iments in each subsequent stage. The procedure can be described by the following
steps:

1. Divide the initial interval of uncertainty L, =[a, b] into four equal parts and
label the middle point x;, and the quarter-interval points x; and x,.
2. Evaluate the function f (x) at the three interior points to obtain f; = f (x,), fo =f
(xp), and f = f (x,).
3. (a) If f; > f, > f; as shown in Figure 5.8a, delete the interval (x,, b), label x,
and x, as the new x, and b, respectively, and go to step 4.
(b) If f, <fy <f, as shown in Figure 5.8b, delete the interval (a, x,), label x,
and x, as the new x, and a, respectively, and go to step 4.
(c) Iff, > f, and f, > f, as shown in Figure 5.8c, delete both the intervals (a, x,)

and (x,, b), label x; and x, as the new a and b, respectively, and go to step
4.

4. Test whether the new interval of uncertainty, L = b — a, satisfies the conver-
gence criterion L < €, where € is a small quantity. If the convergence criterion
is satisfied, stop the procedure. Otherwise, set the new L, = L and go to step1.

Remarks:

1. In this method, the function value at the middle point of the interval of uncer-
tainty, f;, will be available in all the stages except the first stage.
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2. The interval of uncertainty remaining at the end of n experiments (n > 3 and
odd) is given by
1\ @-D/2
L=(3)

Example 5.6 Find the minimum of f = x(x — 1.5) in the interval (0.0, 1.0) to within
10% of the exact value.

(5.4)

237
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SOLUTION If the middle point of the final interval of uncertainty is taken as the
optimum point, the specified accuracy can be achieved if

L (n=1)/2 L,
<2 oo (3) T rs ED)
2 10 2 5
Since L, = 1, Eq. (E1) gives
1 1
<1 n=1/2
20-D/2 = 5 or 2 25 (E2)

Since n has to be odd, inequality (E2) gives the minimum permissible value of
n as 7. With this value of n = 7, the search is conducted as follows. The first three
experiments are placed at one-fourth points of the interval Ly = [a =0, b = 1] as

x, =025 f =025-1.25)=-03125
Xy =050, f,=0.50(~1.00) = —0.5000
x, =075, f,=0.75(~0.75) = —0.5625

Since f; > f, > f,, we delete the interval (a, x,) = (0.0, 0.5), label x, and x, as the
new x, and a so that a = 0.5, x, = 0.75, and b = 1.0. By dividing the new interval of
uncertainty, L; = (0.5, 1.0) into four equal parts, we obtain

x; =0.625, f; =0.625(-0.875) = —0.546875
xo = 0.750, f, =0.750(-0.750) = —0.562500
x, =0.875, f, =0.875(-0.625) = —0.546875

Since f; > f, and f, > f,, we delete both the intervals (a, x;) and (x,, b), and label
Xy, X, and x, as the new a, x,, and b, respectively. Thus the new interval of uncer-
tainty will be Ly = (0.625, 0.875). Next, this interval is divided into four equal parts to
obtain

x; =0.6875, f; =0.6875(-0.8125) = —0.558594
xo = 0.75, Jo = 0.75(=0.75) = —0.5625
x, =0.8125, f, =0.8125(-0.6875) = —0.558594

Again we note that f; > f, and f, > f; and hence we delete both the intervals (a, x;)
and (x,, b) to obtain the new interval of uncertainty as L, = (0.6875, 0.8125). By taking
the middle point of this interval (L,) as optimum, we obtain

Xopt ©# 0.75 and  f,, ~ —0.5625

(This solution happens to be the exact solution in this case.)

5.7 FIBONACCI METHOD

As stated earlier, the Fibonacci method can be used to find the minimum of a function
of one variable even if the function is not continuous. This method, like many other
elimination methods, has the following limitations:

1. The initial interval of uncertainty, in which the optimum lies, has to be known.

2. The function being optimized has to be unimodal in the initial interval of
uncertainty.
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3. The exact optimum cannot be located in this method. Only an interval known as
the final interval of uncertainty will be known. The final interval of uncertainty
can be made as small as desired by using more computations.

4. The number of function evaluations to be used in the search or the resolution
required has to be specified beforehand.

This method makes use of the sequence of Fibonacci numbers, {F, }, for placing
the experiments. These numbers are defined as

Fy=F =1
Fn=Fn—l+Fn—2’ n=2734,...

which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ....

Procedure. Let L, be the initial interval of uncertainty defined by a <x<b and n
be the total number of experiments to be conducted. Define

* Fn—2
Ly = ——L (5.5)

n

and place the first two experiments at points x; and x,, which are located at a distance
of L; from each end of L,.* This gives®

xy=a+Lli=a+ F"_zLo
Fn
F F
Xxy=b—Li=b- ;ﬁb=a+;fLo (5.6)

Discard part of the interval by using the unimodality assumption. Then there
remains a smaller interval of uncertainty L, given by®

F

n

L, =1 1ﬁ—L<1 ﬂﬁ)—ﬂﬂt 5.7
p=ro T =o |\ 1T - 0 -7

n

and with one experiment left in it. This experiment will be at a distance of

% Fn—2 Fn—2
L2 Fn LO = Fn_l L2 (5.8)
from one end and
* __ Fn—3 _ Fn—3
L,-L}= Ly, = 7 L, 5.9

4If an experiment is located at a distance of (F,_,/F,) L, from one end, it will be at a distance of (F,_,/F,)
L, from the other end. Thus L} = (F,_,/F,) L, will yield the same result as with L} = (F, _,/F,) L.

31t can be seen that -
L= ”_ZLoleo for n>2
F, 2

6The symbol L. is used to denote the interval of uncertainty remaining after conducting j experiments, while
the symbol Lj’.* is used to define the position of the jth experiment.
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from the other end. Now place the third experiment in the interval L, so that the current
two experiments are located at a distance of

[y = (5.10)
= 0= 2 .
3 Fn Fn—l

from each end of the interval L,. Again the unimodality property will allow us to
reduce the interval of uncertainty to L; given by

% Fn—3 Fn—2 Fn—2
n—1 n—1 n

This process of discarding a certain interval and placing a new experiment in the
remaining interval can be continued, so that the location of the jth experiment and the
interval of uncertainty at the end of j experiments are, respectively, given by

F_.
L= — L, (5.12)
’ Fn—(j—Z)
Fogo1)
L= ———1L, (5.13)

n

The ratio of the interval of uncertainty remaining after conducting j of the n pre-
determined experiments to the initial interval of uncertainty becomes

L _Feion (5.14)
L, F,

and for j = n, we obtain
L_F_1 515
LO Fn Fn '

The ratio L,/L, will permit us to determine n, the required number of experi-
ments, to achieve any desired accuracy in locating the optimum point. Table 5.2 gives
the reduction ratio in the interval of uncertainty obtainable for different number of
experiments.

Position of the Final Experiment. In this method the last experiment has to be placed
with some care. Equation (5.12) gives

L, _Fy
L, F,

=% for all n (5.16)

n—1

Thus after conducting n — 1 experiments and discarding the appropriate interval
in each step, the remaining interval will contain one experiment precisely at its mid-
dle point. However, the final experiment, namely, the nth experiment, is also to be
placed at the center of the present interval of uncertainty. That is, the position of the
nth experiment will be same as that of (n — 1)th one, and this is true for whatever
value we choose for n. Since no new information can be gained by placing the nth
experiment exactly at the same location as that of the (n — 1)th experiment, we place
the nth experiment very close to the remaining valid experiment, as in the case of the
dichotomous search method. This enables us to obtain the final interval of uncertainty
to within %Ln_ 1- A flowchart for implementing the Fibonacci method of minimization
is given in Figure 5.9.
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Table 5.2 Reduction Ratios.

Value of n Fibonacci number, F), Reduction ratio, L, /L,

0 1 1.0

1 1 1.0

2 2 0.5

3 3 0.3333

4 5 0.2

5 8 0.1250

6 13 0.076 92

7 21 0.047 62

8 34 0.02941

9 55 0.018 18
10 89 0.01124
11 144 0.006 944
12 233 0.004 292
13 377 0.002 653
14 610 0.001 639
15 987 0.001013
16 1597 0.000 6406
17 2584 0.0003870
18 4181 0.0002392
19 6765 0.000 1479
20 10946 0.000091 35

Example 5.7 Minimize f (x) = 0.65 — [0.75/(1 + x*)] — 0.65x tan~!(1/x) in the inter-
val [0, 3] by the Fibonacci method using n = 6. (Note that this objective is equivalent
to the one stated in Example 5.2.)

SOLUTION Here n =6 and L, = 3.0, which yield

=ty i(3 0) = 1.153846
R ke '

Thus, the positions of the first two experiments are given by x; = 1.153 846
and x, = 3.0-1.153846 = 1.846154 with f; = f (x;) = —0.207270 and
5 =f (x,) = —0.115843. Since f; is less than f,, we can delete the interval [x,,
3.0] by using the unimodality assumption (Figure 5.10a). The third experiment
is placed at x; = 0+ (x, —x;) = 1.846154 -1.153846 = 0.692308, with the
corresponding function value of f; = —0.291 364.

Since f; >f;, we delete the interval [x;, x,] (Figure 5.10b). The next exper-
iment is located at x, = 04 (x; —x;) = 1.153846 —-0.692308 = 0.461538 with
f1=-—0.309 811. Nothing that f; < f;, we delete the interval [x3, x,] (Figure 5.10c). The
location of the next experiment can be obtained as x5 = 0+ (x; —x,;) = 0.692 308 —
0.461538 = 0.230770 with the corresponding objective function value of
f5s = —0.263 678. Since f5 > f,, we delete the interval [0, x5] (Figure 5.10d). The final
experiment is positioned at xg = x5 + (x3 —x4) = 0.230770 4 (0.692 308 — 0.461 538)
= 0.461 540 with fg = —0.309810. (Note that, theoretically, the value of x4 should
be same as that of x,; however, it is slightly different from x,, due to round-off
error).

