

�

� �

�

Engineering Optimization

�

� �

�

�

� �

�

Engineering Optimization
Theory and Practice

Fifth Edition

Singiresu S Rao
University of Miami
Coral Gables, Florida

�

� �

�

This edition first published 2020
© 2020 John Wiley & Sons, Inc.

Edition History
John Wiley & Sons Ltd (4e, 2009)

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permissions.

The right of Singiresu S Rao to be identified as the author of this work has been asserted in accordance
with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability or
fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product is
referred to in this work as a citation and/or potential source of further information does not mean that the
publisher and authors endorse the information or services the organization, website, or product may provide
or recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and when
it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial
damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Rao, Singiresu S., 1944- author.
Title: Engineering optimization : theory and practice / Singiresu S Rao,

University of Miami, Coral Gables, FL, US.
Description: Fifth edition. | Hoboken, NJ, USA : John Wiley & Sons, Inc.,

2020. | Includes bibliographical references and index. |
Identifiers: LCCN 2019011088 (print) | LCCN 2019011277 (ebook) | ISBN

9781119454762 (Adobe PDF) | ISBN 9781119454793 (ePub) | ISBN 9781119454717
(hardback)

Subjects: LCSH: Engineering–Mathematical models. | Mathematical optimization.
Classification: LCC TA342 (ebook) | LCC TA342 .R36 2019 (print) | DDC

620.001/5196–dc23
LC record available at https://lccn.loc.gov/2019011088

Cover Design: Wiley
Cover Image: © Nayanba Jadeja/Getty Images

Set in 10.25/12pt TimesLTStd by SPi Global, Chennai, India

Printed in United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com
https://lccn.loc.gov/2019011088

�

� �

�

�

� �

�

�

� �

�

Contents

Preface xvii
Acknowledgment xxi
About the Author xxiii
About the Companion Website xxv

1 Introduction to Optimization 1

1.1 Introduction 1

1.2 Historical Development 3

1.2.1 Modern Methods of Optimization 4

1.3 Engineering Applications of Optimization 5

1.4 Statement of An Optimization Problem 6

1.4.1 Design Vector 6

1.4.2 Design Constraints 7

1.4.3 Constraint Surface 7

1.4.4 Objective Function 8

1.4.5 Objective Function Surfaces 9

1.5 Classification of Optimization Problems 14

1.5.1 Classification Based on the Existence of Constraints 14

1.5.2 Classification Based on the Nature of the Design Variables 14

1.5.3 Classification Based on the Physical Structure of the Problem 15

1.5.4 Classification Based on the Nature of the Equations Involved 18

1.5.5 Classification Based on the Permissible Values of the Design Variables 27

1.5.6 Classification Based on the Deterministic Nature of the Variables 28

1.5.7 Classification Based on the Separability of the Functions 29

1.5.8 Classification Based on the Number of Objective Functions 31

1.6 Optimization Techniques 33

1.7 Engineering Optimization Literature 34

1.8 Solutions Using MATLAB 34

References and Bibliography 34

Review Questions 40

Problems 41

2 Classical Optimization Techniques 57

2.1 Introduction 57

2.2 Single-Variable Optimization 57

2.3 Multivariable Optimization with no Constraints 62

2.3.1 Definition: rth Differential of f 62

2.3.2 Semidefinite Case 67

2.3.3 Saddle Point 67

2.4 Multivariable Optimization with Equality Constraints 69

2.4.1 Solution by Direct Substitution 69

2.4.2 Solution by the Method of Constrained Variation 71

2.4.3 Solution By the Method of Lagrange Multipliers 77

vii

�

� �

�

viii Contents

2.5 Multivariable Optimization with Inequality Constraints 85

2.5.1 Kuhn–Tucker Conditions 90

2.5.2 Constraint Qualification 90

2.6 Convex Programming Problem 96

References and Bibliography 96

Review Questions 97

Problems 98

3 Linear Programming I: Simplex Method 109

3.1 Introduction 109

3.2 Applications of Linear Programming 110

3.3 Standard form of a Linear Programming Problem 112

3.3.1 Scalar Form 112

3.3.2 Matrix Form 112

3.4 Geometry of Linear Programming Problems 114

3.5 Definitions and Theorems 117

3.5.1 Definitions 117

3.5.2 Theorems 120

3.6 Solution of a System of Linear Simultaneous Equations 122

3.7 Pivotal Reduction of a General System of Equations 123

3.8 Motivation of the Simplex Method 127

3.9 Simplex Algorithm 128

3.9.1 Identifying an Optimal Point 128

3.9.2 Improving a Nonoptimal Basic Feasible Solution 129

3.10 Two Phases of the Simplex Method 137

3.11 Solutions Using MATLAB 143

References and Bibliography 143

Review Questions 143

Problems 145

4 Linear Programming II: Additional Topics and Extensions 159

4.1 Introduction 159

4.2 Revised Simplex Method 159

4.3 Duality in Linear Programming 173

4.3.1 Symmetric Primal–Dual Relations 173

4.3.2 General Primal–Dual Relations 174

4.3.3 Primal–Dual Relations when the Primal Is in Standard Form 175

4.3.4 Duality Theorems 176

4.3.5 Dual Simplex Method 176

4.4 Decomposition Principle 180

4.5 Sensitivity or Postoptimality Analysis 187

4.5.1 Changes in the Right-Hand-Side Constants bi 188

4.5.2 Changes in the Cost Coefficients cj 192

4.5.3 Addition of New Variables 194

4.5.4 Changes in the Constraint Coefficients aij 195

4.5.5 Addition of Constraints 197

4.6 Transportation Problem 199

�

� �

�

Contents ix

4.7 Karmarkar’s Interior Method 202

4.7.1 Statement of the Problem 203

4.7.2 Conversion of an LP Problem into the Required Form 203

4.7.3 Algorithm 205

4.8 Quadratic Programming 208

4.9 Solutions Using Matlab 214

References and Bibliography 214

Review Questions 215

Problems 216

5 Nonlinear Programming I: One-Dimensional Minimization Methods 225

5.1 Introduction 225

5.2 Unimodal Function 230

ELIMINATION METHODS 231

5.3 Unrestricted Search 231

5.3.1 Search with Fixed Step Size 231

5.3.2 Search with Accelerated Step Size 232

5.4 Exhaustive Search 232

5.5 Dichotomous Search 234

5.6 Interval Halving Method 236

5.7 Fibonacci Method 238

5.8 Golden Section Method 243

5.9 Comparison of Elimination Methods 246

INTERPOLATION METHODS 247

5.10 Quadratic Interpolation Method 248

5.11 Cubic Interpolation Method 253

5.12 Direct Root Methods 259

5.12.1 Newton Method 259

5.12.2 Quasi-Newton Method 261

5.12.3 Secant Method 263

5.13 Practical Considerations 265

5.13.1 How to Make the Methods Efficient and More Reliable 265

5.13.2 Implementation in Multivariable Optimization Problems 266

5.13.3 Comparison of Methods 266

5.14 Solutions Using MATLAB 267

References and Bibliography 267

Review Questions 267

Problems 268

6 Nonlinear Programming II: Unconstrained Optimization Techniques 273

6.1 Introduction 273

6.1.1 Classification of Unconstrained Minimization Methods 276

6.1.2 General Approach 276

6.1.3 Rate of Convergence 276

6.1.4 Scaling of Design Variables 277

�

� �

�

x Contents

DIRECT SEARCH METHODS 280

6.2 Random Search Methods 280

6.2.1 Random Jumping Method 280

6.2.2 Random Walk Method 282

6.2.3 Random Walk Method with Direction Exploitation 283

6.2.4 Advantages of Random Search Methods 284

6.3 Grid Search Method 285

6.4 Univariate Method 285

6.5 Pattern Directions 288

6.6 Powell’s Method 289

6.6.1 Conjugate Directions 289

6.6.2 Algorithm 293

6.7 Simplex Method 298

6.7.1 Reflection 298

6.7.2 Expansion 301

6.7.3 Contraction 301

INDIRECT SEARCH (DESCENT) METHODS 304

6.8 Gradient of a Function 304

6.8.1 Evaluation of the Gradient 306

6.8.2 Rate of Change of a Function Along a Direction 307

6.9 Steepest Descent (Cauchy) Method 308

6.10 Conjugate Gradient (Fletcher–Reeves) Method 310

6.10.1 Development of the Fletcher–Reeves Method 310

6.10.2 Fletcher–Reeves Method 311

6.11 Newton’s Method 313

6.12 Marquardt Method 316

6.13 Quasi-Newton Methods 317

6.13.1 Computation of [Bi] 318

6.13.2 Rank 1 Updates 319

6.13.3 Rank 2 Updates 320

6.14 Davidon–Fletcher–Powell Method 321

6.15 Broyden–Fletcher–Goldfarb–Shanno Method 327

6.16 Test Functions 330

6.17 Solutions Using Matlab 332

References and Bibliography 333

Review Questions 334

Problems 336

7 Nonlinear Programming III: Constrained Optimization Techniques 347

7.1 Introduction 347

7.2 Characteristics of a Constrained Problem 347

DIRECT METHODS 350

7.3 Random Search Methods 350

7.4 Complex Method 351

7.5 Sequential Linear Programming 353

�

� �

�

Contents xi

7.6 Basic Approach in the Methods of Feasible Directions 360

7.7 Zoutendijk’s Method of Feasible Directions 360

7.7.1 Direction-Finding Problem 362

7.7.2 Determination of Step Length 364

7.7.3 Termination Criteria 367

7.8 Rosen’s Gradient Projection Method 369

7.8.1 Determination of Step Length 372

7.9 Generalized Reduced Gradient Method 377

7.10 Sequential Quadratic Programming 386

7.10.1 Derivation 386

7.10.2 Solution Procedure 389

INDIRECT METHODS 392

7.11 Transformation Techniques 392

7.12 Basic Approach of the Penalty Function Method 394

7.13 Interior Penalty Function Method 396

7.14 Convex Programming Problem 405

7.15 Exterior Penalty Function Method 406

7.16 Extrapolation Techniques in the Interior Penalty Function Method 410

7.16.1 Extrapolation of the Design Vector X 410

7.16.2 Extrapolation of the Function f 412

7.17 Extended Interior Penalty Function Methods 414

7.17.1 Linear Extended Penalty Function Method 414

7.17.2 Quadratic Extended Penalty Function Method 415

7.18 Penalty Function Method for Problems with Mixed Equality and Inequality
Constraints 416

7.18.1 Interior Penalty Function Method 416

7.18.2 Exterior Penalty Function Method 418

7.19 Penalty Function Method for Parametric Constraints 418

7.19.1 Parametric Constraint 418

7.19.2 Handling Parametric Constraints 420

7.20 Augmented Lagrange Multiplier Method 422

7.20.1 Equality-Constrained Problems 422

7.20.2 Inequality-Constrained Problems 423

7.20.3 Mixed Equality–Inequality-Constrained Problems 425

7.21 Checking the Convergence of Constrained Optimization Problems 426

7.21.1 Perturbing the Design Vector 427

7.21.2 Testing the Kuhn–Tucker Conditions 427

7.22 Test Problems 428

7.22.1 Design of a Three-Bar Truss 429

7.22.2 Design of a Twenty-Five-Bar Space Truss 430

7.22.3 Welded Beam Design 431

7.22.4 Speed Reducer (Gear Train) Design 433

7.22.5 Heat Exchanger Design [7.42] 435

7.23 Solutions Using MATLAB 435

References and Bibliography 435

Review Questions 437

Problems 439

�

� �

�

xii Contents

8 Geometric Programming 449

8.1 Introduction 449

8.2 Posynomial 449

8.3 Unconstrained Minimization Problem 450

8.4 Solution of an Unconstrained Geometric Programming Program using Differential
Calculus 450

8.4.1 Degree of Difficulty 453

8.4.2 Sufficiency Condition 453

8.4.3 Finding the Optimal Values of Design Variables 453

8.5 Solution of an Unconstrained Geometric Programming Problem Using
Arithmetic–Geometric Inequality 457

8.6 Primal–dual Relationship and Sufficiency Conditions in the Unconstrained
Case 458

8.6.1 Primal and Dual Problems 461

8.6.2 Computational Procedure 461

8.7 Constrained Minimization 464

8.8 Solution of a Constrained Geometric Programming Problem 465

8.8.1 Optimum Design Variables 466

8.9 Primal and Dual Programs in the Case of Less-than Inequalities 466

8.10 Geometric Programming with Mixed Inequality Constraints 473

8.11 Complementary Geometric Programming 475

8.11.1 Solution Procedure 477

8.11.2 Degree of Difficulty 478

8.12 Applications of Geometric Programming 480

References and Bibliography 491

Review Questions 493

Problems 493

9 Dynamic Programming 497

9.1 Introduction 497

9.2 Multistage Decision Processes 498

9.2.1 Definition and Examples 498

9.2.2 Representation of a Multistage Decision Process 499

9.2.3 Conversion of a Nonserial System to a Serial System 500

9.2.4 Types of Multistage Decision Problems 501

9.3 Concept of Suboptimization and Principle of Optimality 501

9.4 Computational Procedure in Dynamic Programming 505

9.5 Example Illustrating the Calculus Method of Solution 507

9.6 Example Illustrating the Tabular Method of Solution 512

9.6.1 Suboptimization of Stage 1 (Component 1) 514

9.6.2 Suboptimization of Stages 2 and 1 (Components 2 and 1) 514

9.6.3 Suboptimization of Stages 3, 2, and 1 (Components 3, 2, and 1) 515

9.7 Conversion of a Final Value Problem into an Initial Value Problem 517

9.8 Linear Programming as a Case of Dynamic Programming 519

9.9 Continuous Dynamic Programming 523

9.10 Additional Applications 526

9.10.1 Design of Continuous Beams 526

9.10.2 Optimal Layout (Geometry) of a Truss 527

�

� �

�

Contents xiii

9.10.3 Optimal Design of a Gear Train 528

9.10.4 Design of a Minimum-Cost Drainage System 529

References and Bibliography 530

Review Questions 531

Problems 532

10 Integer Programming 537

10.1 Introduction 537

INTEGER LINEAR PROGRAMMING 538

10.2 Graphical Representation 538

10.3 Gomory’s Cutting Plane Method 540

10.3.1 Concept of a Cutting Plane 540

10.3.2 Gomory’s Method for All-Integer Programming Problems 541

10.3.3 Gomory’s Method for Mixed-Integer Programming Problems 547

10.4 Balas’ Algorithm for Zero–One Programming Problems 551

INTEGER NONLINEAR PROGRAMMING 553

10.5 Integer Polynomial Programming 553

10.5.1 Representation of an Integer Variable by an Equivalent System of Binary
Variables 553

10.5.2 Conversion of a Zero–One Polynomial Programming Problem into a
Zero–One LP Problem 555

10.6 Branch-and-Bound Method 556

10.7 Sequential Linear Discrete Programming 561

10.8 Generalized Penalty Function Method 564

10.9 Solutions Using MATLAB 569

References and Bibliography 569

Review Questions 570

Problems 571

11 Stochastic Programming 575

11.1 Introduction 575

11.2 Basic Concepts of Probability Theory 575

11.2.1 Definition of Probability 575

11.2.2 Random Variables and Probability Density Functions 576

11.2.3 Mean and Standard Deviation 578

11.2.4 Function of a Random Variable 580

11.2.5 Jointly Distributed Random Variables 581

11.2.6 Covariance and Correlation 583

11.2.7 Functions of Several Random Variables 583

11.2.8 Probability Distributions 585

11.2.9 Central Limit Theorem 589

11.3 Stochastic Linear Programming 589

11.4 Stochastic Nonlinear Programming 594

11.4.1 Objective Function 594

11.4.2 Constraints 595

11.5 Stochastic Geometric Programming 600

�

� �

�

xiv Contents

References and Bibliography 602

Review Questions 603

Problems 604

12 Optimal Control and Optimality Criteria Methods 609

12.1 Introduction 609

12.2 Calculus of Variations 609

12.2.1 Introduction 609

12.2.2 Problem of Calculus of Variations 610

12.2.3 Lagrange Multipliers and Constraints 615

12.2.4 Generalization 618

12.3 Optimal Control Theory 619

12.3.1 Necessary Conditions for Optimal Control 619

12.3.2 Necessary Conditions for a General Problem 621

12.4 Optimality Criteria Methods 622

12.4.1 Optimality Criteria with a Single Displacement Constraint 623

12.4.2 Optimality Criteria with Multiple Displacement Constraints 624

12.4.3 Reciprocal Approximations 625

References and Bibliography 628

Review Questions 628

Problems 629

13 Modern Methods of Optimization 633

13.1 Introduction 633

13.2 Genetic Algorithms 633

13.2.1 Introduction 633

13.2.2 Representation of Design Variables 634

13.2.3 Representation of Objective Function and Constraints 635

13.2.4 Genetic Operators 636

13.2.5 Algorithm 640

13.2.6 Numerical Results 641

13.3 Simulated Annealing 641

13.3.1 Introduction 641

13.3.2 Procedure 642

13.3.3 Algorithm 643

13.3.4 Features of the Method 644

13.3.5 Numerical Results 644

13.4 Particle Swarm Optimization 647

13.4.1 Introduction 647

13.4.2 Computational Implementation of PSO 648

13.4.3 Improvement to the Particle Swarm Optimization Method 649

13.4.4 Solution of the Constrained Optimization Problem 649

13.5 Ant Colony Optimization 652

13.5.1 Basic Concept 652

13.5.2 Ant Searching Behavior 653

13.5.3 Path Retracing and Pheromone Updating 654

13.5.4 Pheromone Trail Evaporation 654

13.5.5 Algorithm 655

�

� �

�

Contents xv

13.6 Optimization of Fuzzy Systems 660

13.6.1 Fuzzy Set Theory 660

13.6.2 Optimization of Fuzzy Systems 662

13.6.3 Computational Procedure 663

13.6.4 Numerical Results 664

13.7 Neural-Network-Based Optimization 665

References and Bibliography 667

Review Questions 669

Problems 671

14 Metaheuristic Optimization Methods 673

14.1 Definitions 673

14.2 Metaphors Associated with Metaheuristic Optimization Methods 673

14.3 Details of Representative Metaheuristic Algorithms 680

14.3.1 Crow Search Algorithm 680

14.3.2 Firefly Optimization Algorithm (FA) 681

14.3.3 Harmony Search Algorithm 684

14.3.4 Teaching-Learning-Based Optimization (TLBO) 687

14.3.5 Honey Bee Swarm Optimization Algorithm 689

References and Bibliography 692

Review Questions 694

15 Practical Aspects of Optimization 697

15.1 Introduction 697

15.2 Reduction of Size of an Optimization Problem 697

15.2.1 Reduced Basis Technique 697

15.2.2 Design Variable Linking Technique 698

15.3 Fast Reanalysis Techniques 700

15.3.1 Incremental Response Approach 700

15.3.2 Basis Vector Approach 704

15.4 Derivatives of Static Displacements and Stresses 705

15.5 Derivatives of Eigenvalues and Eigenvectors 707

15.5.1 Derivatives of 𝜆i 707

15.5.2 Derivatives of Yi 708

15.6 Derivatives of Transient Response 709

15.7 Sensitivity of Optimum Solution to Problem Parameters 712

15.7.1 Sensitivity Equations Using Kuhn–Tucker Conditions 712

15.7.2 Sensitivity Equations Using the Concept of Feasible Direction 714

References and Bibliography 715

Review Questions 716

Problems 716

16 Multilevel and Multiobjective Optimization 721

16.1 Introduction 721

16.2 Multilevel Optimization 721

16.2.1 Basic Idea 721

16.2.2 Method 722

16.3 Parallel Processing 726

�

� �

�

xvi Contents

16.4 Multiobjective Optimization 729

16.4.1 Utility Function Method 730

16.4.2 Inverted Utility Function Method 730

16.4.3 Global Criterion Method 730

16.4.4 Bounded Objective Function Method 730

16.4.5 Lexicographic Method 731

16.4.6 Goal Programming Method 732

16.4.7 Goal Attainment Method 732

16.4.8 Game Theory Approach 733

16.5 Solutions Using MATLAB 735

References and Bibliography 735

Review Questions 736

Problems 737

17 Solution of Optimization Problems Using MATLAB 739

17.1 Introduction 739

17.2 Solution of General Nonlinear Programming Problems 740

17.3 Solution of Linear Programming Problems 742

17.4 Solution of LP Problems Using Interior Point Method 743

17.5 Solution of Quadratic Programming Problems 745

17.6 Solution of One-Dimensional Minimization Problems 746

17.7 Solution of Unconstrained Optimization Problems 746

17.8 Solution of Constrained Optimization Problems 747

17.9 Solution of Binary Programming Problems 750

17.10 Solution of Multiobjective Problems 751

References and Bibliography 755

Problems 755

A Convex and Concave Functions 761

B Some Computational Aspects of Optimization 767

B.1 Choice of Method 767

B.2 Comparison of Unconstrained Methods 767

B.3 Comparison of Constrained Methods 768

B.4 Availability of Computer Programs 769

B.5 Scaling of Design Variables and Constraints 770

B.6 Computer Programs for Modern Methods of Optimization 771

References and Bibliography 772

C Introduction to MATLAB® 773

C.1 Features and Special Characters 773

C.2 Defining Matrices in MATLAB 774

C.3 Creating m-Files 775

C.4 Optimization Toolbox 775

Answers to Selected Problems 777

Index 787

�

� �

�

Preface

The ever-increasing demand on engineers to lower production costs to withstand
global competition has prompted engineers to look for rigorous methods of decision
making, such as optimization methods, to design and produce products and systems
both economically and efficiently. Optimization techniques, having reached a degree
of maturity by now, are being used in a wide spectrum of industries, including
aerospace, automotive, chemical, electrical, construction, and manufacturing indus-
tries. With rapidly advancing computer technology, computers are becoming more
powerful, and correspondingly, the size and the complexity of the problems that
can be solved using optimization techniques are also increasing. Optimization
methods, coupled with modern tools of computer-aided design, are also being used
to enhance the creative process of conceptual and detailed design of engineering
systems.

The purpose of this textbook is to present the techniques and applications of
engineering optimization in a comprehensive manner. The style of prior editions has
been retained, with the theory, computational aspects, and applications of engineering
optimization presented with detailed explanations. As in previous editions, essential
proofs and developments of the various techniques are given in a simple manner
without sacrificing accuracy. New concepts are illustrated with the help of numerical
examples. Although most engineering design problems can be solved using non-
linear programming techniques, there are a variety of engineering applications for
which other optimization methods, such as linear, geometric, dynamic, integer, and
stochastic programming techniques, are most suitable. The theory and applications
of all these techniques are also presented in the book. Some of the recently developed
optimization methods, such as genetic algorithms, simulated annealing, particle
swarm optimization, ant colony optimization, neural-network-based methods, and
fuzzy optimization, do not belong to the traditional mathematical programming
approaches. These methods are presented as modern methods of optimization. More
recently, a class of optimization methods termed the metaheuristic optimization
methods, have been evolving in the literature. The metaheuristic methods are also
included in this edition. Favorable reactions and encouragement from professors,
students, and other users of the book have provided me with the impetus to prepare
this fifth edition of the book. The following changes have been made from the previous
edition:

• Some less-important sections were condensed or deleted.
• Some sections were rewritten for better clarity.
• Some sections were expanded.
• Some of the recently-developed methods are reorganized in the form of a new

chapter titled, Modern methods of optimization.
• A new chapter titled, Metaheuristic Optimization Methods, is added by

including details of crow search, firefly, harmony search, teaching-learning,
and honey bee swarm optimization algorithms.

• A new chapter titled, Solution of optimization problems using MATLAB, is
added to illustrate the use of MATLAB for the solution of different types of
optimization problems.

xvii

�

� �

�

xviii Preface

Features

Each topic in Engineering Optimization: Theory and Practice is self-contained, with
all concepts explained fully and the derivations presented with complete details. The
computational aspects are emphasized throughout with design examples and prob-
lems taken from several fields of engineering to make the subject appealing to all
branches of engineering. A large number of solved examples, review questions, prob-
lems, project-type problems, figures, and references are included to enhance the pre-
sentation of the material.

Specific features of the book include:

• More than 155 illustrative examples accompanying most topics.
• More than 540 references to the literature of engineering optimization theory

and applications.
• More than 485 review questions to help students in reviewing and testing their

understanding of the text material.
• More than 600 problems, with solutions to most problems in the instructor’s

manual.
• More than 12 examples to illustrate the use of Matlab for the numerical solution

of optimization problems.
• Answers to review questions at the web site of the book, http://www.wiley.com/

rao.
• Answers to selected problems are given at the end of the book.

I used different parts of the book to teach optimum design and engineering opti-
mization courses at the junior/senior level as well as first-year-graduate-level at Indian
Institute of Technology, Kanpur, India; Purdue University, West Lafayette, Indiana;
and University of Miami, Coral Gables, Florida. At University of Miami, I cover
Chapter 1 and parts of Chapters 2, 3, 5, 6, 7, and 13 in a dual-level course entitled
Optimization in Design. In this course, a design project is also assigned to each student
in which the student identifies, formulates, and solves a practical engineering problem
of his/her interest by applying or modifying an optimization technique. This design
project gives the student a feeling for ways that optimization methods work in practice.
In addition, I teach a graduate level course titled Mechanical System Optimization in
which I cover Chapters 1–7, and parts of Chapters 9, 10, 11, 13, and 17. The book can
also be used, with some supplementary material, for courses with different emphasis
such as Structural Optimization, System Optimization and Optimization Theory and
Practice. The relative simplicity with which the various topics are presented makes the
book useful both to students and to practicing engineers for purposes of self-study. The
book also serves as a reference source for different engineering optimization applica-
tions. Although the emphasis of the book is on engineering applications, it would also
be useful to other areas, such as operations research and economics. A knowledge of
matrix theory and differential calculus is assumed on the part of the reader.