Since f; > f,, we delete the interval [x;, x3] and obtain the final interval of uncer-
tainty as Lg = [x5, x4] = [0.230 770, 0.461 540] (Figure 5.10e). The ratio of the final
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Figure 5.9 Flowchart for implementing Fibonacci search method.

to the initial interval of uncertainty is

L _ 0.461540 — 0.230770

= = 0.076923
L, 3.0

This value can be compared with Eq. (5.15), which states that if n experiments
(n = 6) are planned, a resolution no finer than 1/F, = 1/Fg = 1—13 = 0.076 923 can be
expected from the method.
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J)
L2 !
x;=1.153846 x,=1.846154 3
0 * 1 . X
XXXXXXXX
f>=-0.115843
f1=-0.207270
(a) fi <f>:delete [x,, 3.0]
Jfx)

4————___L3

x3=0.692308 x;=1.153846 x,=1.846154

0 * ® X
XXXXXXXXX
f,=-0.207270
f3=-0.291364
(b) fl >f3; delete [)Cl, )Cz]
S
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0 * ° . X
XXX, = 1.153846
f3=-0.291364

f1=-0.309811

(C) f4 <f3; delete [)C3, xl]

Figure 5.10 Graphical representation of the solution of Example 5.7.
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The golden section method is the same as the Fibonacci method except that in the
Fibonacci method the total number of experiments to be conducted has to be specified
before beginning the calculation, whereas this is not required in the golden section
method. In the Fibonacci method, the location of the first two experiments is deter-
mined by the total number of experiments, N. In the golden section method we start
with the assumption that we are going to conduct a large number of experiments. Of

course, the total number of experiments can be decided during the computation.

The intervals of uncertainty remaining at the end of different number of experi-

ments can be computed as follows:

(5.17)
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Jx)

| L |
| > |
x5=0.230770 X4 = (_).461538 x3= 0.692308

XXXXXXXX

f5=-0.263678

f4=-0.309811
(d) f5>f4; delete [0, x5]

J)

XXXXXXXX;
x5=0.230770

f6=-0.309810

f4=-0.309811
(e) fo >f4; delete [xq, x3]

Figure 5.10 (Continued)

F Fy_, F
Ly = lim 2221, = lim 22 2Lp,
N—o Fy N—oo Fy_ Fy

)a 2
~ lim [ 2= L,
N->oco FN

This result can be generalized to obtain

F k—1
—00 N

Using the relation
Fy=Fy_1+Fy,

we obtain, after dividing both sides by F,_,,

F F
N o _ g4 N=2
Fy_y Fy_y
By defining a ratio y as
. Fy
y = lim
N—-oo FN—l

Equation (5.21) can be expressed as

y:l+1
14

]

=0.461538

‘x4 N\ X6 = 0461540, = 0.692308
—

X

X

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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that is,
y—y—1=0 (5.23)

This gives the root y = 1.618, and hence Eq. (5.19) yields

k—1
L, = (%) L, = (0.618)*°'L, (5.24)

In Eq. (5.18) the ratios F_,/Fy_; and F_,/F) have been taken to be same for
large values of N. The validity of this assumption can be seen from the following
table:

Value of N 2 3 4 5 6 7 8 9 10 00

Ratio% 0.5 0.667 0.6 0.625 0.6156 0.619 0.6177 0.6181 0.6184 0.618
N

The ratio y has a historical background. Ancient Greek architects believed that a
building having the sides d and b satisfying the relation

d+b d
ery _ < 5.25
/ b Y ( )

would have the most pleasing properties (Figure 5.11). The origin of the name, golden
section method, can also be traced to the Euclid’s geometry. In Euclid’s geometry,
when a line segment is divided into two unequal parts so that the ratio of the whole to
the larger part is equal to the ratio of the larger to the smaller, the division is called the
golden section and the ratio is called the golden mean.

Procedure. The procedure is same as the Fibonacci method except that the location
of the first two experiments is defined by

Fy_ Fry_, Fy_
L= N2L0= N=2 'N-1
Fy Fy_y Fy

Ly
4
The desired accuracy can be specified to stop the procedure.
Example 5.8 Minimize the function

f(x) = 0.65 — [0.75/(1 + x%)] — 0.65x tan™" (1 /x)

using the golden section method with n = 6.

S

= S|
! |

d
Figure 5.11 Rectangular building of sides b and d.
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SOLUTION The locations of the first two experiments are defined by L] = 0.382
Ly =(0.382) (3.0) = 1.1460. Thus x; = 1.1460 and x, = 3.0 — 1.1460 = 1.8540

with fj = f (x;) = —0.208 654 and f, = f (x,) = —0.115124. Since f; <f,, we
delete the interval [x,, 3.0] based on the assumption of unimodality and obtain the new
interval of uncertainty as L, = [0, x,] = [0.0, 1.8540]. The third experiment is placed
at x; = 0+ (x, —x;) = 1.8540 — 1.1460 = 0.7080. Since f; = —0.288 943 is smaller
than f; = —0.208 654, we delete the interval [x;, x,] and obtain the new interval of
uncertainty as [0.0, x;] = [0.0, 1.1460]. The position of the next experiment is given
by x, = 04 (x; —x3) = 1.1460 — 0.7080 = 0.4380 with f, = —0.308 951.

Since f; <f;, we delete [x;, x;] and obtain the new interval of uncertainty as
[0, x;] =[0.0, 0.7080]. The next experiment is placed at x5 = 0 + (x; —x,) = 0.7080 —
0.4380 = 0.2700. Since f5 = —0.278 434 is larger than f, = —0.308 951, we delete the
interval [0, x5] and obtain the new interval of uncertainty as [xs, x3] = [0.2700, 0.7080].
The final experiment is placed at x5 = x5 + (x3 — x4) = 0.2700 4 (0.7080 — 0.4380) =
0.5400 with fg = —0.308 234. Since f > f;, we delete the interval [x, x3] and obtain
the final interval of uncertainty as [xs5, x4] = [0.2700, 0.5400]. Note that this final
interval of uncertainty is slightly larger than the one found in the Fibonacci method,
[0.461 540, 0.230 770]. The ratio of the final to the initial interval of uncertainty in the
present case is

1;6 _0.5400-0.2700 _ 0.27

=22 =0.09
L, 3.0 3.0

5.9 COMPARISON OF ELIMINATION METHODS

The efficiency of an elimination method can be measured in terms of the ratio of the
final and the initial intervals of uncertainty, L,/L,. The values of this ratio achieved
in various methods for a specified number of experiments (n = 5 and n = 10) are
compared in Table 5.3. It can be seen that the Fibonacci method is the most effi-
cient method, followed by the golden section method, in reducing the interval of
uncertainty.

A similar observation can be made by considering the number of experiments (or
function evaluations) needed to achieve a specified accuracy in various methods. The
results are compared in Table 5.4 for maximum permissible errors of 0.1 and 0.01. It
can be seen that to achieve any specified accuracy, the Fibonacci method requires the
least number of experiments, followed by the golden section method.

Table 5.3 Final Intervals of Uncertainty.

Method Formula n=>5 n=10
Exhaustive search L,= ﬁl‘o 0.33333L, 0.181 82L,,
Dichotomous search L, = 2% +6 (1 - #) %Lo +0.007 S5withn=4,  0.03125L,+0.009 687 5
(6=0.01and 1L, +0.00875 with n = 6
n = even) 8

Interval halving (n>3 L, = (—

and odd)
Fibonacci

Golden section

| (n=1)/2 .
) L 0.25L, 0.062 5L, with n =9,

? 0.03125L, with n = 11
1
= L1, 0.125L, 0.01124L,

Ln
L, =(0.618y"'L, 0.1459L, 0.013 15L,




5.9 Comparison of Elimination Methods 247

Table 5.4 Number of Experiments for a Specified Accuracy.

Method Error:%i—; <0.1 Error:%i—; <0.01
Exhaustive search n>9 n>99
Dichotomous search (6 = 0.01, L, = 1) n>6 n>14
Interval halving (n > 3 and odd) n>7 n>13
Fibonacci n>4 n>9
Golden section n>5 n>10

Interpolation Methods

The interpolation methods were originally developed as one-dimensional searches
within multivariable optimization techniques, and are generally more efficient than
Fibonacci-type approaches. The aim of all the one-dimensional minimization methods
is to find A*, the smallest nonnegative value of A, for which the function

f() =fX+48) (5.27)

attains a local minimum. Hence if the original function f (X) is expressible as an
explicit function of x; (i = 1, 2, ..., n), we can readily write the expression for
f(A) =f(X+ AS) for any specified vector S, set

af
S H=0 (5.28)

and solve Eq. (5.28) to find A" in terms of X and S. However, in many practical prob-
lems, the function f (1) cannot be expressed explicitly in terms of A (as shown in
Example 5.1). In such cases the interpolation methods can be used to find the value
of A"

Example 5.9 Derive the one-dimensional minimization problem for the following
case:
Minimize f(X) = (x] — x,)* + (1 — x,)* (E1)

from the starting point X; = {:g} along the search direction S = { (1)2(5)}

SOLUTION The new design point X can be expressed as

X= {xz} ‘Xl”s‘{—2+0.25,1}

By substituting x; = =2+ 4 and x, = —2+4+0.254 in Eq. (E1), we obtain f as a
function of 4 as

o 244 ) _ 2 >
f=f (_2 4025 /1) =[(-2+ 4 - (-2+0.252)]

+[1=(=2+ D] = 1*—8.54% +31.06254% — 57.04 + 45.0

The value of A at which £ (4) attains a minimum gives 1.

In the following sections, we discuss three different interpolation methods with
reference to one-dimensional minimization problems that arise during multivariable
optimization problems.
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5.10 QUADRATIC INTERPOLATION METHOD

The quadratic interpolation method uses the function values only; hence it is useful
to find the minimizing step (4*) of functions f (X) for which the partial derivatives
with respect to the variables x; are not available or difficult to compute [5.2, 5.5].
This method finds the minimizing step length A” in three stages. In the first stage the
S-vector is normalized so that a step length of A = 1 is acceptable. In the second stage
the function £ (4) is approximated by a quadratic function (1) and the minimum, A*,
of h(4) is found. If A* is not sufficiently close to the true minimum A", a third stage
is used. In this stage a new quadratic function (refit) /(1) = a’ + b’ A+ ¢’ A% is used to
approximate f (1), and a new value of A* is found. This procedure is continued until a
A* that is sufficiently close to A” is found.

Stage 1. In this stage,’ the S vector is normalized as follows: Find A = max |s,|, where

s; is the ith component of S and divide each component of S by A. Another method
of normalization is to find A = (s + s + -+ + s2)!/? and divide each component of S
by A.
Stage 2. Let

h(A) = a+bA+ cA? (5.29)

be the quadratic function used for approximating the function f (4). It is worth noting
at this point that a quadratic is the lowest-order polynomial for which a finite minimum
can exist. The necessary condition for the minimum of 4 (4) is that

dh

— =b+2cA=0
A + 2c
that is, b
F=—= 5.30
e (5.30)
The sufficiency condition for the minimum of /(4) is that
d’h
—_— >
di? |
that is,
c>0 (5.31)

To evaluate the constants a, b, and c in Eq. (5.29), we need to evaluate the function
f(4) at three points. Let A = A, A = B, and A4 = C be the points at which the function f
(4) is evaluated and let f4, f, and f- be the corresponding function values, that is,

fi=a+bA+cA?
fy=a+bB+cB?
fe=a+bC+cC? (5.32)

The solution of Eq. (5.32) gives

_}ABC(C = B) + [y,CA( = ©) +[cAB(B — A)

(A-B)B - C)(C-A) (5.33)

"This stage is not required if the one-dimensional minimization problem has not arisen within a multivari-
able minimization problem.
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_ Ja(B? = C?) + f(C? — A?) + f(A> — B)
(A-B)(B-C)C-A)

_ _JaB-O)+f(C-A) +f(A-B)
B (A=B)B-C)(C-A)

(5.34)

(5.35)

From Egs. (5.30), (5.34), and (5.35), the minimum of / (1) can be obtained as

T = =b _ f1(B® = C?) + f3(C* — A®) + fo(A? — B?) (5.36)
T2 2[fy(B—O)+f34(C—A) +fo(A - B)] '

provided that c, as given by Eq. (5.35), is positive.

To start with, for simplicity, the points A, B, and C can be chosen as 0, 7, and
2t, respectively, where ¢ is a preselected trial step length. By this procedure, we can
save one function evaluation since f, = f (4 =0) is generally known from the previous
iteration (of a multivariable search). For this case, Egs. (5.33)—(5.36) reduce to

a=Ff, (5.37)
_ Y3 —Jc
b= (5.38)
c= ’%ﬂ_% (5.39)
oo o= M, (5.40)
A = 2fc = 2a

provided that
_JetIa— 2
c=—"—"7—">0

5.41
P (5.41)
The inequality (5.41) can be satisfied if
+
Ia 2fc > (5.42)

(i.e. the function value f should be smaller than the average value of f, and f,). This
can be satisfied if f; lies below the line joining f, and f- as shown in Figure 5.12.

The following procedure can be used not only to satisfy the inequality (5.42) but
also to ensure that the minimum A* lies in the interval 0 < 1* < 2t.

1. Assuming that f;, = f (4 =0) and the initial step size f, are known, evaluate the
function fat A = ¢, and obtain f; = f (1 = t;). The possible outcomes are shown
in Figure 5.13.

2. If f; > f, is realized (Figure 5.13c), set f = f; and evaluate the function f at
A = 15/2 and A* using Eq. (5.40) with ¢ = ¢,/2.

3. If f; <f, is realized (Figure 5.13a or b), set fz = f|, and evaluate the function f
at A =21, to find f, = f (A =21,). This may result in any one of the situations
shown in Figure 5.14.

4. If f, turns out to be greater than f; (Figure 5.14b or c), set f- = f, and compute
J* according to Eq. (5.40) with ¢ = .

5. If f, turns out to be smaller than £}, set new f; = f, and ¢, =2¢,, and repeat steps
2—4 until we are able to find 1*.
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Figure 5.12 f; smaller than (f, + f.)/2.
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Figure 5.13 Possible outcomes when the function is evaluated at A = #,: (a) f; <f, and
ty < 1% (b) f; <fy and t, > 1*; (c) f, >f, and t, > 1*.
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Figure 5.14 Possible outcomes when function is evaluated at 4 = ¢, and 2¢,: (a) f, <f, and

b <fy; O f, <fyandf, >f;; () f, >f, and f, > f}.
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Stage 3. The 1* found in stage 2 is the minimum of the approximating quadratic /(A)
and we have to make sure that this A* is sufficiently close to the true minimum A" of
f(4) before taking A" ~ A*. Several tests are possible to ascertain this. One possible test
is to compare f (1*) with A(1*) and consider 1* a sufficiently good approximation if
they differ not more than by a small amount. This criterion can be stated as
'M <g (5.43)
J(4%)

Another possible test is to examine whether df/dA is close to zero at A*. Since the
derivatives of f are not used in this method, we can use a finite-difference formula for
dfldA and use the criterion

FOF + AT = f(A* = AT¥)
QA

<e, (5.44)

to stop the procedure. In Eqgs. (5.43) and (5.44), €, and &, are small numbers to be
specified depending on the accuracy desired.
If the convergence criteria stated in Eqs. (5.43) and (5.44) are not satisfied, a new
quadratic function
WQy=d +b' i+ 2

is used to approximate the function f (4). To evaluate the constants a’, b’, and ¢/, the
three best function values of the current f; =f (A =0), fz =f (4 =1y), fc = f(A = 21y),
and f = f (A1 = A*) are to be used. This process of trying to fit another polynomial to
obtain a better approximation to 1* is known as refitting the polynomial.

For refitting the quadratic, we consider all possible situations and select the best
three points of the present A, B, C, and J*. There are four possibilities, as shown
in Figure 5.15. The best three points to be used in refitting in each case are given

) )

(@) (b)

()

Figure 5.15 Various possibilities for refitting.
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Table 5.5 Refitting Scheme.

New points for refitting

Case Characteristics Old New

1 I*>B A B
I <[ B a
C C

Neglect old A
2 i*>B A A
P>y B B
C a

Neglect old C
3 I*<B A A
F<fs B a
C B

Neglect old C
4 J*<B A 7
I>1 B B
C C

Neglect old A

in Table 5.5. A new value of J* is computed by using the general formula, Eq. (5.36).
If this A* also does not satisfy the convergence criteria stated in Egs. (5.43) and (5.44),
a new quadratic has to be refitted according to the scheme outlined in Table 5.5.

Example 5.10 Find the minimum of f= 1% — 543 — 201 +5.
SOLUTION  Since this is not a multivariable optimization problem, we can proceed

directly to stage 2. Let the initial step size be taken as 7, = 0.5 and A = 0.

Iteration 1

fr=f(l=0)=5
fi =f(A =1 =0.03125 — 5(0.125) — 20(0.5) + 5 = =5.59375

Since f| <fy, we set fz =f; = —5.59375, and find that
hL=fA=2t,=10)=-19.0

As f, <f}, we set new #, = 1 and f; = —19.0. Again we find that f; <f, and
hence set fz = f; = —19.0, and find that f, = f (1 = 2, = 2) = —43. Since f, <f],
we again set f, = 2 and f; = —43. As this f; <f4, set fz = f; = —43 and evaluate
L =f(A =2ty =4) = 629. This time f, > f; and hence we set f- = f, = 629 and
compute A* from Eq. (5.40) as

s A -3(5)-629 1632

T 4(—43) = 2(629) — 2(5)(2) T 1440 1133

Convergence test: Since A =0, f, =5,B=2, f = —43, C =4, and f- = 629, the
values of a, b, and ¢ can be found to be

a=5 b=-204, ¢c=90
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and
h(A*) = h(1.133) = 5 — 204(1.133) + 90(1.133)2 = —110.600

Since
F =% = (1.133)° —=5(1.133)* — 20(1.133) + 5.0 = —23.065

we have

=3.795

h(2*) = f(A*)
—23.065

fG)

As this quantity is very large, convergence is not achieved and hence we have to
use refitting.

_ ’ —110.600 + 23.065

Iteration 2

Since 1* < B and f > f;, we take the new values of A, B, and C as

A=1133 f, =-23.065
B=20 f;=-430
C=40 f-=6290

and compute new 1*, using Eq. (5.36), as

_ (=23.065)(4.0 — 16.0) + (—43.0)(16.0 — 1.284) + (629.0)(1.284 —4.0)

T 2[(=23.065)(2.0 — 4.0) + (—43.0)(4.0 — 1.133) + (629.0)(1.133 — 2.0)] 1.658

Convergence test: To test the convergence, we compute the coefficients of the
quadratic as
a=1286.8322, b=-4153741, c¢=125.2290

As

h(A*) = h(1.658) = 286.8322 — 417.0(1.658) + 125.2290(1.658)*> = —57.608
f=f(") = 12.529 — 5(4.558) — 20(1.658) + 5.0 = —38.42
we obtain
h(A*) = f(A7)
%)

Since this quantity is not sufficiently small, we need to proceed to the next refit.

= 0.499

| =57.608 + 38.42
- —38.42

5.11 CUBIC INTERPOLATION METHOD

The cubic interpolation method finds the minimizing step length A* in four stages
[5.5, 5.11]. It makes use of the derivative of the function f

df _d
"M== =—fX+18)=STVfX+ 1S
f'y =20 = X+ 48) = STVf(X +48)
The first stage normalizes the S vector so that a step size 4 = 1 is acceptable.

The second stage establishes bounds on A", and the third stage finds the value of 1*



254

Nonlinear Programming I: One-Dimensional Minimization Methods

by approximating f (1) by a cubic polynomial 4(4). If the A* found in stage 3 does
not satisfy the prescribed convergence criteria, the cubic polynomial is refitted in the
fourth stage.

Stage 1. Calculate A = max; Is;l, where Is;| is the absolute value of the ith component
of S, and divide each component of S by A. An alternative method of normalization
is to find

A= (S +s3+-+sD)/?

and divide each component of S by A.

Stage 2. To establish lower and upper bounds on the optimal step size 1*, we need to
find two points A and B at which the slope df/dA has different signs. We know that at

1=0,
af

=STVFX) <0
il F(X) <

since S is presumed to be a direction of descent.®

Hence to start with we can take A = 0 and try to find a point A = B at which the
slope df/d 4 is positive. Point B can be taken as the first value out of 1, 21, 41, 81, ...
at which f’ is nonnegative, where ¢, is a preassigned initial step size. It then follows
that A" is bounded in the interval A < A" < B (Figure 5.16).