Contents

The book consists of 17 chapters and 3 appendixes. Chapter 1 provides an introduc-
tion to engineering optimization and optimum design and an overview of optimization
methods. The concepts of design space, constraint surfaces, and contours of objective
function are introduced here. In addition, the formulation of various types of optimiza-
tion problems is illustrated through a variety of examples taken from various fields of
engineering. Chapter 2 reviews the essentials of differential calculus useful in finding

http://www.wiley.com/rao
http://www.wiley.com/rao

�

� �

�

Preface xix

the maxima and minima of functions of several variables. The methods of constrained
variation and Lagrange multipliers are presented for solving problems with equal-
ity constraints. The Kuhn–Tucker conditions for inequality-constrained problems are
given along with a discussion of convex programming problems.

Chapters 3 and 4 deal with the solution of linear programming problems. The
characteristics of a general linear programming problem and the development of the
simplex method of solution are given in Chapter 3. Some advanced topics in linear
programming, such as the revised simplex method, duality theory, the decomposition
principle, and post-optimality analysis, are discussed in Chapter 4. The extension of
linear programming to solve quadratic programming problems is also considered in
Chapter 4.

Chapters 5–7 deal with the solution of nonlinear programming problems. In
Chapter 5, numerical methods of finding the optimum solution of a function of
a single variable are given. Chapter 6 deals with the methods of unconstrained
optimization. The algorithms for various zeroth-, first-, and second-order techniques
are discussed along with their computational aspects. Chapter 7 is concerned with the
solution of nonlinear optimization problems in the presence of inequality and equality
constraints. Both the direct and indirect methods of optimization are discussed. The
methods presented in this chapter can be treated as the most general techniques for
the solution of any optimization problem.

Chapter 8 presents the techniques of geometric programming. The solution tech-
niques for problems of mixed inequality constraints and complementary geometric
programming are also considered. In Chapter 9, computational procedures for solving
discrete and continuous dynamic programming problems are presented. The prob-
lem of dimensionality is also discussed. Chapter 10 introduces integer programming
and gives several algorithms for solving integer and discrete linear and nonlinear
optimization problems. Chapter 11 reviews the basic probability theory and presents
techniques of stochastic linear, nonlinear, and geometric programming. The theory and
applications of calculus of variations, optimal control theory, and optimality criteria
methods are discussed briefly in Chapter 12. Chapter 13 presents several modern meth-
ods of optimization including genetic algorithms, simulated annealing, particle swarm
optimization, ant colony optimization, neural-network-based methods, and fuzzy sys-
tem optimization. Chapter 14 deals with metaheuristic optimization algorithms and
introduces nearly 20 algorithms with emphasis on Crow search, Firefly, Harmony
search, Teaching-Learning and Honey bee swarm optimization algorithms. The prac-
tical aspects of optimization, including reduction of size of problem, fast reanalysis
techniques and sensitivity of optimum solutions are discussed in Chapter 15. The mul-
tilevel and multiobjective optimization methods are covered in Chapter 16. Finally,
Chapter 17 presents the solution of different types of optimization problems using the
MATLAB software.

Appendix A presents the definitions and properties of convex and concave func-
tions. A brief discussion of the computational aspects and some of the commercial
optimization programs is given in Appendix B. Finally, Appendix C presents a brief
introduction to Matlab, optimization toolbox, and use of MATLAB programs for
the solution of optimization problems. Answers to selected problems are given after
Appendix C.

�

� �

�

�

� �

�

Acknowledgment

I would like to acknowledge that the thousands of hours spent in writing/revising this
book were actually the hours that would otherwise have been spent with my wife
Kamala and other family members. My heartfelt gratitude is for Kamala’s patience
and sacrifices which could never be measured or quantified.

S.S. Rao
srao@miami.edu

April 2019

xxi

mailto:srao@miami.edu

�

� �

�

�

� �

�

About the Author

Dr. S.S. Rao is a Professor in the Department of Mechanical and
Aerospace Engineering at University of Miami, Coral Gables, Florida.
He was the Chairman of the Mechanical and Aerospace Engineering
Department during 1998–2011 at University of Miami. Prior to that,
he was a Professor in the School of Mechanical Engineering at Purdue
University, West Lafayette, Indiana; Professor of Mechanical Engineering
at San Diego State University, San Diego, California; and Indian Institute
of Technology, Kanpur, India. He was a visiting research scientist for two
years at NASA Langley Research Center, Hampton, Virginia.

Professor Rao is the author of eight textbooks: The Finite Element Method in
Engineering, Engineering Optimization, Mechanical Vibrations, Reliability-Based
Design, Vibration of Continuous Systems, Reliability Engineering, Applied Numerical
Methods for Engineers and Scientists, Optimization Methods: Theory and Applica-
tions. He coedited a three-volume Encyclopedia of Vibration. He edited four volumes
of Proceedings of the ASME Design Automation and Vibration Conferences. He
has published over 200 journal papers in the areas of multiobjective optimization,
structural dynamics and vibration, structural control, uncertainty modeling, analysis,
design and optimization using probability, fuzzy, interval, evidence and grey system
theories. Under his supervision, 34 PhD students have received their degrees. In
addition, 12 Post-Doctoral researchers and scholars have conducted research under
the guidance of Dr. Rao.

Professor Rao has received numerous awards for academic and research achieve-
ments. He was awarded the Vepa Krishnamurti Gold Medal for University First Rank
in all the five years of the BE (Bachelor of Engineering) program among students
of all branches of engineering in all the Engineering Colleges of Andhra Univer-
sity. He was awarded the Lazarus Prize for University First Rank among students
of Mechanical Engineering in all the Engineering Colleges of Andhra University. He
received the First Prize in James F. Lincoln Design Contest open for all MS and PhD
students in USA and Canada for a paper he wrote on Automated Optimization of Air-
craft Wing Structures from his PhD dissertation. He received the Eliahu I. Jury Award
for Excellence in Research from the College of Engineering, University of Miami in
2002; was awarded the Distinguished Probabilistic Methods Educator Award from the
Society of Automotive Engineers (SAE) International for Demonstrated Excellence
in Research Contributions in the Application of Probabilistic Methods to Diversified
Fields, Including Aircraft Structures, Building Structures, Machine Tools, Aircondi-
tioning and Refrigeration Systems, and Mechanisms in 1999; received the American
Society of Mechanical Engineers (ASME) Design Automation Award for Pioneer-
ing Contributions to Design Automation, particularly in Multiobjective Optimization,
and Uncertainty Modeling, Analysis and Design Using Probability, Fuzzy, Interval,
and Evidence Theories in 2012; and was awarded the ASME Worcester Reed Warner
Medal in 2013 for Outstanding Contributions to the Permanent Literature of Engi-

xxiii

�

� �

�

xxiv About the Author

neering, particularly for his Many Highly Popular Books and Numerous Trendsetting
Research Papers. Dr. Rao received the Albert Nelson Marquis Lifetime Achievement
Award for demonstrated unwavering excellence in the field of Mechanical Engineer-
ing in 2018. In 2019, the American Society of Mechanical Engineers presented him
the J.P. Den Hartog Award for his Lifetime Achievements in research, teaching and
practice of Vibration Engineering.

�

� �

�

About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/Rao/engineering_optimization

The website includes:

• Answers to review questions
• Solution to selected problems

xxv

www.wiley.com/go/Rao/engineering&uscore;optimization

�

� �

�

�

� �

�

1

Introduction to Optimization

1.1 INTRODUCTION

Optimization is the act of obtaining the best result under given circumstances. In
design, construction, and maintenance of any engineering system, engineers have to
take many technological and managerial decisions at several stages. The ultimate goal
of all such decisions is either to minimize the effort required or to maximize the desired
benefit. Since the effort required or the benefit desired in any practical situation can
be expressed as a function of certain decision variables, optimization can be defined
as the process of finding the conditions that give the maximum or minimum value of
a function. It can be seen from Figure 1.1 that if a point x* corresponds to the mini-
mum value of function f (x), the same point also corresponds to the maximum value
of the negative of the function, −f (x). Thus, without loss of generality, optimization
can be taken to mean minimization, since the maximum of a function can be found by
seeking the minimum of the negative of the same function.

In addition, the following operations on the objective function will not change the
optimum solution x* (see Figure 1.2):

1. Multiplication (or division) of f (x) by a positive constant c.
2. Addition (or subtraction) of a positive constant c to (or from) f (x).

There is no single method available for solving all optimization problems effi-
ciently. Hence a number of optimization methods have been developed for solving dif-
ferent types of optimization problems. The optimum seeking methods are also known
as mathematical programming techniques and are generally studied as a part of oper-
ations research. Operations research is a branch of mathematics concerned with the
application of scientific methods and techniques to decision-making problems and
with establishing the best or optimal solutions. The beginnings of the subject of oper-
ations research can be traced to the early period of World War II. During the war, the
British military faced the problem of allocating very scarce and limited resources (such
as fighter airplanes, radar, and submarines) to several activities (deployment to numer-
ous targets and destinations). Because there were no systematic methods available to
solve resource allocation problems, the military called upon a team of mathemati-
cians to develop methods for solving the problem in a scientific manner. The methods
developed by the team were instrumental in the winning of the Air Battle by Britain.
These methods, such as linear programming (LP), which were developed as a result
of research on (military) operations, subsequently became known as the methods of
operations research.

In recent years several new optimization methods that do not fall in the area of
traditional mathematical programming have been and are being developed. Most of

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

1

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

2 Introduction to Optimization

x*, Maximum of –f(x)

x*, Minimum of f(x)

f(x)
f(x)

x*
x

–f(x)

0

Figure 1.1 Minimum of f (x) is same as maximum of −f (x).

cf(x)

cf(x)

f(x)

f(x)

f(x)

f(x) f(x)

cf*

f* f*

x* x x* x

c + f(x)

c + f*

Figure 1.2 Optimum solution of cf (x) or c+ f (x) same as that of f (x).

these new methods can be labeled as metaheuristic optimization methods. All the
metaheuristic optimization methods have the following features: (i) they use stochas-
tic or probabilistic ideas in various steps; (ii) they are intuitive or trial and error based,
or heuristic in nature; (iii) they all use strategies that imitate the behavior or character-
istics of some species such as bees, bats, birds, cuckoos, and fireflies; (iv) they all tend
to find the global optimum solution; and (v) they are most likely to find an optimum
solution, but not necessarily all the time.

Table 1.1 lists various mathematical programming techniques together with
other well-defined areas of operations research, including the new class of methods
termed metaheuristic optimization methods. The classification given in Table 1.1 is
not unique; it is given mainly for convenience.

Mathematical programming techniques are useful in finding the minimum of a
function of several variables under a prescribed set of constraints. Stochastic process
techniques can be used to analyze problems described by a set of random variables

�

� �

�

1.2 Historical Development 3

Table 1.1 Methods of Operations Research.

Mathematical programming
or optimization techniques

Stochastic process
techniques Statistical methods

Calculus methods Statistical decision theory Regression analysis
Calculus of variations
Nonlinear programming

Markov processes
Queueing theory

Cluster analysis, pattern
recognition

Geometric programming Renewal theory Design of experiments
Quadratic programming
Linear programming

Simulation methods
Reliability theory

Discriminate analysis
(factor analysis)

Dynamic programming
Integer programming
Stochastic programming
Separable programming
Multiobjective programming
Network methods: Critical

Path Method (CPM) and
Program (Project)
Management and Review
Technique (PERT)

Game theory
Modern or nontraditional optimization techniques (including Metaheuristic

optimization methods)
Genetic algorithms Bat algorithm Salp swarm algorithm
Simulated annealing Honey Bee algorithm Cuckoo algorithm
Ant colony optimization Crow search algorithm Water evaporation

algorithm
Particle swarm optimization Firefly algorithm Passing vehicle search

algorithm
Tabu search method Harmony search algorithm Runner-root algorithm

Teaching-learning algorithm Artificial immune system
algorithm

Fruitfly algorithm Neural network-based
optimization

Fuzzy optimization

having known probability distributions. Statistical methods enable one to analyze the
experimental data and build empirical models to obtain the most accurate represen-
tation of the physical situation. This book deals with the theory and application of
mathematical programming techniques suitable for the solution of engineering design
problems. A separate chapter is devoted to the metaheuristic optimization methods.

1.2 HISTORICAL DEVELOPMENT

The existence of optimization methods can be traced to the days of Newton, Lagrange,
and Cauchy. The development of differential calculus methods of optimization was
possible because of the contributions of Newton and Leibnitz to calculus. The
foundations of calculus of variations, which deals with the minimization of func-
tionals, were laid by Bernoulli, Euler, Lagrange, and Weierstrass. The method of
optimization for constrained problems, which involves the addition of unknown
multipliers, became known by the name of its inventor, Lagrange. Cauchy made the
first application of the steepest descent method to solve unconstrained minimization
problems. Despite these early contributions, very little progress was made until the

�

� �

�

4 Introduction to Optimization

middle of the twentieth century, when high-speed digital computers made imple-
mentation of the optimization procedures possible and stimulated further research
on new methods. Spectacular advances followed, producing a massive literature on
optimization techniques. This advancement also resulted in the emergence of several
well-defined new areas in optimization theory.

It is interesting to note that the major developments in the area of numerical meth-
ods of unconstrained optimization have been made in the United Kingdom only in the
1960s. The development of the simplex method by Dantzig in 1947 for linear pro-
gramming problems and the annunciation of the principle of optimality in 1957 by
Bellman for dynamic programming problems paved the way for development of the
methods of constrained optimization. Work by Kuhn and Tucker in 1951 on the nec-
essary and sufficiency conditions for the optimal solution of programming problems
laid the foundations for a great deal of later research in nonlinear programming (NLP).
The contributions of Zoutendijk and Rosen to NLP during the early 1960s have been
significant. Although no single technique has been found to be universally applicable
for NLP problems, work of Carroll and Fiacco and McCormick allowed many difficult
problems to be solved by using the well-known techniques of unconstrained optimiza-
tion. Geometric programming (GMP) was developed in the 1960s by Duffin, Zener,
and Peterson. Gomory did pioneering work in integer programming, one of the most
exciting and rapidly developing areas of optimization. The reason for this is that most
real-world applications fall under this category of problems. Dantzig and Charnes and
Cooper developed stochastic programming techniques and solved problems by assum-
ing design parameters to be independent and normally distributed.

The desire to optimize more than one objective or goal while satisfying the phys-
ical limitations led to the development of multiobjective programming methods. Goal
programming is a well-known technique for solving specific types of multiobjec-
tive optimization problems. The goal programming was originally proposed for linear
problems by Charnes and Cooper in 1961. The foundations of game theory were laid
by von Neumann in 1928, and since then the technique has been applied to solve sev-
eral mathematical economics and military problems. Only during the last few years
has game theory been applied to solve engineering design problems.

1.2.1 Modern Methods of Optimization

The modern optimization methods, also sometimes called nontraditional optimization
methods, have emerged as powerful and popular methods for solving complex engi-
neering optimization problems in recent years. These methods include genetic algo-
rithms, simulated annealing, particle swarm optimization, ant colony optimization,
neural network-based optimization, and fuzzy optimization. The genetic algorithms
are computerized search and optimization algorithms based on the mechanics of natu-
ral genetics and natural selection. The genetic algorithms were originally proposed by
John Holland in 1975. The simulated annealing method is based on the mechanics of
the cooling process of molten metals through annealing. The method was originally
developed by Kirkpatrick, Gelatt, and Vecchi.

The particle swarm optimization algorithm mimics the behavior of social organ-
isms such as a colony or swarm of insects (for example, ants, termites, bees, and
wasps), a flock of birds, and a school of fish. The algorithm was originally proposed
by Kennedy and Eberhart in 1995. The ant colony optimization is based on the coop-
erative behavior of ant colonies, which are able to find the shortest path from their
nest to a food source. The method was first developed by Marco Dorigo in 1992. In
recent years, a class of methods, termed metaheuristic algorithms, are being devel-
oped for the solution of optimization problems. These include techniques such as the
firefly, harmony search, bee, cuckoo, bat, crow, teaching-learning, passing-vehicle,

�

� �

�

1.3 Engineering Applications of Optimization 5

and salp swarm algorithms. The neural network methods are based on the immense
computational power of the nervous system to solve perceptional problems in the pres-
ence of a massive amount of sensory data through its parallel processing capability.
The method was originally used for optimization by Hopfield and Tank in 1985. The
fuzzy optimization methods were developed to solve optimization problems involv-
ing design data, objective function, and constraints stated in imprecise form involving
vague and linguistic descriptions. The fuzzy approaches for single and multiobjective
optimization in engineering design were first presented by Rao in 1986.

1.3 ENGINEERING APPLICATIONS OF OPTIMIZATION

Optimization, in its broadest sense, can be applied to solve any engineering prob-
lem. Some typical applications from different engineering disciplines indicate the wide
scope of the subject:

1. Design of aircraft and aerospace structures for minimum weight
2. Finding the optimal trajectories of space vehicles
3. Design of civil engineering structures such as frames, foundations, bridges,

towers, chimneys, and dams for minimum cost
4. Minimum-weight design of structures for earthquake, wind, and other types

of random loading
5. Design of water resources systems for maximum benefit
6. Optimal plastic design of structures
7. Optimum design of linkages, cams, gears, machine tools, and other mechan-

ical components
8. Selection of machining conditions in metal-cutting processes for minimum

production cost
9. Design of material handling equipment, such as conveyors, trucks, and cranes,

for minimum cost
10. Design of pumps, turbines, and heat transfer equipment for maximum effi-

ciency
11. Optimum design of electrical machinery such as motors, generators, and

transformers
12. Optimum design of electrical networks
13. Shortest route taken by a salesperson visiting various cities during one tour
14. Optimal production planning, controlling, and scheduling
15. Analysis of statistical data and building empirical models from experimental

results to obtain the most accurate representation of the physical phenomenon
16. Optimum design of chemical processing equipment and plants
17. Design of optimum pipeline networks for process industries
18. Selection of a site for an industry
19. Planning of maintenance and replacement of equipment to reduce operating

costs
20. Inventory control
21. Allocation of resources or services among several activities to maximize the

benefit
22. Controlling the waiting and idle times and queueing in production lines to

reduce the costs

�

� �

�

6 Introduction to Optimization

23. Planning the best strategy to obtain maximum profit in the presence of a com-
petitor

24. Optimum design of control systems

1.4 STATEMENT OF AN OPTIMIZATION PROBLEM

An optimization or a mathematical programming problem can be stated as follows.

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭which minimizes f (X)

subject to the constraints

gj(X) ≤ 0,
lj(X) = 0,

j = 1, 2, . . . ,m
j = 1, 2, . . . , p

(1.1)

where X is an n-dimensional vector called the design vector, f (X) is termed the objec-
tive function, and gj (X) and lj (X) are known as inequality and equality constraints,
respectively. The number of variables n and the number of constraints m and/or p need
not be related in any way. The problem stated in Eq. (1.1) is called a constrained opti-
mization problem.1 Some optimization problems do not involve any constraints and
can be stated as

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭which minimizes f (X) (1.2)

Such problems are called unconstrained optimization problems.

1.4.1 Design Vector

Any engineering system or component is defined by a set of quantities, some of which
are viewed as variables during the design process. In general, certain quantities are
usually fixed at the outset and these are called preassigned parameters. All the other
quantities are treated as variables in the design process and are called design or deci-
sion variables xi, i = 1, 2, . . . , n. The design variables are collectively represented as
a design vector X = {x1, x2, . . . , xn}T. As an example, consider the design of the gear
pair shown in Figure 1.3, characterized by its face width b, number of teeth T1 and T2,
center distance d, pressure angle 𝜓 , tooth profile, and material. If center distance d,
pressure angle 𝜓 , tooth profile, and material of the gears are fixed in advance, these
quantities can be called preassigned parameters. The remaining quantities can be col-
lectively represented by a design vector X = {x1, x2, x3}T = {b, T1, T2}T. If there are
no restrictions on the choice of b, T1, and T2, any set of three numbers will constitute a
design for the gear pair. If an n-dimensional Cartesian space with each coordinate axis
representing a design variable xi (i = 1, 2, . . . , n) is considered, the space is called the
design variable space or simply design space. Each point in the n-dimensional design

1In the mathematical programming literature, the equality constraints lj(X) = 0, j = 1, 2, . . . , p are often
neglected, for simplicity, in the statement of a constrained optimization problem, although several methods
are available for handling problems with equality constraints.

�

� �

�

1.4 Statement of An Optimization Problem 7

T1

T2

N2

N1

d

b

Figure 1.3 Gear pair in mesh.

space is called a design point and represents either a possible or an impossible solution
to the design problem. In the case of the design of a gear pair, the design point {1.0,
20, 40}T, for example, represents a possible solution, whereas the design point {1.0,
−20, 40.5}T represents an impossible solution since it is not possible to have either a
negative value or a fractional value for the number of teeth.

1.4.2 Design Constraints

In many practical problems, the design variables cannot be chosen arbitrarily; rather,
they have to satisfy certain specified functional and other requirements. The restric-
tions that must be satisfied to produce an acceptable design are collectively called
design constraints. Constraints that represent limitations on the behavior or perfor-
mance of the system are termed behavior or functional constraints. Constraints that
represent physical limitations on design variables, such as availability, fabricability,
and transportability, are known as geometric or side constraints. For example, for the
gear pair shown in Figure 1.3, the face width b cannot be taken smaller than a cer-
tain value, due to strength requirements. Similarly, the ratio of the numbers of teeth,
T1/T2, is dictated by the speeds of the input and output shafts, N1 and N2. Since these
constraints depend on the performance of the gear pair, they are called behavior con-
straints. The values of T1 and T2 cannot be any real numbers but can only be integers.
Further, there can be upper and lower bounds on T1 and T2 due to manufacturing limi-
tations. Since these constraints depend on the physical limitations, they are called side
constraints.

1.4.3 Constraint Surface

For illustration, consider an optimization problem with only inequality constraints
gj(X)≤ 0. The set of values of X that satisfy the equation gj(X) = 0 forms a hyper-
surface in the design space and is called a constraint surface. Note that this is an

�

� �

�

8 Introduction to Optimization

(n− 1)-dimensional subspace, where n is the number of design variables. The con-
straint surface divides the design space into two regions: one in which gj(X)< 0 and
the other in which gj(X)> 0. Thus, the points lying on the hypersurface will satisfy the
constraint gj(X) critically, whereas the points lying in the region where gj(X)> 0 are
infeasible or unacceptable, and the points lying in the region where gj(X)< 0 are fea-
sible or acceptable. The collection of all the constraint surfaces gj(X) = 0, j = 1, 2, . . . ,
m, which separates the acceptable region is called the composite constraint surface.

Figure 1.4 shows a hypothetical two-dimensional design space where the infeasi-
ble region is indicated by hatched lines. A design point that lies on one or more than
one constraint surface is called a bound point, and the associated constraint is called an
active constraint. Design points that do not lie on any constraint surface are known as
free points. Depending on whether a particular design point belongs to the acceptable
or unacceptable region, it can be identified as one of the following four types:

1. Free and acceptable point
2. Free and unacceptable point
3. Bound and acceptable point
4. Bound and unacceptable point

All four types of points are shown in Figure 1.4.

1.4.4 Objective Function

The conventional design procedures aim at finding an acceptable or adequate design
that merely satisfies the functional and other requirements of the problem. In gen-
eral, there will be more than one acceptable design, and the purpose of optimization
is to choose the best one of the many acceptable designs available. Thus, a criterion
has to be chosen for comparing the different alternative acceptable designs and for

Behavior constraint g2 = 0

Side constraint g5 = 0

x1

Bound unacceptable point

Behavior
constraint
g1 = 0

Behavior
constraint
g4 = 0

Side constraint g3 = 0x2

Feasible region

Free point

Infeasible region

Free
unacceptable
point

Bound acceptable
point

Figure 1.4 Constraint surfaces in a hypothetical two-dimensional design space.

�

� �

�

1.4 Statement of An Optimization Problem 9

selecting the best one. The criterion with respect to which the design is optimized,
when expressed as a function of the design variables, is known as the criterion or
merit or objective function. The choice of objective function is governed by the nature
of problem. The objective function for minimization is generally taken as weight
in aircraft and aerospace structural design problems. In civil engineering structural
designs, the objective is usually taken as the minimization of cost. The maximization of
mechanical efficiency is the obvious choice of an objective in mechanical engineering
systems design. Thus, the choice of the objective function appears to be straightfor-
ward in most design problems. However, there may be cases where the optimization
with respect to a particular criterion may lead to results that may not be satisfac-
tory with respect to another criterion. For example, in mechanical design, a gearbox
transmitting the maximum power may not have the minimum weight. Similarly, in
structural design, the minimum weight design may not correspond to minimum stress
design, and the minimum stress design, again, may not correspond to maximum fre-
quency design. Thus, the selection of the objective function can be one of the most
important decisions in the whole optimum design process.