Stage 3. If the cubic equation
WA =a+bA+cA>+di3 (5.45)

is used to approximate the function f (1) between points A and B, we need to find the
values fy =f(4=A),f; =dfldA (A=A),fp =f(A=B),and f, = dfldi (4= B) in order
to evaluate the constants, a, b, ¢, and d in Eq. (5.45). By assuming that A # 0, we can
derive a general formula for A*. From Eq. (5.45) we have

fi=a+bA+cA’+dA}

fy=a+bB+cB*+dB’

fi=b+2cA+3dA’

fp=b+2cB+3dB (5.46)

Equation (5.46) can be solved to find the constants as

a=f, — bA — cA* — dA® (5.47)
f

A
M

| 1

I I

I |

I |

| |

1 . -\
0 A B

Figure 5.16 Minimum of f (4) lies between A and B.

8In this case the angle between the direction of steepest descent and S will be less than 90°.
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with
_ 1 241 24
b= A_By (Bf) + A°fy + 2ABZ) (5.48)
1 y ’
Cc = (A——B)z[(A + B)Z + BfA + AfB] (549)
and 1
d= m(zz +fy + 1) (5.50)
where 3 - f)
Z==0—F i +h (5.51)

The necessary condition for the minimum of 4(4) given by Eq. (5.45) is that

dh 2
— =b+2cA+3dA* =0
a2 ¢
that is, 5 "
i = —c %+ (c* — 3bd) (5.52)

3d

The application of the sufficiency condition for the minimum of A(A) leads to the
relation
d’h

i 2c+6dA* >0 (5.53)
A*

By substituting the expressions for b, ¢, and d given by Egs. (5.48)—(5.50) into
Egs. (5.52) and (5.53), we obtain

i/
F=A+ M(B—A) (5.54)
fi+fi+2Z
where
Q=2 -fifp'? (5.55)

2B-AQRZ+fi+f)(f1+Z+0)

— 2B — A)f? + Zf} + 3Zf; +227)

—2B+A), [z >0 (5.56)
By specializing Egs. (5.47)—(5.56) for the case where A = 0, we obtain

a=fy
b=f,
=1z

1
= = QZ [+ 1)

Tk __ f/; +Z + Q
O fitfi+2z
0= Z-fifH"*>0 (5.58)

d

(5.57)



256

Nonlinear Programming I: One-Dimensional Minimization Methods

where 3, - f)
Z= % +f 4 (5.59)
The two values of 1* in Eqgs. (5.54) and (5.57) correspond to the two possibilities
for the vanishing of A’(4) (i.e. at a maximum of A(A) and at a minimum). To avoid
imaginary values of Q, we should ensure the satisfaction of the condition

Z—fif320

in Eq. (5.55). This inequality is satisfied automatically since A and B are selected such
that ff( < 0 and fé > 0. Furthermore, the sufficiency coPdition (when A = 0) requires
that Q > 0, which is already satisfied. Now we compute A* using Eq. (5.57) and proceed
to the next stage.

Stage 4. The value of 1* found in stage 3 is the true minimum of /(A) and may not be
close to the minimum of f'(4). Hence the following convergence criteria can be used
before choosing A" ~ A*:

’M <e (5.60)
fan |7

d

%L* = |STVf|5 < e, (5.61)

where €, and &, are small numbers whose values depend on the accuracy desired. The
criterion of Eq. (5.61) can be stated in nondimensional form as

STvf

5.62
ISIV/] 602

&

Z*

If the criteria stated in Eqs. (5.60) and (5.62) are not satisfied, a new cubic equation
WA =d +b A+ 22 +d A

can be used to approximate f (4). The constants &', b’, ¢/, and d’ can be evaluated by
using the function and derivative values at the best two points out of the three points
currently available: A, B, and 1*. Now the general formula given by Eq. (5.54) is to be
used for finding the optimal step size A*. If f’ (1*) < 0, the new points A and B are taken
as A* and B, respectively; otherwise (if f' (1*) > 0), the new points A and B are taken
as A and 1*, and Eq. (5.54) is applied to find the new value of A*. Equations (5.60) and
(5.62) are again used to test for the convergence of A*. If convergence is achieved, 1*
is taken as A" and the procedure is stopped. Otherwise, the entire procedure is repeated
until the desired convergence is achieved.

The flowchart for implementing the cubic interpolation method is given in
Figure 5.17.

Example 5.11 Find the minimum of f= A’ — 543 — 204 + 5 by the cubic interpolation
method.

SOLUTION Since this problem has not arisen during a multivariable optimization
process, we can skip stage 1. We take A = 0 and find that

d
—f(/I:A =0)=54*-154>-20|,.o=—-20<0
dA
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Setfa = f0), f’A=f(0)andA=0
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Figure 5.17 Flowchart for cubic interpolation method.
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To find B at which df/d/ is nonnegative, we start with 7, = 0.4 and evaluate the
derivative at ¢, 2t,, 4t,, ... . This gives

f'(ty = 0.4) = 5(0.4)* — 15(0.4)* — 20.0 = —22.272
f'(21, = 0.8) = 5(0.8)* — 15(0.8)> — 20.0 = —27.552
f'(4ty = 1.6) = 5(1.6)* — 15(1.6)> — 20.0 = —25.632
18ty = 3.2) = 5(3.2)* = 15(3.2)*> — 20.0 = —350.688

Thus we find that’

A=00, f,=50 f=-200
B=32, f;=113.0, fé = 350.688
A< A <B

Iteration 1
To find the value of 1* and to test the convergence criteria, we first compute Z and Q

as

_3(5.0—113.0)
32

0 = [229.5882 + (20.0)(350.688)]'/2 = 244.0

Z —20.0 +350.688 = 229.588

Hence

T* = 3'2< —20.0 + 229.588 + 244.0 > — 184 or —0.1396
—20.0 + 350.688 + 459.176

By discarding the negative value, we have

A =184

_ Convergence criterion: If J* is close to the true minimum, A", then f’ (1*) = df
(A*)/d A should be approximately zero. Since f/ = 51* — 154> — 20,

F1(2%) = 5(1.84)* — 15(1.84)> — 20 = —13.0

Since this is not small, we go to the next iteration or refitting. As f'(1*) < 0, we
take A = A* and

fi =f(A*) = (1.84)° — 5(1.84)° — 20(1.84) + 5 = —41.70

Thus
A=184, f,=-41.70, f,=-13.0
B=32, [fz=1130, f;=350.688
A< J1*<B
Iteration 2

5 _ 3417 - 113.0)
T 320-1.84
0 = [(=3.312) + (13.0)(350.688)]'/> = 67.5

—13.0 4+ 350.688 = —3.312

9As f" has been found to be negative at A = 1.6 also, we can take A = 1.6 for faster convergence.
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Hence

—13.0-3.312+67.5
—13.0 4+ 350.688 — 6.624

Convergence criterion:

=184+ (3.2 -1.84) =2.05

f'(A*) = 5.0(2.05)* — 15.0(2.05)* — 20.0 = 5.35

Since this value is large, we go the next iteration with B = A*=2.05 (as f (A*)>0)

n f = (2.05)° = 5.0(2.05)° — 20.0(2.05) + 5.0 = —42.90
Thus
A=184, f,=-4170, f =-13.00
B=205, f;=-4290, f,=535
A< A <B
Iteration 3
Z-= 3'0((_;015'71) ;L;f)'%) ~13.00 4+ 5.35 = 9.49
0 = [(9.49)” + (13.0)(5.35)]'/% = 12.61
Therefore,

—13.00 —9.49 + 12.61
—13.00 4+ 5.35 + 18.98

Convergence criterion:

IF =184+ (2.05 — 1.84) = 2.0086

/(1) = 5.0(2.0086)* — 15.0(2.0086)> — 20.0 = 0.855

Assuming that this value is close to zero, we can stop the iterative process and
take

A A =2.0086

5.12 DIRECT ROOT METHODS

The necessary condition for f (1) to have a minimum of A* is that f/(1") = 0. The
direct root methods seek to find the root (or solution) of the equation, f’(1) = 0. Three
root-finding methods — the Newton, the quasi-Newton, and the secant methods — are
discussed in this section.

5.12.1 Newton Method

Consider the quadratic approximation of the function f (4) at A = 4, using the Taylor’s
series expansion:

FO) = FQ) +1 (A= 4) + %f”ui)u — 4 (5.63)

By setting the derivative of Eq. (5.63) equal to zero for the minimum of f (1), we
obtain

F'A =1 A+ A)(A—2) =0 (5.64)
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If A; denotes an approximation to the minimum of f (1), Eq. (5.64) can be rear-
ranged to obtain an improved approximation as

A
i f”( /li)
Thus, the Newton method, Eq. (5.65), is equivalent to using a quadratic approx-
imation for the function f (1) and applying the necessary conditions. The iterative

process given by Eq. (5.65) can be assumed to have converged when the derivative,
f'(A;41), is close to zero:

ﬂ’H—l e (5.65)

If' (Al < € (5.66)

where € is a small quantity. The convergence process of the method is shown graphi-
cally in Figure 5.18a.

Remarks:

1. The Newton method was originally developed by Newton for solving nonlinear
equations and later refined by Raphson, and hence the method is also known
as Newton—Raphson method in the literature of numerical analysis.

2. The method requires both the first- and second-order derivatives of f(4).

3. If f(A4,)# 0 (in Eq. (5.65)), the Newton iterative method has a powerful
(fastest) convergence property, known as quadratic convergence.'’

J)

(@)

Tangent at A;
Tangent at 4; , 4

v

(b)

Figure 5.18 Iterative process of Newton method: (a) convergence; (b) divergence.

10The definition of quadratic convergence is given in Section 6.7.
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4. If the starting point for the iterative process is not close to the true solution 4*,
the Newton iterative process might diverge as illustrated in Figure 5.18b.

Example 5.12 Find the minimum of the function

075
1+ A2

1

f(A) =0.65 — 0.654 tan™! =

using the Newton—Raphson method with the starting point 4; = 0.1. Use € = 0.01 in
Eq. (5.66) for checking the convergence.

SOLUTION The first and second derivatives of the function f{(1) are given by

1.54 0.65 1
"(A) = + —0.654tan" =
PO =0 T 1 e g
P = L5A(1=34%)  0.65(1—4%) 065 _ 2.8—3242
(14423 (T+422  1+2 (1+28
Iteration 1

A =0.1, f(4,)=-0.188197, f'(1,)=—0.744832,

J'()
")

Convergence check: If'(1,) =1-0.138 2301 > .

f"(4) =2.68659, A, =1, — = 0.377241

Iteration 2

f(4,) = =0.303279, f'(4,) = —0.138230, f"(4,) = 1.57296
A
Ty
Convergence check: If'(A3)l =1—0.017907 8| > ¢.