In some situations, there may be more than one criterion to be satisfied simul-
taneously. For example, a gear pair may have to be designed for minimum weight
and maximum efficiency while transmitting a specified horsepower. An optimization
problem involving multiple objective functions is known as a multiobjective program-
ming problem. With multiple objectives there arises a possibility of conflict, and one
simple way to handle the problem is to construct an overall objective function as a
linear combination of the conflicting multiple objective functions. Thus, if f1(X) and
f2(X) denote two objective functions, construct a new (overall) objective function for
optimization as

f (X) = 𝛼1 f1(X) + 𝛼2 f2(X) (1.3)

where 𝛼1 and 𝛼2 are constants whose values indicate the relative importance of one
objective function relative to the other.

1.4.5 Objective Function Surfaces

The locus of all points satisfying f (X) = C = constant forms a hypersurface in the
design space, and each value of C corresponds to a different member of a family of sur-
faces. These surfaces, called objective function surfaces, are shown in a hypothetical
two-dimensional design space in Figure 1.5.

Once the objective function surfaces are drawn along with the constraint surfaces,
the optimum point can be determined without much difficulty. But the main problem is
that as the number of design variables exceeds two or three, the constraint and objec-
tive function surfaces become complex even for visualization and the problem has to
be solved purely as a mathematical problem. The following example illustrates the
graphical optimization procedure.

Example 1.1 Design a uniform column of tubular section, with hinge joints at both
ends, (Figure 1.6) to carry a compressive load P = 2500 kgf for minimum cost. The
column is made up of a material that has a yield stress (𝜎y) of 500 kgf/cm2, modulus
of elasticity (E) of 0.85× 106 kgf/cm2, and weight density (𝜌) of 0.0025 kgf/cm3. The
length of the column is 250 cm. The stress induced in the column should be less than
the buckling stress as well as the yield stress. The mean diameter of the column is
restricted to lie between 2 and 14 cm, and columns with thicknesses outside the range
0.2–0.8 cm are not available in the market. The cost of the column includes material
and construction costs and can be taken as 5W+ 2d, where W is the weight in kilograms
force and d is the mean diameter of the column in centimeters.

�

� �

�

10 Introduction to Optimization

f = C1

x2

x1

f = C2

f = C3

f = C4

f = C5

f = C6

f = C7

C1 < C2 < . . . < C7

Optimum point

Figure 1.5 Contours of the objective function.

P

di

d0

d

l

t

P

Section A–A

AA

Figure 1.6 Tubular column under compression.

�

� �

�

1.4 Statement of An Optimization Problem 11

SOLUTION The design variables are the mean diameter (d) and tube thickness (t):

X =
{

x1
x2

}
=
{

d
t

}
(E1)

The objective function to be minimized is given by

f (X) = 5W + 2d = 5𝜌l𝜋 dt + 2d = 9.82x1x2 + 2x1 (E2)

The behavior constraints can be expressed as

stress induced ≤ yield stress

stress induced ≤ buckling stress

The induced stress is given by

induced stress = 𝜎i =
P
𝜋dt

= 2500
𝜋x1x2

(E3)

The buckling stress for a pin-connected column is given by

buckling stress = 𝜎b =
Euler buckling load

cross-sectional area
= 𝜋

2EI
l2

1
𝜋dt

(E4)

where

I = second moment of area of the cross section of the column

= 𝜋

64
(d4

o − d4
i)

= 𝜋

64
(d2

o + d2
i)(do + di)(do − di) =

𝜋

64
[(d + t)2 + (d − t)2]

× [(d + t) + (d − t)][(d + t) − (d − t)]

= 𝜋

8
dt(d2 + t2) = 𝜋

8
x1x2(x2

1 + x2
2) (E5)

Thus, the behavior constraints can be restated as

g1(X) = 2500
𝜋x1x2

− 500 ≤ 0 (E6)

g2(X) =
2500
𝜋x1x2

−
𝜋

2(0.85 × 106)(x2
1 + x2

2)
8(250)2

≤ 0 (E7)

The side constraints are given by

2 ≤ d ≤ 14

0.2 ≤ t ≤ 0.8

which can be expressed in standard form as

g3(X) = −x1 + 2.0 ≤ 0 (E8)

g4(X) = x1 − 14.0 ≤ 0 (E9)

�

� �

�

12 Introduction to Optimization

g5(X) = −x2 + 0.2 ≤ 0 (E10)

g6(X) = x2 − 0.8 ≤ 0 (E11)

Since there are only two design variables, the problem can be solved graphically
as shown below.

First, the constraint surfaces are to be plotted in a two-dimensional design space
where the two axes represent the two design variables x1 and x2. To plot the first con-
straint surface, we have

g1(X) = 2500
𝜋x1x2

− 500 ≤ 0

that is,
x1x2 ≥ 1.593

Thus, the curve x1x2 = 1.593 represents the constraint surface g1(X) = 0. This
curve can be plotted by finding several points on the curve. The points on the curve
can be found by giving a series of values to x1 and finding the corresponding values
of x2 that satisfy the relation x1x2 = 1.593:

x1 2.0 4.0 6.0 8.0 10.0 12.0 14.0

x2 0.7965 0.3983 0.2655 0.1990 0.1593 0.1328 0.1140

These points are plotted and a curve P1Q1 passing through all these points is
drawn as shown in Figure 1.7, and the infeasible region, represented by g1(X)> 0 or
x1x2 < 1.593, is shown by hatched lines.2 Similarly, the second constraint g2(X)≤ 0
can be expressed as x1x2(x2

1 + x2
2)≥ 47.3 and the points lying on the constraint surface

g2(X) = 0 can be obtained as follows for x1x2(x2
1 + x2

2) = 47.3:

x1 2 4 6 8 10 12 14

x2 2.41 0.716 0.219 0.0926 0.0473 0.0274 0.0172

These points are plotted as curve P2Q2, the feasible region is identified, and the
infeasible region is shown by hatched lines as in Figure 1.7. The plotting of side con-
straints is very simple since they represent straight lines. After plotting all the six
constraints, the feasible region can be seen to be given by the bounded area ABCDEA.

Next, the contours of the objective function are to be plotted before finding the
optimum point. For this, we plot the curves given by

f (X) = 9.82x1x2 + 2x1 = c = constant

for a series of values of c. By giving different values to c, the contours of f can be
plotted with the help of the following points.

For 9.82x1x2 + 2x1 = 50.0:

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 16.77 12.62 10.10 8.44 7.24 6.33 5.64 5.07

2The infeasible region can be identified by testing whether the origin lies in the feasible or infeasible region.

�

� �

�

1.4 Statement of An Optimization Problem 13

d(x1)

t(x2)

P2
P1

A E

B

C D

Q2

Q1

14121086420
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Yield constraint
g1(x) = 0

f = 50.0

f = 40.0

f = 31.58

f = 26.53

f = 20.0

Optimum point
(5.44, 0.293)

Buckling constraint
g2(x) = 0

ABCDEA = Feasible region

g6(x) = 0

g4(x) = 0

g5(x) = 0

g3(x) = 0

Figure 1.7 Graphical optimization of Example 1.1.

For 9.82x1x2 + 2x1 = 40.0:

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 13.40 10.10 8.08 6.75 5.79 5.06 4.51 4.05

For 9.82x1x2 + 2x1 = 31.58 (passing through the corner point C):

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 10.57 7.96 6.38 5.33 4.57 4.00 3.56 3.20

�

� �

�

14 Introduction to Optimization

For 9.82x1x2 + 2x1 = 26.53 (passing through the corner point B):

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 8.88 6.69 5.36 4.48 3.84 3.36 2.99 2.69

For 9.82x1x2 + 2x1 = 20.0:

x2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

x1 6.70 5.05 4.04 3.38 2.90 2.53 2.26 2.02

These contours are shown in Figure 1.7 and it can be seen that the objective func-
tion cannot be reduced below a value of 26.53 (corresponding to point B) without
violating some of the constraints. Thus the optimum solution is given by point B with
d* = x∗1 = 5.44 cm and t* = x∗2 = 0.293 cm with fmin = 26.53.

1.5 CLASSIFICATION OF OPTIMIZATION PROBLEMS

Optimization problems can be classified in several ways, as described below.

1.5.1 Classification Based on the Existence of Constraints

As indicated earlier, any optimization problem can be classified as constrained or
unconstrained, depending on whether constraints exist in the problem.

1.5.2 Classification Based on the Nature of the Design Variables

Based on the nature of design variables encountered, optimization problems can be
classified into two broad categories. In the first category, the problem is to find values
to a set of design parameters that make some prescribed function of these parameters
minimum subject to certain constraints. For example, the problem of minimum-weight
design of a prismatic beam shown in Figure 1.8a subject to a limitation on the maxi-
mum deflection can be stated as follows:

Find X =
{

b
d

}
which minimizes

f (X) = 𝜌lbd (1.4)

P

b

d

l

P

b(t)

d(t)

t
l

(a) Parameter optimization problem. (b) Trajectory optimization problem.

Figure 1.8 Cantilever beam under concentrated load.

�

� �

�

1.5 Classification of Optimization Problems 15

subject to the constraints

𝛿tip(X) ≤ 𝛿max

b ≥ 0

d ≥ 0

where 𝜌 is the density and 𝛿tip is the tip deflection of the beam. Such problems are
called parameter or static optimization problems. In the second category of problems,
the objective is to find a set of design parameters, which are all continuous functions
of some other parameter, that minimizes an objective function subject to a set of con-
straints. If the cross-sectional dimensions of the rectangular beam are allowed to vary
along its length as shown in Figure 1.8b, the optimization problem can be stated as

Find X(t) =
{

b(t)
d(t)

}
which minimizes

f [X(t)] = 𝜌∫
l

0
b(t) d(t) dt (1.5)

subject to the constraints

𝛿tip[X(t)] ≤ 𝛿max, 0 ≤ t ≤ l

b(t) ≥ 0, 0 ≤ t ≤ l

d(t) ≥ 0, 0 ≤ t ≤ l

Here the design variables are functions of the length parameter t. This type of
problem, where each design variable is a function of one or more parameters, is known
as a trajectory or dynamic optimization problem [1.55].

1.5.3 Classification Based on the Physical Structure of the Problem

Depending on the physical structure of the problem, optimization problems can be
classified as optimal control and nonoptimal control problems.

Optimal Control Problem An optimal control (OC) problem is a mathematical pro-
gramming problem involving a number of stages, where each stage evolves from the
preceding stage in a prescribed manner. It is usually described by two types of vari-
ables: the control (design) and the state variables. The control variables define the
system and govern the evolution of the system from one stage to the next, and the
state variables describe the behavior or status of the system in any stage. The prob-
lem is to find a set of control or design variables such that the total objective function
(also known as the performance index, PI) over all the stages is minimized subject to
a set of constraints on the control and state variables. An OC problem can be stated as
follows [1.55]:

Find X which minimizes f (X) =
l∑

i=1

fi(xi, yi) (1.6)

subject to the constraints

qi(xi, yi) + yi = yi+1, i = 1, 2, . . . , l

gj(xj) ≤ 0, j = 1, 2, . . . , l

hk(yk) ≤ 0, k = 1, 2, . . . , l

�

� �

�

16 Introduction to Optimization

where xi is the ith control variable, yi the ith state variable, and fi the contribution of
the ith stage to the total objective function; gj, hk, and qi are functions of xj, yk, and xi
and yi, respectively, and l is the total number of stages. The control and state variables
xi and yi can be vectors in some cases. The following example serves to illustrate the
nature of an optimal control problem.

Example 1.2 A rocket is designed to travel a distance of 12 s in a vertically upward
direction [1.39]. The thrust of the rocket can be changed only at the discrete points
located at distances of 0, s, 2s, 3s, . . . , 12s. If the maximum thrust that can be devel-
oped at point i either in the positive or negative direction is restricted to a value of
Fi, formulate the problem of minimizing the total time of travel under the following
assumptions:

1. The rocket travels against the gravitational force.
2. The mass of the rocket reduces in proportion to the distance traveled.
3. The air resistance is proportional to the velocity of the rocket.