= 0.465119

Iteration 3

f(A3) = —0.309881, f'(4;) = —0.0179078, f"(4;) = 1.17126

i
A
by = A S 4) _ .480409

3T F"(43)
Convergence check: If'(A4)l =1—0.000503 3| <e¢.

Since the process has converged, the optimum solution is taken as A"~ 4, =
0.480409.

5.12.2 Quasi-Newton Method

If the function being minimized f (1) is not available in closed form or is difficult to
differentiate, the derivatives f’ (1) and f”"(A) in Eq. (5.65) can be approximated by the
finite difference formulas as

ooy JA+ AN —f(A; — AA)
F(A) = TAd

A+ AL = 2f(4; Ai— AL
froay =Lt A ’;;)*f(’ ) (5.68)

(5.67)
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where A4 is a small step size. Substitution of Egs. (5.67) and (5.68) into Eq. (5.65)

leads to
AMf(A; + AX) — f(4; — AD)]

CUR0F(A+ AD) = 2f(2) +f (A — AD)]

AH-I = (5.69)

The iterative process indicated by Eq. (5.69) is known as the quasi-Newton
method. To test the convergence of the iterative process, the following criterion can

be used:
Qi1 + A = f(A; — AX) <
2A4 -

If' (Al = (5.70)

where a central difference formula has been used for evaluating the derivative of f and
€ is a small quantity.

Remarks:

1. The central difference formulas have been used in Eqs. (5.69) and (5.70). How-
ever, the forward or backward difference formulas can also be used for this
purpose.

2. Equation (5.69) requires the evaluation of the function at the points 4, + A4
and A; — A4 in addition to 4, in each iteration.

Example 5.13 Find the minimum of the function

_aec 075 a1
f(A) =065~ =5 ~ 065 4tan”" -

using quasi-Newton method with the starting point 4; = 0.1 and the step size A4 =0.01
in central difference formulas. Use € = 0.01 in Eq. (5.70) for checking the convergence.

SOLUTION

Iteration 1

A =0.1, AA=001, e=001, f =f(4,)=—0.188197,
FF=fCG + A =—0.195512, f7 =f(4; — A2) = —0.180615
A -1D)

2'2 - /11 - f == 0377882
2/ =21 +10)

Convergence check:

=1

=0.137300 > ¢
2A%

IF' (4] =

Iteration 2

o =f() =-0303368, [ =f(4, +Al) = -0.304662,
fy =f(h — AX) = —0.301916
AME = 1)

2(f2 - 2f2 +f2 )

/13=/‘[2
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Convergence check:

f3Jr —f5
2A4

If' (43| = =0.017700 > ¢

Iteration 3
f3 =f(43) = =0.309885, fF = f(43 + A4) = =0.310004,

fiy =f(43 — A2) = —0.309650
A/I(f; _f3_)

Ay = A3 = ————— = 0.480600
2007 =23+ 13)
Convergence check:
VA
! _ |V4 4 | _
"Gl = |55 | = 0000350 < e

Since the process has converged, we take the optimum solution as A"~ A, =
0.480 600.

5.12.3 Secant Method

The secant method uses an equation similar to Eq. (5.64) as
FfD=fA)+s(A—-2)=0 (5.71)

where s is the slope of the line connecting the two points (A, f'(A)) and (B, f'(B)),
where A and B denote two different approximations to the correct solution, A*.The
slope s can be expressed as (Figure 5.19)

B -fw

34 (5.72)

AW

Figure 5.19 Iterative process of the secant method.
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Equation (5.71) approximates the function f’(1) between A and B as a linear
equation (secant), and hence the solution of Eq. (5.71) gives the new approximation
to the root of f'(A) as

J'(4) A J'(A)B - A)
s 1'(B) = f'(A)

The iterative process given by Eq. (5.73) is known as the secant method
(Figure 5.19). Since the secant approaches the second derivative of f(4) at A as B
approaches A, the secant method can also be considered as a quasi-Newton method.
It can also be considered as a form of elimination technique since part of the interval,
(A, A;1) in Figure 5.19, is eliminated in every iteration. The iterative process can be
implemented by using the following step-by-step procedure.

(5.73)

Aigg = 4 —

1. Set A, = A =0 and evaluate f'(A). The value of f'(A) will be negative. Assume
an initial trial step length #,. Set i =1.

2. Evaluate f7(¢,).
3. I f(ty) < 0, set A = A, =1y, f'(A) =f'(t,), new ¢, =21, and go to step 2.
4. If f'(ty) > 0, set B = t,,, f'(B) = f'(t,), and go to step 5.
5. Find the new approximate solution of the problem as
4
J'AB-4A)
Aipg =A = LAE -4 - - (5.74)
J'B) = f"(A)
6. Test for convergence:
'+ Dl <e (5.75)

where ¢ is a small quantity. If Eq. (5.75) is satisfied, take A" ~ A, and stop the
procedure. Otherwise, go to step 7.

7. I (A;41) =0, setnew B= A, ;,f'(B) =f"(A;41), i =i+ 1, and go to step 5.
8. If f'(A441) < O, setnew A = A4, f'(A) = (A1), i =i + 1, and go to step 5.

Remarks:

1. The secant method is identical to assuming a linear equation for f’(4). This
implies that the original function, f(4), is approximated by a quadratic equation.

2. In some cases, we may encounter a situation where the function /(1) varies
very slowly with A, as shown in Figure 5.20. This situation can be identified
by noticing that the point B remains unaltered for several consecutive refits.
Once such a situation is suspected, the convergence process can be improved
by taking the next value of A, as (A + B)/2 instead of finding its value from
Eq. (5.74).

Example 5.14 Find the minimum of the function

0.75
1+ A2

F(A) = 0.65 — - 0.65/ltan*1%

using the secant method with an initial step size of f, = 0.1, 4; = 0.0, and £ = 0.01.

SOLUTION A, = A = 0.0, 1, = 0.1, f'(A) = —1.02102, B = A+1, = 0.1,
f!(B) = —0.744832. Since f'(B) < 0, we set new A = 0.1, f'(A) = —0.744 832,
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F)
A

I’

o | P e R O

Figure 5.20 Situation when f’ varies very slowly.

1, =2(0.1)=0.2, B= 4, + 1, = 0.2, and compute /' (B) = —0.490 343. Since f'(B) < 0,
we set new A = 0.2, f'(A) = —0.490343, 1, = 2(0.2) = 04, B = 4, +1, = 0.4, and
compute f/(B) = —0.103 652. Since ' (B) < 0, we set new A = 0.4, f'(A) = —0.103 652,
ty=2(0.4)=0.8, B= 4, + 1, =0.8, and compute f'(B) = +0.180 800. Since f'(B) > 0,
we proceed to find 4,.

Iteration 1

Since A = A, =04, f'(A) = -0.103 652, B = 0.8, f/(B) = +0.180 800, we compute

"(AY(B—-A
,=A— f—,( X " ) = 0.545757
f1(B) = f'(A)
Convergence check: If'(A,)l =1+ 0.010578 91 > ¢.

Iteration 2

Since f'(1,) = +0.010578 9 > 0, we set new A = 0.4, f'(A) = —0.103652,
B =14, =0.545757,f(B) = f'(4,) = +0.010578 9, and compute

_ . faE-a
’ f'(B) —f'(A)
Convergence check: If'(A;)l =1+ 0.001 51235 < ¢.

Since the process has converged, the optimum solution is given by 1"~ A; =
0.490 632.

= 0.490632

5.13 PRACTICAL CONSIDERATIONS
5.13.1 How to Make the Methods Efficient and More Reliable

In some cases, some of the interpolation methods discussed in Sections 5.10-5.12 may
be very slow to converge, may diverge, or may predict the minimum of the function, f
(4), outside the initial interval of uncertainty, especially when the interpolating poly-
nomial is not representative of the variation of the function being minimized. In such
cases we can use the Fibonacci or golden section method to find the minimum. In
some problems it might prove to be more efficient to combine several techniques. For
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example, the unrestricted search with an accelerated step size can be used to bracket
the minimum and then the Fibonacci or the golden section method can be used to find
the optimum point. In some cases the Fibonacci or golden section method can be used
in conjunction with an interpolation method.

5.13.2 Implementation in Multivariable Optimization Problems

As stated earlier, the one-dimensional minimization methods are useful in multivari-
able optimization problems to find an improved design vector X, ; from the current
design vector X, using the formula

X, =X, + A'S, (5.76)

where §; is the known search direction and A7 is the optimal step length found by
solving the one-dimensional minimization problem as

4 = min[f(X; + 4,8)] (5.77)

Here the objective function f'is to be evaluated at any trial step length £, as

f(ty) =fX; +1,S) (5.78)

Similarly, the derivative of the function f with respect to A corresponding to the
trial step length ¢, is to be found as

A

=STA
da i &

(5.79)

A=ty A=t
Separate function programs or subroutines can be written conveniently to imple-
ment Egs. (5.78) and (5.79).

5.13.3 Comparison of Methods

It has been shown in Section 5.9 that the Fibonacci method is the most efficient elim-
ination technique in finding the minimum of a function if the initial interval of uncer-
tainty is known. In the absence of the initial interval of uncertainty, the quadratic
interpolation method or the quasi-Newton method is expected to be more efficient
when the derivatives of the function are not available. When the first derivatives of the
function being minimized are available, the cubic interpolation method or the secant
method are expected to be very efficient. On the other hand, if both the first and second
derivatives of the function are available, the Newton method will be the most efficient
one in finding the optimal step length, 1*.

In general, the efficiency and reliability of the various methods are problem depen-
dent and any efficient computer program must include many heuristic additions not
indicated explicitly by the method. The heuristic considerations are needed to handle
multimodal functions (functions with multiple extreme points), sharp variations in the
slopes (first derivatives) and curvatures (second derivatives) of the function, and the
effects of round-off errors resulting from the precision used in the arithmetic opera-
tions. A comparative study of the efficiencies of the various search methods is given
in Ref. [5.10].