SOLUTION Let points (or control points) on the path at which the thrusts of the
rocket are changed be numbered as 1, 2, 3, . . . , 13 (Figure 1.9). Denoting xi as the
thrust, vi the velocity, ai the acceleration, and mi the mass of the rocket at point i,
Newton’s second law of motion can be applied as

net force on the rocket = mass × acceleration

This can be written as

thrust − gravitational force − air resistance = mass × acceleration

or
xi − mig − k1vi = miai (E1)

where the mass mi can be expressed as

mi = mi−1 − k2s (E2)

and k1 and k2 are constants. Eq. (E1) can be used to express the acceleration, ai, as

ai =
xi

mi
− g −

k1vi

mi
(E3)

If ti denotes the time taken by the rocket to travel from point i to point i+ 1, the
distance traveled between the points i and i+ 1 can be expressed as

s = viti +
1
2

ait
2
i

or
1
2

t2
i

(
xi

mi
− g −

k1vi

mi

)
+ tivi − s = 0 (E4)

�

� �

�

1.5 Classification of Optimization Problems 17

Control
points

01

s2

2s3

9s10

10s11

11s12

12s13

Distance from
starting point

Figure 1.9 Control points in the path of the rocket.

from which ti can be determined as

ti =

−vi ±

√
v2

i + 2s

(
xi

mi
− g −

k1vi

mi

)
xi

mi
− g −

k1vi

mi

(E5)

Of the two values given by Eq. (E5), the positive value has to be chosen for ti.
The velocity of the rocket at point i+ 1, vi+1, can be expressed in terms of vi as (by
assuming the acceleration between points i and i+ 1 to be constant for simplicity)

vi+1 = vi + aiti (E6)

�

� �

�

18 Introduction to Optimization

The substitution of Eqs. (E3) and (E5) into Eq. (E6) leads to

vi+1 =

√
v2

i + 2s

(
xi

mi
− g −

k1vi

mi

)
(E7)

From an analysis of the problem, the control variables can be identified as the
thrusts, xi, and the state variables as the velocities, vi. Since the rocket starts at point
1 and stops at point 13,

v1 = v13 = 0 (E8)

Thus, the problem can be stated as an OC problem as

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮

x12

⎫⎪⎬⎪⎭which minimizes

f (X) =
12∑
i=1

ti =
12∑
i=1

⎧⎪⎪⎨⎪⎪⎩
−vi +

√
v2

1 + 2s

(
xi

mi
− g −

k1vi

mi

)
xi

mi
− g −

k1vi

mi

⎫⎪⎪⎬⎪⎪⎭
subject to

mi+1 = mi − k2s, i = 1, 2, . . . , 12

vi+1 =

√
v2

i + 2s

(
xi

mi
− g −

k1vi

mi

)
, i = 1, 2, . . . , 12

|xi| ≤ Fi, i = 1, 2, . . . , 12

v1 = v13 = 0

1.5.4 Classification Based on the Nature of the Equations Involved

Another important classification of optimization problems is based on the nature of
expressions for the objective function and the constraints. According to this classifi-
cation, optimization problems can be classified as linear, nonlinear, geometric, and
quadratic programming problems. This classification is extremely useful from the
computational point of view since there are many special methods available for the
efficient solution of a particular class of problems. Thus, the first task of a designer
would be to investigate the class of problem encountered. This will, in many cases,
dictate the types of solution procedures to be adopted in solving the problem.

Nonlinear Programming Problem If any of the functions among the objective and
constraint functions in Eq. (1.1) is nonlinear, the problem is called an NLP problem.
This is the most general programming problem and all other problems can be consid-
ered as special cases of the NLP problem.

Example 1.3 The step-cone pulley shown in Figure 1.10 is to be designed for trans-
mitting a power of at least 0.75 hp. The speed of the input shaft is 350 rpm and the
output speed requirements are 750, 450, 250, and 150 rpm for a fixed center distance

�

� �

�

1.5 Classification of Optimization Problems 19

E

AC

a

D B

d′1

C1

d′2
d′3

d′4

d1

d2

d3
d4

N = 350

N4 = 150

N3 = 250

N2 = 450
N1 = 750

ω ωωω

Figure 1.10 Step-cone pulley.

of a between the input and output shafts. The tension on the tight side of the belt is to
be kept more than twice that on the slack side. The thickness of the belt is t and the
coefficient of friction between the belt and the pulleys is 𝜇. The stress induced in the
belt due to tension on the tight side is s. Formulate the problem of finding the width
and diameters of the steps for minimum weight.

SOLUTION The design vector can be taken as

X =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d1

d2

d3

d4

w

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where di is the diameter of the ith step on the output pulley and w is the width of the
belt and the steps. The objective function is the weight of the step-cone pulley system:

f (X) = 𝜌w
𝜋

4
(d2

1 + d2
2 + d2

3 + d2
4 + d′2

1 + d′2
2 + d′2

3 + d′2
4)

= 𝜌w
𝜋

4

{
d2

1

[
1 +
(750

350

)2
]
+ d2

2

[
1 +
(450

350

)2
]

+ d2
3

[
1 +
(250

350

)2
]
+ d2

4

[
1 +
(150

350

)2
]}

(E1)

�

� �

�

20 Introduction to Optimization

where 𝜌 is the density of the pulleys and di
′
is the diameter of the ith step on the input

pulley.
To have the belt equally tight on each pair of opposite steps, the total length of the

belt must be kept constant for all the output speeds. This can be ensured by satisfying
the following equality constraints:

C1 − C2 = 0 (E2)

C1 − C3 = 0 (E3)

C1 − C4 = 0 (E4)

where Ci denotes length of the belt needed to obtain output speed Ni (i = 1, 2, 3, 4)
and is given by [1.116, 1.117]:

Ci ≃
𝜋di

2

(
1 +

Ni

N

)
+

(
Ni

N
− 1
)2

d2
i

4a
+ 2a

where N is the speed of the input shaft and a is the center distance between the shafts.
The ratio of tensions in the belt can be expressed as [1.116, 1.117]

Ti
1

Ti
2

= e𝜇𝜃i

where Ti
1 and Ti

2 are the tensions on the tight and slack sides of the ith step, 𝜇 the
coefficient of friction, and 𝜃i the angle of lap of the belt over the ith pulley step. The
angle of lap is given by

𝜃i = 𝜋 − 2sin−1

⎡⎢⎢⎢⎣
(

Ni

N
− 1
)

di

2a

⎤⎥⎥⎥⎦
and hence the constraint on the ratio of tensions becomes

exp

{
𝜇

[
𝜋 − 2sin−1

{(
Ni

N
− 1

)
di

2a

}]}
≥ 2, i = 1, 2, 3, 4 (E5)

The limitation on the maximum tension can be expressed as

Ti
1 = stw, i = 1, 2, 3, 4 (E6)

where s is the maximum allowable stress in the belt and t is the thickness of the belt.
The constraint on the power transmitted can be stated as (using lbf for force and ft for
linear dimensions).

(Ti
1 − Ti

2)𝜋d′
1(350)

33,000
≥ 0.75

which can be rewritten, using Ti
1 = stw from Eq. (E6), as

stw

(
1 − exp

[
−𝜇
(
𝜋 − 2sin−1

{(
Ni

N
− 1

)
di

2a

})])
𝜋d′

1

×
(

350
33,000

) ≥ 0.75, i = 1, 2, 3, 4 (E7)

�

� �

�

1.5 Classification of Optimization Problems 21

Finally, the lower bounds on the design variables can be taken as

w ≥ 0 (E8)

di ≥ 0, i = 1, 2, 3, 4 (E9)

As the objective function, (E1), and most of the constraints, (E2)–(E9), are non-
linear functions of the design variables d1, d2, d3, d4, and w, this problem is a NLP
problem.

Geometric Programming Problem Definition A function h(X) is called a posyn-
omial if h can be expressed as the sum of power terms each of the form

cix
ai1
1 xai2

2 ⋯ xain
n

where ci and aij are constants with ci > 0 and xj > 0. Thus, a posynomial with N terms
can be expressed as

h(X) = c1xa11
1 xa12

2 ⋯ xa1n
n +⋯ + cNxaN1

1 xaN2
2 ⋯ xaNn

n (1.7)

A GMP problem is one in which the objective function and constraints are
expressed as posynomials in X. Thus, GMP problem can be posed as follows [1.59]:

Find X which minimizes

f (X) =
N0∑
i=1

ci

(
n∏

j=1

x
pij

j

)
, ci > 0, xj > 0 (1.8)

subject to

gk(X) =
Nk∑
i=1

aik

(
n∏

j=1

x
qijk

j

)
> 0, aik > 0, xj > 0, k = 1, 2, . . . ,m

where N0 and Nk denote the number of posynomial terms in the objective and kth
constraint function, respectively.

Example 1.4 Four identical helical springs are used to support a milling machine
weighing 5000 lb. Formulate the problem of finding the wire diameter (d), coil diame-
ter (D), and the number of turns (N) of each spring (Figure 1.11) for minimum weight
by limiting the deflection to 0.1 in. and the shear stress to 10 000 psi in the spring. In
addition, the natural frequency of vibration of the spring is to be greater than 100 Hz.
The stiffness of the spring (k), the shear stress in the spring (𝜏), and the natural fre-
quency of vibration of the spring (fn) are given by

k = d4G
8D3N

𝜏 = Ks
8FD
𝜋d3

fn = 1
2

√
kg

w
= 1

2

√
d4G

8D3N

g

𝜌(𝜋d2∕4)𝜋DN
=

√
Ggd

2
√

2𝜌𝜋D2N

�

� �

�

22 Introduction to Optimization

F

d

F

D

N (number of turns)

Figure 1.11 Helical spring.

where G is the shear modulus, F the compressive load on the spring, w the weight of
the spring, 𝜌 the weight density of the spring, and Ks the shear stress correction factor.
Assume that the material is spring steel with G = 12× 106 psi and 𝜌 = 0.3 lb/in.3, and
the shear stress correction factor is Ks ≈ 1.05.

SOLUTION The design vector is given by

X =
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

d

D

N

⎫⎪⎬⎪⎭
and the objective function by

f (X) = weight = 𝜋d2

4
𝜋DN𝜌 (E1)

The constraints can be expressed as

deflection = F
k
= 8FD3N

d4G
≤ 0.1

that is,

g1(X) = d4G

80FD3N
> 1

shear stress = Ks
8FD
𝜋d3

≤ 10,000 (E2)

�

� �

�

1.5 Classification of Optimization Problems 23

that is,

g2(X) = 1250𝜋d3

KsFD
> 1

natural frequency =
√

Gg

2
√

2𝜌𝜋

d
D2N

≥ 100 (E3)

that is,

g3(X) =
√

Ggd

200
√

2𝜌𝜋D2N
> 1 (E4)

Since the equality sign is not included (along with the inequality symbol, >) in
the constraints of Eqs. (E2)–(E4), the design variables are to be restricted to positive
values as

d > 0, D > 0, N > 0 (E5)

By substituting the known data, F = weight of the milling machine/4 = 1250 lb,
𝜌 = 0.3 lb/in.3, G = 12× 106 psi, and Ks = 1.05, Eqs. (E1)–(E4) become

f (X) = 1
4
𝜋

2(0.3)d2DN = 0.7402x2
1x2x3 (E6)

g1(X) = d4(12 × 106)
80(1250)D3N

= 120x4
1x−3

2 x−1
3 > 1 (E7)

g2(X) = 1250𝜋d3

1.05(1250)D
= 2.992x3

1x−1
2 > 1 (E8)

g3(X) =
√

Gg d

200
√

2𝜌𝜋D2N
= 139.8388x1x−2

2 x−1
3 > 1 (E9)

It can be seen that the objective function, f (X), and the constraint functions, g1
(X)–g3 (X), are posynomials and hence the problem is a GMP problem.

Quadratic Programming Problem A quadratic programming problem is a NLP
problem with a quadratic objective function and linear constraints. It is usually for-
mulated as follows:

F(X) = c +
n∑

i=1

qixi +
n∑

i=1

n∑
j=1

Qijxixj (1.9)

subject to
n∑

i=1

aijxi = bj, j = 1, 2, . . . ,m

xi ≥ 0, i = 1, 2, . . . ,m

where c, qi, Qij, aij, and bj are constants.

Example 1.5 A manufacturing firm produces two products, A and B, using two lim-
ited resources. The maximum amounts of resources 1 and 2 available per day are 1000
and 250 units, respectively. The production of 1 unit of product A requires 1 unit of
resource 1 and 0.2 unit of resource 2, and the production of 1 unit of product B requires
0.5 unit of resource 1 and 0.5 unit of resource 2. The unit costs of resources 1 and 2 are

�

� �

�

24 Introduction to Optimization

given by the relations (0.375− 0.000 05u1) and (0.75− 0.0001u2), respectively, where
ui denotes the number of units of resource i used (i = 1, 2). The selling prices per unit
of products A and B, pA and pB, are given by

pA = 2.00 − 0.0005xA − 0.00015xB

pB = 3.50 − 0.0002xA − 0.0015xB

where xA and xB indicate, respectively, the number of units of products A and B sold.
Formulate the problem of maximizing the profit assuming that the firm can sell all the
units it manufactures.

SOLUTION Let the design variables be the number of units of products A and B
manufactured per day:

X =

{
xA

xB

}

The requirement of resource 1 per day is (xA + 0.5xB) and that of resource 2 is
(0.2xA + 0.5xB) and the constraints on the resources are

xA + 0.5xB ≤ 1000 (E1)

0.2xA + 0.5xB ≤ 250 (E2)

The lower bounds on the design variables can be taken as

xA ≥ 0 (E3)

xB ≥ 0 (E4)

The total cost of resources 1 and 2 per day is

(xA + 0.5xB)[0.375 − 0.00005(xA + 0.5xB)]

+ (0.2xA + 0.5xB)[0.750 − 0.0001(0.2xA + 0.5xB)]

and the return per day from the sale of products A and B is

xA(2.00 − 0.0005xA − 0.00015xB) + xB(3.50 − 0.0002xA − 0.0015xB)

The total profit is given by the total return minus the total cost. Since the objective
function to be minimized is the negative of the profit per day, f (X) is given by

f (X) = (xA + 0.5xB)[0.375 − 0.00005(xA + 0.5xB)]

+ (0.2xA + 0.5xB)[0.750 − 0.0001(0.2xA + 0.5xB)]

− xA(2.00 − 0.0005xA − 0.00015xB)

− xB(3.50 − 0.0002xA − 0.0015xB) (E5)

As the objective function (Eq. (E5)) is a quadratic and the constraints
(Eqs. (E1)–(E4)) are linear, the problem is a quadratic programming problem.