Review Questions 267

5.14 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of the one-variable optimization
problem considered in Example 5.8 is given in Example 17.5.
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REVIEW QUESTIONS

51
5.2

53
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13

What is a one-dimensional minimization problem?

What are the limitations of classical methods in solving a one-dimensional minimization
problem?

What is the difference between elimination and interpolation methods?
Define Fibonacci numbers.

What is the difference between Fibonacci and golden section methods?
What is a unimodal function?

What is an interval of uncertainty?

Suggest a method of finding the minimum of a multimodal function.

What is an exhaustive search method?

What is a dichotomous search method?

Define the golden mean.

What is the difference between quadratic and cubic interpolation methods?

Why is refitting necessary in interpolation methods?
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5.14
5.15
5.16
5.17
5.18

PROBLEMS

51

5.2

53

54

5.5

What is a direct root method?

What is the basis of the interval halving method?

What is the difference between Newton and quasi-Newton methods?
What is the secant method?

Answer true or false:

(a) A unimodal function cannot be discontinuous.
(b) All elimination methods assume the function to be unimodal.
(c) The golden section method is more accurate than the Fibonacci method.

(d) Nearly 50% of the interval of uncertainty is eliminated with each pair of experiments
in the dichotomous search method.

(e) The number of experiments to be conducted is to be specified beforehand in both
the Fibonacci and golden section methods.

Find the minimum of the function

0.75
1+x2

F(x) = 0.65 — —0.65x tan~' 2
X

using the following methods:

(a) Unrestricted search with a fixed step size of 0.1 from the starting point 0.0

(b) Unrestricted search with an accelerated step size using an initial step size of 0.1 and
starting point of 0.0

(c) Exhaustive search method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

(d) Dichotomous search method in the interval (0, 3) to achieve an accuracy of within
5% of the exact value using a value of 6 =0.0001

(e) Interval halving method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

Find the minimum of the function given in Problem 5.1 using the quadratic interpolation
method with an initial step size of 0.1.

Find the minimum of the function given in Problem 5.1 using the cubic interpolation
method with an initial step size of #, = 0.1.

Plot the graph of the function f (x) given in Problem 5.1 in the range (0, 3) and identify
its minimum.

The shear stress induced along the z-axis when two cylinders are in contact with each
other is given by
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El,"l

E;, v

Contact area

b b

Figure 5.21 Contact stress between two cylinders.

where 2b is the width of the contact area and p,,, is the maximum pressure developed
at the center of the contact area (Figure 5.21):

2 2\1/2
l—vl N 1 -V

E E.
b= %% (5.81)

_+ —_—

&

2F

pmax = ﬁ (582)

F is the contact force; E; and E, are Young’s moduli of the two cylinders; v, and v, are
Poisson’s ratios of the two cylinders; d; and d, the diameters of the two cylinders, and /
the axial length of contact (length of the shorter cylinder). In many practical applications,
such as roller bearings, when the contact load (F) is large, a crack originates at the point
of maximum shear stress and propagates to the surface leading to a fatigue failure. To
locate the origin of a crack, it is necessary to find the point at which the shear stress attains
its maximum value. Show that the problem of finding the location of the maximum shear
stress for v; = v, = 0.3 reduces to maximizing the function

_ 05 S(1_ 05
= Vier (1- =)+ (5.83)

where f= 7 ,/p,,,, and 4 = z/b.

5.6 Plot the graph of the function f' (1) given by Eq. (5.83) in Problem 5.5 in the range (0, 3)
and identify its maximum.
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5.7

5.8

59

5.10

5.11

5.12
5.13

5.14

5.15

Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the following
methods:

(a) Unrestricted search with a fixed step size of 0.1 from the starting point 0.0

(b) Unrestricted search with an accelerated step size using an initial step length of 0.1
and a starting point of 0.0

(c) Exhaustive search method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

(d) Dichotomous search method in the interval (0, 3) to achieve an accuracy of within
5% of the exact value using a value of 6 =0.0001

(e) Interval halving method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the following
methods:

(a) Fibonacci method with n = 8
(b) Golden section method withn = 8

Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the quadratic
interpolation method with an initial step length of 0.1.

Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the cubic
interpolation method with an initial step length of 7, = 0.1.

Find the maximum of the function f{1) given by Eq. (5.83) in Problem 5.5 using the
following methods:

(a) Newton method with the starting point 0.6

(b) Quasi-Newton method with the starting point 0.6 and a finite difference step size of
0.001

(c¢) Secant method with the starting point 4, =0.0 and 7, =0.1

Prove that a convex function is unimodal.

Compare the ratios of intervals of uncertainty (L, /L) obtainable in the following methods
forn=2,3,...,10:

(a) Exhaustive search

(b) Dichotomous search with § = 10~

(c) Interval halving method

(d) Fibonacci method

(e) Golden section method

Find the number of experiments to be conducted in the following methods to obtain a
value of L, /L, = 0.001:

(a) Exhaustive search

(b) Dichotomous search with § =10~*
(c¢) Interval halving method

(d) Fibonacci method

(e) Golden section method

Find the value of x in the interval (0, 1) which minimizes the function f = x(x — 1.5) to
within +0.05 by (a) the golden section method and (b) the Fibonacci method.
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5.16 Find the minimum of the function f= 1% — 513 — 204 + 5 by the following methods:

517

5.18

5.19

5.20

5.21

5.22
5.23
5.24
5.25

(a) Unrestricted search with a fixed step size of 0.1 starting from 4 =0.0

(b) Unrestricted search with accelerated step size from the initial point 0.0 with a start-
ing step length of 0.1

(¢) Exhaustive search in the interval (0, 5)

(d) Dichotomous search in the interval (0, 5) with 6 =0.0001
(e) Interval halving method in the interval (0, 5)

(f) Fibonacci search in the interval (0, 5)

(g) Golden section method in the interval (0, 5)

Find the minimum of the function f' = (A/log 4) by the following methods (take the initial
trial step length as 0.1):

(a) Quadratic interpolation method

(b) Cubic interpolation method

Find the minimum of the function f = A/log A using the following methods:

(a) Newton method
(b) Quasi-Newton method
(¢) Secant method

Consider the function

2 2 2
B 2x7 4 2x5 + 305 — 2xy x5 — 2x0px5

2, 2 2
X+ x5 +2x;
Substitute X = X, + AS into this function and derive an exact formula for the minimizing
step length A"

Minimize the function f = x; —x, + Zx% +2xx, + x% starting from the point X, = {g}
along the direction S = {51 } using the quadratic interpolation method with an initial step
length of 0.1.

Consider the problem

Minimize f(X) = 100(x, — x1)* + (1 — x,)?
and the starting point, X, = {1‘1 } Find the minimum of f (X) along the direction,
S, = {é} using quadratic interpolation method. Use a maximum of two refits.
Solve Problem 5.21 using the cubic interpolation method. Use a maximum of two refits.
Solve Problem 5.21 using the direct root method. Use a maximum of two refits.
Solve Problem 5.21 using the Newton method. Use a maximum of two refits.

Solve Problem 5.21 using the Fibonacci method with L, = (0, 0.1).






Nonlinear Programming II:
Unconstrained Optimization
Techniques

6.1 INTRODUCTION

This chapter deals with the various methods of solving the unconstrained minimization

problem:
X

Find X = x:Z which minimizes f(X) 6.1)

Xn

It is true that rarely a practical design problem would be unconstrained; still, a
study of this class of problems is important for the following reasons:

1. The constraints do not have significant influence in certain design problems.

2. Some of the powerful and robust methods of solving constrained minimization
problems require the use of unconstrained minimization techniques.

3. The study of unconstrained minimization techniques provide the basic under-
standing necessary for the study of constrained minimization methods.

4. The unconstrained minimization methods can be used to solve certain complex
engineering analysis problems. For example, the displacement response (linear
or nonlinear) of any structure under any specified load condition can be found
by minimizing its potential energy. Similarly, the eigenvalues and eigenvectors
of any discrete system can be found by minimizing the Rayleigh quotient.

As discussed in Chapter 2, a point X" will be a relative minimum of f{X) if the
necessary conditions

of

SX=X9=0 i=12...n (6.2)

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
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are satisfied. The point X" is guaranteed to be a relative minimum if the Hessian matrix
is positive definite, that is,

o*f
0x; 0x;

Ixs = Uxe = [ (X*)] = positive definite (6.3)

Equations (6.2) and (6.3) can be used to identify the optimum point during numer-
ical computations. However, if the function is not differentiable, Eqs. (6.2) and (6.3)
cannot be applied to identify the optimum point. For example, consider the function

f(x)—{ ax for x>0

—bx for x<0

where a >0 and b > 0. The graph of this function is shown in Figure 6.1. It can be
seen that this function is not differentiable at the minimum point, x" =0, and hence
Egs. (6.2) and (6.3) are not applicable in identifying x". In all such cases, the commonly
understood notion of a minimum, namely, AX") <f(X) for all X, can be used only
to identify a minimum point. The following example illustrates the formulation of a
typical analysis problem as an unconstrained minimization problem.

Example 6.1 A cantilever beam is subjected to an end force P, and an end
moment M, as shown in Figure 6.2a. By using a one-finite-element model indicated
in Figure 6.2b, the transverse displacement, w(x), can be expressed as [6.1]

U

u
w(x) = {N;(x) Ny (x) N3(x) Ny(x)} MZ (E1)

3

Uy

where N,(x) are called shape functions and are given by

N,(x) =2a* =30 + 1 (E2)
Ny(x) = (& = 2a* + )l (E3)
N;(x) = —2a + 3a? (E4)
Nyx) = (& — o)l (E5)

a = x/l, and u,, u,, us, and u, are the end displacements (or slopes) of the beam. The
deflection of the beam at point A can be found by minimizing the potential energy of
the beam (F), which can be expressed as [6.1]

2
F=1p! EI(‘;—) dx — Pyuy — My, (E6)

Jx)

fix)=—bx —»=

0

Figure 6.1 Function is not differentiable at minimum point.
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Figure 6.2 Finite-element model of a cantilever beam.

u]=0 P

where E is Young’s modulus and 7 is the area moment of inertia of the beam. Formulate
the optimization problem in terms of the variables x; = u; and x, = u,/ for the case
Py*/EI = 1 and M [*/EI = 2.