�

� �

�

1.5 Classification of Optimization Problems 25

Linear Programming Problem If the objective function and all the constraints in
Eq. (1.1) are linear functions of the design variables, the mathematical programming
problem is called a linear programming (LP) problem. A linear programming problem
is often stated in the following standard form:

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭
which minimizes f (X) =

n∑
i=1

cixi

subject to the constraints

n∑
i=1

aijxi = bj, j = 1, 2, . . . ,m

xi ≥ 0, i = 1, 2, . . . , n (1.10)

where ci, aij, and bj are constants.

Example 1.6 A scaffolding system consists of three beams and six ropes as shown
in Figure 1.12. Each of the top ropes A and B can carry a load of W1, each of the
middle ropes C and D can carry a load of W2, and each of the bottom ropes E and
F can carry a load of W3. If the loads acting on beams 1, 2, and 3 are x1, x2, and x3,
respectively, as shown in Figure 1.12, formulate the problem of finding the maximum
load (x1 + x2 + x3) that can be supported by the system. Assume that the weights of
the beams 1, 2, and 3 are w1, w2, and w3, respectively, and the weights of the ropes are
negligible.

SOLUTION Assuming that the weights of the beams act through their respective
middle points, the equations of equilibrium for vertical forces and moments for each
of the three beams can be written as

For beam 3:

TE + TF = x3 + w3

x3(3l) + w3(2l) − TF(4l) = 0

x3

x2

x1

D

BA

C

E Fl3l

2l 2l

3l 6l

Beam 3

Beam 2

Beam 1

l

l

Figure 1.12 Scaffolding system with three beams.

�

� �

�

26 Introduction to Optimization

For beam 2:

TC + TD − TE = x2 + w2

x2(l) + w2(l) + TE(l) − TD(2l) = 0

For beam 1:

TA + TB − TC − TD − TF = x1 + w1

x1(3l) + w1

(9
2

l
)
− TB(9l) + TC(2l) + TD(4l) + TF(7l) = 0

where Ti denotes the tension in rope i. The solution of these equations gives

TF = 3
4

x3 +
1
2

w3

TE = 1
4

x3 +
1
2

w3

TD = 1
2

x2 +
1
8

x3 +
1
2

w2 +
1
4

w3

TC = 1
2

x2 +
1
8

x3 +
1
2

w2 +
1
4

w3

TB = 1
3

x1 +
1
3

x2 +
2
3

x3 +
1
2

w1 +
1
3

w2 +
5
9

w3

TA = 2
3

x1 +
2
3

x2 +
1
3

x3 +
1
2

w1 +
2
3

w2 +
4
9

w3

The optimization problem can be formulated by choosing the design vector as

X =
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭
Since the objective is to maximize the total load

f (X) = −(x1 + x2 + x3) (E1)

The constraints on the forces in the ropes can be stated as

TA ≤ W1 (E2)

TB ≤ W1 (E3)

TC ≤ W2 (E4)

TD ≤ W2 (E5)

TE ≤ W3 (E6)

TF ≤ W3 (E7)

�

� �

�

1.5 Classification of Optimization Problems 27

Finally, the nonnegativity requirement of the design variables can be expressed as

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0 (E8)

Since all the equations of the problem (E1)–(E8), are linear functions of x1, x2,
and x3, the problem is a linear programming problem.

1.5.5 Classification Based on the Permissible Values of the Design Variables

Depending on the values permitted for the design variables, optimization problems
can be classified as integer and real-valued programming problems.

Integer Programming Problem If some or all of the design variables x1, x2, . . . ,
xn of an optimization problem are restricted to take on only integer (or discrete) val-
ues, the problem is called an integer programming problem. On the other hand, if all
the design variables are permitted to take any real value, the optimization problem is
called a real-valued programming problem. According to this definition, the problems
considered in Examples 1.1–1.6 are real-valued programming problems.

Example 1.7 A cargo load is to be prepared from five types of articles. The weight
wi, volume vi, and monetary value ci of different articles are given below.

Article type wi vi ci

1 4 9 5
2 8 7 6
3 2 4 3
4 5 3 2
5 3 8 8

Find the number of articles xi selected from the ith type (i = 1, 2, 3, 4, 5), so that
the total monetary value of the cargo load is a maximum. The total weight and volume
of the cargo cannot exceed the limits of 2000 and 2500 units, respectively.

SOLUTION Let xi be the number of articles of type i (i = 1–5) selected. Since it
is not possible to load a fraction of an article, the variables xi can take only integer
values.

The objective function to be maximized is given by

f (X) = 5x1 + 6x2 + 3x3 + 2x4 + 8x5 (E1)

and the constraints by

4x1 + 8x2 + 2x3 + 5x4 + 3x5 ≤ 2000 (E2)

9x1 + 7x2 + 4x3 + 3x4 + 8x5 ≤ 2500 (E3)

xi ≥ 0 and integral, i = 1, 2, . . . , 5 (E4)

Since xi are constrained to be integers, the problem is an integer programming
problem.

�

� �

�

28 Introduction to Optimization

1.5.6 Classification Based on the Deterministic Nature of the Variables

Based on the deterministic nature of the variables involved, optimization problems can
be classified as deterministic and stochastic programming problems.

Stochastic Programming Problem A stochastic programming problem is an opti-
mization problem in which some or all of the parameters (design variables and/or
preassigned parameters) are probabilistic (nondeterministic or stochastic). Accord-
ing to this definition, the problems considered in Examples 1.1–1.7 are deterministic
programming problems.

Example 1.8 Formulate the problem of designing a minimum-cost rectangu-
lar under-reinforced concrete beam that can carry a bending moment M with a
probability of at least 0.95. The costs of concrete, steel, and formwork are given
by Cc = $200/m3, Cs = $5000/m3, and Cf = $40/m2 of surface area. The bending
moment M is a probabilistic quantity and varies between 1× 105 and 2× 105 N-m
with a uniform probability. The strengths of concrete and steel are also uniformly
distributed probabilistic quantities whose lower and upper limits are given by

fc = 25 and 35 MPa

fs = 500 and 550 MPa

Assume that the area of the reinforcing steel and the cross-sectional dimensions
of the beam are deterministic quantities.

SOLUTION The breadth b in meters, the depth d in meters, and the area of reinforc-
ing steel As in square meters are taken as the design variables x1, x2, and x3, respectively
(Figure 1.13). The cost of the beam per meter length is given by

f (X) = cost of steet + cost of concrete + cost of formwork

= AsCs + (bd − As)Cc + 2(b + d)Cf (E1)

The resisting moment of the beam section is given by [1.129]

MR = Asfs

(
d − 0.59

Asfs
fcb

)

As

d

b

Figure 1.13 Cross section of a reinforced concrete beam.

�

� �

�

1.5 Classification of Optimization Problems 29

and the constraint on the bending moment can be expressed as [1.130]

P[MR − M ≥ 0] = P

[
As fs

(
d − 0.59

As fs
fcb

)
− M ≥ 0

]
≥ 0.95 (E2)

where P [⋅ ⋅ ⋅] indicates the probability of occurrence of the event [⋅ ⋅ ⋅].
To ensure that the beam remains underreinforced,3 the area of steel is bounded by

the balanced steel area A(b)
s as

As ≤ A(b)
s (E3)

where

A(b)
s = (0.542)

fc
fs

bd
600

600 + fs

Since the design variables cannot be negative, we have

d ≥ 0

b ≥ 0

As ≥ 0 (E4)

Since the quantities M, fc, and fs are nondeterministic, the problem is a stochastic
programming problem.

1.5.7 Classification Based on the Separability of the Functions

Optimization problems can be classified as separable and non-separable programming
problems based on the separability of the objective and constraint functions.

Separable Programming Problem

Definition A function f (X) is said to be separable if it can be expressed as the sum of
n single-variable functions, f1(x1), f2(x2), . . . , fn(xn), that is,

f (X) =
n∑

i=1

fi(xi) (1.11)

A separable programming problem is one in which the objective function and the
constraints are separable and can be expressed in standard form as

Find X which minimizes f (X) =
n∑

i=1

fi(xi) (1.12)

subject to

gj(X) =
n∑

i=1

gij(xi) ≤ bj, j = 1, 2, . . . ,m

where bj is a constant.

3If steel area is larger than A(b)
s , the beam becomes over-reinforced and failure occurs all of a sudden due

to lack of concrete strength. If the beam is under-reinforced, failure occurs due to lack of steel strength and
hence it will be gradual.

�

� �

�

30 Introduction to Optimization

Example 1.9 A retail store stocks and sells three different models of TV sets. The
store cannot afford to have an inventory worth more than $45 000 at any time. The TV
sets are ordered in lots. It costs $aj for the store whenever a lot of TV model j is ordered.
The cost of one TV set of model j is cj. The demand rate of TV model j is dj units per
year. The rate at which the inventory costs accumulate is known to be proportional
to the investment in inventory at any time, with qj = 0.5, denoting the constant of
proportionality for TV model j. Each TV set occupies an area of sj = 0.40 m2 and the
maximum storage space available is 90 m2. The data known from the past experience
are given below.

TV model j

1 2 3

Ordering cost, aj ($) 50 80 100
Unit cost, cj ($) 40 120 80
Demand rate, dj 800 400 1200

Formulate the problem of minimizing the average annual cost of ordering and
storing the TV sets.

SOLUTION Let xj denote the number of TV sets of model j ordered in each lot (j= 1,
2, 3). Since the demand rate per year of model j is dj, the number of times the TV model
j needs to be ordered is dj/xj. The cost of ordering TV model j per year is thus ajdj/xj,
j = 1, 2, 3. The cost of storing TV sets of model j per year is qjcjxj/2 since the average
level of inventory at any time during the year is equal to cjxj/2. Thus, the objective
function (cost of ordering plus storing) can be expressed as

f (X) =
(

a1d1

x1
+

q1c1x1

2

)
+
(

a2d2

x2
+

q2c2x2

2

)
+
(

a3d3

x3
+

q3c3x3

2

)
(E1)

where the design vector X is given by

X =
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭ (E2)

The constraint on the worth of inventory can be stated as

c1x1 + c2x2 + c3x3 ≤ 45,000 (E3)

The limitation on the storage area is given by

s1x1 + s2x2 + s3x3 ≤ 90 (E4)

Since the design variables cannot be negative, we have

xj ≥ 0, j = 1, 2, 3 (E5)

By substituting the known data, the optimization problem can be stated as follows:
Find X which minimizes

f (X) =
(

40,000
x1

+ 10x1

)
+
(

32,000
x2

+ 30x2

)
+
(

120,000
x3

+ 20x3

)
(E6)

�

� �

�

1.5 Classification of Optimization Problems 31

subject to

g1(X) = 40x1 + 120x2 + 80x3 ≤ 45,000 (E7)

g2(X) = 0.40(x1 + x2 + x3) ≤ 90 (E8)

g3(X) = −x1 ≤ 0 (E9)

g4(X) = −x2 ≤ 0 (E10)

g5(X) = −x2 ≤ 0 (E11)

It can be observed that the optimization problem stated in Eqs. (E6)–(E11) is a
separable programming problem.

1.5.8 Classification Based on the Number of Objective Functions

Depending on the number of objective functions to be minimized, optimization
problems can be classified as single- and multi-objective programming problems.
According to this classification, the problems considered in Examples 1.1–1.9 are
single objective programming problems.

Multi-objective Programming Problem A multi-objective programming problem
can be stated as follows:

Find X which minimizes f1(X), f2(X), . . . , fk(X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m (1.13)

where f1, f2, . . . , fk denote the objective functions to be minimized simultaneously.

Example 1.10 A uniform column of rectangular cross section is to be constructed
for supporting a water tank of mass M (Figure 1.14). It is required (i) to minimize

d

b

l

M

Cross section of
the column

Figure 1.14 Water tank on a column.

�

� �

�

32 Introduction to Optimization

the mass of the column for economy, and (ii) to maximize the natural frequency of
transverse vibration of the system for avoiding possible resonance due to wind. For-
mulate the problem of designing the column to avoid failure due to direct compression
and buckling. Assume the permissible compressive stress to be 𝜎max.