SOLUTION  Since the boundary conditions are given by u; = u, = 0, w(x) can be
expressed as

w(x) = (=207 + 3a?)uy + (@ — a?)luy (E7)
that
E = 1—2(—2(1 + 1) + T(?’(X - 1) (Eg)

Eq. (E6) can be rewritten as

F=1 1 Er(22) 1da = Pyuy - M
=3J)o = @ — Folz — Molty

2

l 3 2
_ E?” 0 61—”;(—2a+ D+ 24 Ga = )| da— Py, — My,
EI 2p
= l—3(6u3 + 2uyl” — 6uzuyl) — Pouy — Mouy (E9)

By using the relations u; = x,, uyl = x,, Pyl>/EI = 1, and M,,/’/EI = 2, and intro-
ducing the notation f = FI3/EI, Eq. (E9) can be expressed as

f= 6x% — 6x,x, + 2x§ — X — 2%, (E10)
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Thus the optimization problem is to determine x; and x,, which minimize the
function f given by Eq. (E10).

6.1.1 Classification of Unconstrained Minimization Methods

Several methods are available for solving an unconstrained minimization problem.
These methods can be classified into two broad categories as direct search methods
and descent methods as indicated in Table 6.1. The direct search methods require only
the objective function values but not the partial derivatives of the function in finding
the minimum and hence are often called the nongradient methods. The direct search
methods are also known as zeroth-order methods since they use zeroth-order deriva-
tives of the function. These methods are most suitable for simple problems involving
a relatively small number of variables. These methods are, in general, less efficient
than the descent methods. The descent techniques require, in addition to the function
values, the first and in some cases the second derivatives of the objective function.
Since more information about the function being minimized is used (through the use
of derivatives), descent methods are generally more efficient than direct search tech-
niques. The descent methods are known as gradient methods. Among the gradient
methods, those requiring only first derivatives of the function are called first-order
methods; those requiring both first and second derivatives of the function are termed
second-order methods.

6.1.2 General Approach

All the unconstrained minimization methods are iterative in nature and hence they start
from an initial trial solution and proceed toward the minimum point in a sequential
manner as shown in Figure 5.3. The iterative process is given by

X, =X, + 'S, (6.4)

where X; is the starting point, S; is the search direction, A7 is the optimal step length,
and X, is the final point in iteration i. It is important to note that all the unconstrained
minimization methods (i) require an initial point X, to start the iterative procedure, and
(ii) differ from one another only in the method of generating the new point X, (from
X;) and in testing the point X, for optimality.

6.1.3 Rate of Convergence

Different iterative optimization methods have different rates of convergence. In gen-
eral, an optimization method is said to have convergence of order p if [6.2]

w k, k>0,p>1 (6.5)
IX; = Xs|p =7~ — 70T
Table 6.1 Unconstrained minimization methods.
Direct search methods? Descent methods”
Random search method Steepest descent (Cauchy) method
Grid search method Fletcher—Reeves method
Univariate method Newton’s method
Pattern search methods Marquardt method
Powell’s method Quasi-Newton methods

Davidon-Fletcher—Powell method
Broyden-Fletcher—Goldfarb—Shanno method
Simplex method

“Do not require the derivatives of the function.
bRequire the derivatives of the function.
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where X; and X, denote the points obtained at the end of iterations i and i+ 1,
respectively, X" represents the optimum point, and IIXIl denotes the length or norm

of the vector X:
IX|| = /27 + 25 + - +x7

If p=1and 0<k<1, the method is said to be linearly convergent (corresponds
to slow convergence). If p = 2, the method is said to be guadratically convergent
(corresponds to fast convergence). An optimization method is said to have superlinear
convergence (corresponds to fast convergence) if

X1 = X
lim —— - 0 (6.6)
im0 [|X; — X¥|

The definitions of rates of convergence given in Egs. (6.5) and (6.6) are applica-
ble to single-variable as well as multivariable optimization problems. In the case of
single-variable problems, the vector, X;, for example, degenerates to a scalar, x;.

6.1.4 Scaling of Design Variables

The rate of convergence of most unconstrained minimization methods can be improved
by scaling the design variables. For a quadratic objective function, the scaling of the
design variables changes the condition number! of the Hessian matrix. When the con-
dition number of the Hessian matrix is 1, the steepest descent method, for example,
finds the minimum of a quadratic objective function in one iteration.

Iff= %XT [A]X denotes a quadratic term, a transformation of the form

X = [RIY or {2} = [:; ;Z] {i;} 6.7)

can be used to obtain a new quadratic term as
YT[A]Y = SYT[RIT[AIIRIY (6.8)
The matrix [R] can be selected to make [A] = [R]T[A][R] diagonal (i.e. to eliminate

the mixed quadratic terms). For this, the columns of the matrix [R] are to be chosen as
the eigenvectors of the matrix [A]. Next the diagonal elements of the matrix [A] can be

I'The condition number of an n X n matrix, [A], is defined as
cond([A]) = [I[Alll [IIA]7"]I > 1

where ||[A]|| denotes a norm of the matrix [A]. For example, the infinite norm of [A] is defined as the
maximum row sum given by

1<i<n

n
II[A]ll, = max Y |a,|
j=1

If the condition number is close to 1, the round-off errors are expected to be small in dealing with the matrix
[A]. For example, if cond[A] is large, the solution vector X of the system of equations [A]X = B is expected
to be very sensitive to small variations in [A] and B. If cond[A] is close to 1, the matrix [A] is said to be
well behaved or well conditioned. On the other hand, if cond[A] is significantly greater than 1, the matrix
[A] is said to be not well behaved or ill conditioned.
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reduced to 1 (so that the condition number of the resulting matrix will be 1) by using

the transformation
Y =[S]Z or {”}: su 0 {Zl} (6.9)
yZ 0 322 ZZ

where the matrix [S] is given by

1

[S] = ay ) (6.10)

0 Sy =

S =

y
Thus the complete transformation that reduces the Hessian matrix of fto an iden-
tity matrix is given by
X =[RI[SIZ =[T]Z (6.11)

so that the quadratic term > XT[A]X reduces to %ZT [11Z.

If the objective function is not a quadratic, the Hessian matrix and hence the
transformations vary with the design vector from iteration to iteration. For example,
the second-order Taylor’s series approximation of a general nonlinear function at the
design vector X; can be expressed as

fX)=c+BTX + %XT[A]X 6.12)
where
c =X (6.13)
af
0x, X,
B=4q : ¢ (6.14)
af
0x,, X,
[ o 0%
ox? X, 0,0, |
[A] = : : (6.15)
o’f o*f
_6xn0x1 X, ox2 x|

The transformations indicated by Eqgs. (6.7) and (6.9) can be applied to the matrix
[A] given by Eq. (6.15). The procedure of scaling the design variables is illustrated
with the following example.

Example 6.2  Find a suitable scaling (or transformation) of variables to reduce the
condition number of the Hessian matrix of the following function to 1:

f(x), %) = 6x7 — 6x,x, + 225 — x; — 2x, (El)
SOLUTION The quadratic function can be expressed as

fX)=BX + %XT [A1X (E2)
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(g (2 o[ 4

As indicated above, the desired scaling of variables can be accomplished in two
stages.

where

Stage 1: Reducing [A] to a Diagonal Form, [A]
The eigenvectors of the matrix [A] can be found by solving the eigenvalue problem
[A] = A4[/]]w; =0 (E3)

where 4; is the ith eigenvalue and w, is the corresponding eigenvector. In the present
case, the eigenvalues, 4;, are given by

12-4 -6

=12 —-164,+12=0 (E4)
-6 4—2

which yield 4; = 8 + 4/52 = 15.2111 and 4, = 8 — 1/52 = 0.7889. The eigenvector
u, corresponding to 4; can be found by solving Eq. (E3):

12-21 -6 u 0
l _é 4_/11] {u;}:{O} or (12— A))u,, — 6u,; =0

or u,; = —0.5332u,

that is,
S LT 1.0
P \uyy J T ) —0.5332
and
12— 4 -6 u 0
24 ) =8 e
or Uy, = 1.8685u,,
that is,

woodm 1.0
2T Yuy [ ) 1.8685

Thus the transformation that reduces [A] to a diagonal form is given by

) _ _ 1 Ly
X =[R]Y =[u; u,]Y = —0.5352 1.8685] {y2} =

that is,
Xp=y1+»n
x, = —0.5352y, + 1.8685y,

This yields the new quadratic term as %YT [Z]Y, where

[A] = [RI"[A][R] =

19.5682 0.0
0.0 3.5432
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and hence the quadratic function becomes
fG1-32) = BTIRIY + SYT[A]Y
= 0.0704y, — 4.7370y, + 5(19.8682)y + 5(3.5432)y? (E6)

Stage 2: Reducing [A] to a Unit Matrix
The transformation is given by Y = [S]Z, where

1

— 0
(5] = | V19-5682 _[02262 0.0 ]

0 1 00 05313

V/3.5432

Stage 3: Complete Transformation

The total transformation is given by
X =[R]Y = [R][S]Z = [T]Z (E7)

where

1 1 0.2262 0
[T] = [RI[S] = l ] l ]
—0.5352 1.8685( |0 0.5313

0.2262 0.5313
[ ] e

-0.1211 0.9927

or
x, = 0.2262z, +0.5313z,

x, = —0.1211z, 4+ 0.9927z,
With this transformation, the quadratic function of Eq. (E1) becomes
fG1,2) = BITIZ + SZTTIT[AITIZ
= 0.0160z, — 25167z, + 122 + 122 (E9)

The contours of the quadratic functions given by Egs. (E1), (E6), and (E9) are
shown in Figure 6.3a—c, respectively.

Direct Search Methods

6.2 RANDOM SEARCH METHODS

Random search methods are based on the use of random numbers in finding the min-
imum point. Since most of the computer libraries have random number generators,
these methods can be used quite conveniently. Some of the best known random search
methods are presented in this section.

6.2.1 Random Jumping Method

Although the problem is an unconstrained one, we establish the bounds /; and u; for
each design variable x;, i = 1, 2, ..., n, for generating the random values of x;:

L<x,<u, i=12,....n (6.16)
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Figure 6.3 (Continued)

In the random jumping method, we generate sets of n random numbers (r, r,,
..., ,), that are uniformly distributed between 0 and 1. Each set of these numbers is
used to find a point, X, inside the hypercube defined by Eq. (6.16) as

X L+ r(u =1)
X = x.z _ L+ ”2('142 - 1) 6.17)
X, L+r,u,—1,)

and the value of the function is evaluated at this point X. By generating a large number
of random points X and evaluating the value of the objective function at each of these
points, we can take the smallest value of f{X) as the desired minimum point.

6.2.2 Random Walk Method

The random walk method is based on generating a sequence of improved approxima-
tions to the minimum, each derived from the preceding approximation. Thus if X; is
the approximation to the minimum obtained in the (i — 1)th stage (or step or iteration),
the new or improved approximation in the ith stage is found from the relation

X, =X, + u, (6.18)

where A is a prescribed scalar step length and u; is a unit random vector generated in
the ith stage. The detailed procedure of this method is given by the following steps
[6.3]:
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1. Start with an initial point X,, a sufficiently large initial step length 4, a
minimum allowable step length ¢, and a maximum permissible number of
iterations NV.

2. Find the function value f; = fiX).

. Set the iteration number as i = 1.

w

4. Generate a set of n random numbers r|, r,, ..., r, each lying in the interval
[—1, 1] and formulate the unit vector u as

1 )

u= (6.19)
(rf + r% + e 12)1/2

Ty

The directions generated using Eq. (6.19) are expected to have a bias toward
the diagonals of the unit hypercube [6.3]. To avoid such a bias, the length of
the vector, R, is computed as

R= (r% + rg + e+ rﬁ)l/2

and the random numbers generated (r|, r,, ..., r,,) are accepted only if R <1
but are discarded if R > 1. If the random numbers are accepted, the unbiased
random vector u, is given by Eq. (6.19).

5. Compute the new vector and the corresponding function value as X = X, + Au
and f = f(X).

6. Compare the values of fand f;. If f < f}, set the new values as X, = X and f; =f
and go to step 3. If f > f}, go to step 7.

7. If i < N, set the new iteration number as i =i + 1 and go to step 4. On the other
hand, if i > N, go to step 8.

8. Compute the new, reduced, step length as 4 = A/2. If the new step length is
smaller than or equal to &, go to step 9. Otherwise (i.e. if the new step length
is greater than €), go to step 4.

9. Stop the procedure by taking X, ~ X, and f,, ~ f}.
This method is illustrated with the following example.

Example 6.3 Minimize f(x,,x,) = x; —x, + Zx% + 2xx, + xé using random walk
method from the point X, = {88} with a starting step length of 4 = 1.0. Take
€ =0.05 and N = 100.

SOLUTION The results are summarized in Table 6.2, where only the trials that pro-
duced an improvement are shown.

6.2.3 Random Walk Method with Direction Exploitation

In the random walk method described in Section 6.2.2, we proceed to generate a new
unit random vector u,, ; as soon as we find that u, is successful in reducing the function
value for a fixed step length 4. However, we can expect to achieve a further decrease
in the function value by taking a longer step length along the direction u;. Thus the
random walk method can be improved if the maximum possible step is taken along
each successful direction. This can be achieved by using any of the one-dimensional
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Table 6.2 Minimization of f by random walk method.

Step Number of Current objective

length, trials Components of X + Au function value,

A required” 1 2 fi =X, + iu)

1.0 1 —-0.93696 0.34943 —-0.06329

1.0 2 —-1.15271 1.32588 —-1.11986
Next 100 trials did not reduce the function value.

0.5 1 —1.34361 1.788 00 —1.128 84

0.5 3 —-1.07318 1.36744 —-1.20232
Next 100 trials did not reduce the function value.

0.25 4 —-0.864 19 1.23025 —-1.21362

0.25 2 —-0.869 55 1.48019 —-1.22074

0.25 8 —-1.10661 1.55958 —-1.23642

0.25 30 —0.94278 1.37074 —1.24154

0.25 6 —1.08729 1.57474 —1.24222

0.25 50 —-0.926 06 1.383 68 —1.24274

0.25 23 -1.07912 1.58135 —1.24374
Next 100 trials did not reduce the function value.

0.125 1 -0.979 86 1.505 38 —1.24894
Next 100 trials did not reduce the function value.

0.0625 100 trials did not reduce the function value.

0.03125 As this step length is smaller than ¢, the program is terminated.

“Out of the directions generated that satisfy R <1, number of trials required to find a direction that also
reduces the value of f.

minimization methods discussed in Chapter 5. According to this procedure, the new
vector X, is found as

X =X+ Ay, (6.20)
where A7 is the optimal step length found along the direction u; so that

fis1 =fX; + Afny) = n}&nf(Xi + Au;) (6.21)

The search method incorporating this feature is called the random walk method
with direction exploitation.

6.2.4 Advantages of Random Search Methods

1. These methods can work even if the objective function is discontinuous and
nondifferentiable at some of the points.

2. The random methods can be used to find the global minimum when the objec-
tive function possesses several relative minima.

3. These methods are applicable when other methods fail due to local difficulties
such as sharply varying functions and shallow regions.

4. Although the random methods are not very efficient by themselves, they can
be used in the early stages of optimization to detect the region where the global
minimum is likely to be found. Once this region is found, some of the more effi-
cient techniques can be used to find the precise location of the global minimum
point.
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6.3 GRID SEARCH METHOD

This method involves setting up a suitable grid in the design space, evaluating the
objective function at all the gird points, and finding the grid point corresponding to the
lowest function value. For example, if the lower and upper bounds on the ith design
variable are known to be /; and u;, respectively, we can divide the range (/;, ;) into
p; — 1 equal parts so that xl(.]), xl@ .. .xgpi) denote the grid points along the x; axis (i =1,
2, ...,n). This leads to atotal of p, p, -+ p, grid points in the design space. A grid with
p; =4 is shown in a two-dimensional design space in Figure 6.4. The grid points can
also be chosen based on methods of experimental design [6.4, 6.5]. It can be seen that
the grid method requires prohibitively large number of function evaluations in most
practical problems. For example, for a problem with 10 design variables (n = 10), the
number of grid points will be 3!° = 59 049 with p; = 3 and 4'° = 1 048 576 with p, = 4.
However, for problems with a small number of design variables, the grid method can
be used conveniently to find an approximate minimum. Also, the grid method can be
used to find a good starting point for one of the more efficient methods.

6.4 UNIVARIATE METHOD

In this method we change only one variable at a time and seek to produce a sequence of
improved approximations to the minimum point. By starting at a base point X; in the
ith iteration, we fix the values of n — 1 variables and vary the remaining variable. Since
only one variable is changed, the problem becomes a one-dimensional minimization
problem and any of the methods discussed in Chapter 5 can be used to produce a new
base point X;, ;. The search is now continued in a new direction. This new direction
is obtained by changing any one of the n— 1 variables that were fixed in the previ-
ous iteration. In fact, the search procedure is continued by taking each coordinate
direction in turn. After all the n directions are searched sequentially, the first cycle is
complete and hence we repeat the entire process of sequential minimization. The pro-
cedure is continued until no further improvement is possible in the objective function
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Figure 6.4 Grid with p; = 4.
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in any of the n directions of a cycle. The univariate method can be summarized as
follows:

1. Choose an arbitrary staring point X, and set i = 1.
2. Find the search direction S; as

(1, 0, 0, ..., 00 for i=1, n+1, 2n+1, ...

(1, 0, 0, ..., 00 for i=2, n+2, 2n+2,...
Sl.T=<((), 0,1, ..., 00 for i=3 n+3, 2n+3,... (6.22)

©, 0,0, ..., 1) for i=n, 2n, 3n,...

3. Determine whether 4; should be positive or negative. For the current direction
S,, this means find whether the function value decreases in the positive or neg-
ative direction. For this we take a small probe length (¢) and evaluate f; = f{iX,),
ff=fX;+€S),andf~ =fiX; — eS). If f+ < f;, S; will be the correct direction
for decreasing the value of fand if f~ < f;, —S, will be the correct one. If both
ST and f~ are greater than f;, we take X, as the minimum along the direction S,.

4. Find the optimal step length 47 such that

fX; £ AS) = rr}lin(X,- +A,;S)) (6.23)

where + or — sign has to be used depending upon whether S; or —S; is the
direction for decreasing the function value.

S. Set X;;; = X; £ 47S; depending on the direction for decreasing the function
value, and f;,; = AX,, ).

6. Set the new value of i =i + 1 and go to step 2. Continue this procedure until
no significant change is achieved in the value of the objective function.

The univariate method is very simple and can be implemented easily. However,
it will not converge rapidly to the optimum solution, as it has a tendency to oscillate
with steadily decreasing progress toward the optimum. Hence it will be better to stop
the computations at some point near to the optimum point rather than trying to find
the precise optimum point. In theory, the univariate method can be applied to find the
minimum of any function that possesses continuous derivatives. However, if the func-
tion has a steep valley, the method may not even converge. For example, consider the
contours of a function of two variables with a valley as shown in Figure 6.5. If the
univariate search starts at point P, the function value cannot be decreased either in
the direction +S, or in the direction +S,. Thus the search comes to a halt and one
may be misled to take the point P, which is certainly not the optimum point, as the
optimum point. This situation arises whenever the value of the probe length € needed
for detecting the proper direction (+S; or +S,) happens to be less than the number of
significant figures used in the computations.

Example 6.4  Minimize f(x;,x,) = x; — x, +2x] + 2xx, + x5 with the starting
point (0, 0).

SOLUTION We will take the probe length () as 0.01 to find the correct direction for
decreasing the function value in step 3. Further, we will use the differential calculus
method to find the optimum step length 47 along the direction +S; in step 4.
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Figure 6.5 Failure of the univariate method on a steep valley.

Iterationi =1

Step1: Setasi=1and X, = {8}

1

0

Step 3: To find whether the value of fdecreases along S; or —S,, we use the probe
length €. Since

Step 2: Choose the search direction S; as S; =

S =Xy =/(0,0) =0,

FH=f(X, +€S,) = f(€,0) = 0.01 — 0 +2(0.0001)
+0+0=0.0102 >,

f~=f(X, —€S,) = f(~¢,0) = —0.01 — 0 + 2(0.0001)
+0+0=-0.0098 < f;,

—S, is the correct direction for minimizing f from X.
Step 4: To find the optimum step length A7, we minimize

J&X; = 48) =f(=4,,