SOLUTION Let x1 = b and x2 = d denote the cross-sectional dimensions of the col-
umn. The mass of the column (m) is given by

m = 𝜌bdl = 𝜌lx1x2 (E1)

where 𝜌 is the density and l is the height of the column. The natural frequency of
transverse vibration of the water tank (𝜔), by treating it as a cantilever beam with a tip
mass M, can be obtained as [1.127]

𝜔 =
⎡⎢⎢⎢⎣

3EI(
M + 33

140
m
)

l3

⎤⎥⎥⎥⎦
1∕2

(E2)

where E is the Young’s modulus and I is the area moment of inertia of the column
given by

I = 1
12

bd3 (E3)

The natural frequency of the water tank can be maximized by minimizing −𝜔.
With the help of Eqs. (E1) and (E3), Eq. (E2) can be rewritten as

𝜔 =
⎡⎢⎢⎢⎣

Ex1x3
2

4l3
(

M + 33
140
𝜌lx1x2

)⎤⎥⎥⎥⎦
1∕2

(E4)

The direct compressive stress (𝜎c) in the column due to the weight of the water
tank is given by

𝜎c =
Mg

bd
=

Mg

x1x2
(E5)

and the buckling stress for a fixed-free column (𝜎b) is given by [1.132]

𝜎b =
(
𝜋

2EI
4l2

)
1

bd
=
𝜋

2Ex2
2

48l2
(E6)

To avoid failure of the column, the direct stress has to be restricted to be less
than 𝜎max and the buckling stress has to be constrained to be greater than the direct
compressive stress induced.

Finally, the design variables have to be constrained to be positive. Thus, the
multi-objective optimization problem can be stated as follows:

Find X =
{

x1
x2

}
which minimizes

f1(X) = 𝜌lx1x2 (E7)

�

� �

�

1.6 Optimization Techniques 33

f2(X) = −
⎡⎢⎢⎢⎣

Ex1x3
2

4l2
(

M + 33
140
𝜌lx1x2

)⎤⎥⎥⎥⎦
1∕2

(E8)

subject to

g1(X) =
Mg

x1x2
− 𝜎max ≤ 0 (E9)

g2(X) =
Mg

x1x2
−
𝜋

2Ex2
2

48l2
≤ 0 (E10)

g3(X) = −x1 ≤ 0 (E11)

g4(X) = −x2 ≤ 0 (E12)

1.6 OPTIMIZATION TECHNIQUES

The various techniques available for the solution of different types of optimization
problems are given under the heading of mathematical programming techniques in
Table 1.1. The classical methods of differential calculus can be used to find the uncon-
strained maxima and minima of a function of several variables. These methods assume
that the function is differentiable twice with respect to the design variables and the
derivatives are continuous. For problems with equality constraints, the Lagrange mul-
tiplier method can be used. If the problem has inequality constraints, the Kuhn–Tucker
conditions can be used to identify the optimum point. But these methods lead to a set of
nonlinear simultaneous equations that may be difficult to solve. The classical methods
of optimization are discussed in Chapter 2.

The techniques of nonlinear, linear, geometric, quadratic, or integer programming
can be used for the solution of the particular class of problems indicated by the name
of the technique. Most of these methods are numerical techniques wherein an approx-
imate solution is sought by proceeding in an iterative manner by starting from an
initial solution. Linear programming techniques are described in Chapters 3 and 4.
The quadratic programming technique, as an extension of the linear programming
approach, is discussed in Chapter 4. Since NLP is the most general method of opti-
mization that can be used to solve any optimization problem, it is dealt with in detail
in Chapters 5–7. The geometric and integer programming methods are discussed in
Chapters 8 and 10, respectively. The dynamic programming technique, presented in
Chapter 9, is also a numerical procedure that is useful primarily for the solution of opti-
mal control problems. Stochastic programming deals with the solution of optimization
problems in which some of the variables are described by probability distributions.
This topic is discussed in Chapter 11.

In Chapter 12 we discuss calculus of variations, optimal control theory, and
optimality criteria methods. Chapter 13 presents the modern methods of optimization,
including genetic algorithms, simulated annealing, particle swarm optimization, ant
colony optimization, neural network-based optimization, and fuzzy optimization.
Chapter 14 presents the more recently developed metaheuristic methods such as the
firefly, fruitfly, harmony search, honey bee, cuckoo, bat, crow, teaching-learning,
passing-vehicle, salp swarm, runner-root, water evaporation, intelligent water drops,
and imperialist competitive algorithms. Several practical aspects of optimization
such as the reduction of size of optimization problems, fast reanalysis techniques, the

�

� �

�

34 Introduction to Optimization

efficient computation of the derivatives of static displacements and stresses, eigen-
values and eigenvectors, and transient response, and sensitivity of optimum solution
to problem parameters are considered in Chapter 15. The aspects of multilevel
optimization, parallel processing, and multi-objective optimization are presented in
Chapter 16. Finally, the solution of different types of optimization problems using
MATLAB are presented in Chapter 17.

1.7 ENGINEERING OPTIMIZATION LITERATURE

The literature on engineering optimization is large and diverse. Several text-books
are available and dozens of technical periodicals regularly publish papers related to
engineering optimization. This is primarily because optimization is applicable to all
areas of engineering. Researchers in many fields must be attentive to the developments
in the theory and applications of optimization.

The most widely circulated journals that publish papers related to engineering
optimization are Engineering Optimization, ASME Journal of Mechanical Design,
AIAA Journal, ASCE Journal of Structural Engineering, Computers and Structures,
International Journal for Numerical Methods in Engineering, Structural Optimiza-
tion, Journal of Optimization Theory and Applications, Computers and Operations
Research, Operations Research, Management Science, Evolutionary Computation,
IEEE Transactions on Evolutionary Computation, European Journal of Operations
Research, IEEE Transactions on Systems, Man and Cybernetics, Journal of Heuris-
tics, Applied Mathematical Modeling, Advances in Engineering Software, Simulation,
Journal of Franklin Institute, Applied Mathematics and Computation, and Applied
Soft Computing. Many of these journals are cited in the chapter references.

References related to optimization are given in terms of the specific areas of
application as well as specific methods of optimization as follows: Structural opti-
mization [1.1–1.9], thermal system optimization [1.10–1.13], chemical and metallur-
gical process optimization [1.14–1.16], electronics and electrical engineering [1.17–
1.19], mechanical design [1.20–1.22], general engineering design [1.23–1.32], general
nonlinear programming theory [1.33–1.49] computer programs [1.50–1.54], optimal
control [1.55–1.58], geometric programming [1.59–1.63], linear programming [1.64–
1.70] integer programming [1.71–1.77] dynamic programming [1.78–1.84], stochastic
programming [1.85–1.89], multiobjective programming [1.90–1.97], nontraditional
optimization techniques including metaheuritic algorithms [1.98–1.124] and related
areas of analysis, design and optimization [1.125–1.136].

1.8 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of the tubular column design prob-
lem considered in Example 1.1 is given in Example 17.1.

REFERENCES AND BIBLIOGRAPHY

Structural Optimization

1.1 Majid, K.I. (1974). Optimum Design of Structures. New York: Wiley.

1.2 Carmichael, D.G. (1981). Structural Modelling and Optimization. Chichester, UK:
Ellis Horwood.

�

� �

�

References and Bibliography 35

1.3 Kirsch, U. (1981). Optimum Structural Design. New York: McGraw-Hill.

1.4 Morris, A.J. (1982). Foundations of Structural Optimization. New York: Wiley.

1.5 Farkas, J. (1984). Optimum Design of Metal Structures. Chichester, UK: Ellis Hor-
wood.

1.6 Haftka, R.T. and Gürdal, Z. (1992). Elements of Structural Optimization, 3e. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

1.7 Kamat, M.P. Ed., (1993). Structural Optimization: Status and Promise. Washington,
DC: AIAA.

1.8 Gurdal, Z., Haftka, R.T., and Hajela, P. (1998). Design and Optimization of Laminated
Composite Materials. New York: Wiley.

1.9 Kalamkarov, A.L. and Kolpakov, A.G. (1997). Analysis, Design and Optimization of
Composite Structures, 2e. New York: Wiley.

Thermal System Optimization

1.10 Stoecker, W.F. (1989). Design of Thermal Systems, 3e. New York: McGraw-Hill.

1.11 Stricker, S. (1985). Optimizing Performance of Energy Systems. New York: Battelle
Press.

1.12 Bejan, A., Tsatsaronis, G., and Moran, M. (1995). Thermal Design and Optimization.
New York: Wiley.

1.13 Jaluria, Y. (2007). Design and Optimization of Thermal Systems, 2e. Boca Raton, FL:
CRC Press.

Chemical and Metallurgical Process Optimization

1.14 Ray, W.H. and Szekely, J. (1973). Process Optimization with Applications to Metal-
lurgy and Chemical Engineering. New York: Wiley.

1.15 Edgar, T.F. and Himmelblau, D.M. (1988). Optimization of Chemical Processes. New
York: McGraw-Hill.

1.16 Aris, R. (1961). The Optimal Design of Chemical Reactors, A Study in Dynamic Pro-
gramming. New York: Academic Press.

Electronics and Electrical Engineering

1.17 Cattermole, K.W. and O’Reilly, J.J. (1984). Optimization Methods in Electronics and
Communications. New York: Wiley.

1.18 Cuthbert, T.R. Jr. (1987). Optimization Using Personal Computers with Applications
to Electrical Networks. New York: Wiley.

1.19 Micheli, G.D. (1994). Synthesis and Optimization of Digital Circuits. New York:
McGraw-Hill.

Mechanical Design

1.20 Johnson, R.C. (1980). Optimum Design of Mechanical Elements. New York: Wiley.

1.21 Haug, E.J. and Arora, J.S. (1979). Applied Optimal Design: Mechanical and Structural
Systems. New York: Wiley.

1.22 Sevin, E. and Pilkey, W.D. (1971). Optimum Shock and Vibration Isolation. Washing-
ton, DC: Shock and Vibration Information Center.

General Engineering Design

1.23 Arora, J. (2004). Introduction to Optimum Design, 2e. San Diego: Academic Press.

1.24 Papalambros, P.Y. and Wilde, D.J. (1988). Principles of Optimal Design. Cambridge,
UK: Cambridge University Press.

�

� �

�

36 Introduction to Optimization

1.25 Siddall, J.N. (1982). Optimal Engineering Design: Principles and Applications. New
York: Marcel Dekker.

1.26 Rao, S.S. (1984). Optimization: Theory and Applications, 2e. New York: Wiley.

1.27 Vanderplaats, G.N. (1984). Numerical Optimization Techniques for Engineering
Design with Applications. New York: McGraw-Hill.

1.28 Fox, R.L. (1972). Optimization Methods for Engineering Design. Reading, MA:
Addison-Wesley.

1.29 Ravindran, A., Ragsdell, K.M., and Reklaitis, G.V. (2006). Engineering Optimization:
Methods and Applications, 2e. New York: Wiley.

1.30 Wilde, D.J. (1978). Globally Optimal Design. New York: Wiley.

1.31 Shoup, T.E. and Mistree, F. (1987). Optimization Methods with Applications for Per-
sonal Computers. Englewood Cliffs, NJ: Prentice-Hall.

1.32 Belegundu, A.D. and Chandrupatla, T.R. (1999). Optimization Concepts and Applica-
tions in Engineering. Upper Saddle River, NJ: Prentice Hall.

General Nonlinear Programming Theory

1.33 Jacoby, S.L.S., Kowalik, J.S., and Pizzo, J.T. (1972). Iterative Methods for Nonlinear
Optimization Problems. Englewood Cliffs, NJ: Prentice-Hall.

1.34 Dixon, L.C.W. (1980). Nonlinear Optimization: Theory and Algorithms. Boston:
Birkhauser.

1.35 Beveridge, G.S.G. and Schechter, R.S. (1970). Optimization: Theory and Practice.
New York: McGraw-Hill.

1.36 Gottfried, B.S. and Weisman, J. (1973). Introduction to Optimization Theory. Engle-
wood Cliffs, NJ: Prentice-Hall.

1.37 Wolfe, M.A. (1978). Numerical Methods for Unconstrained Optimization. New York:
Van Nostrand Reinhold.

1.38 Bazaraa, M.S. and Shetty, C.M. (1979). Nonlinear Programming. New York: Wiley.

1.39 Zangwill, W.I. (1969). Nonlinear Programming: A Unified Approach. Englewood
Cliffs, NJ: Prentice-Hall.

1.40 Dennis, J.E. and Schnabel, R.B. (1983). Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice-Hall.

1.41 Kowalik, J.S. (1968). Methods for Unconstrained Optimization Problems. New York:
American Elsevier.

1.42 Fiacco, A.V. and McCormick, G.P. (1968). Nonlinear Programming: Sequential
Unconstrained Minimization Techniques. New York: Wiley.

1.43 Zoutendijk, G. (1960). Methods of Feasible Directions. Amsterdam: Elsevier.

1.44 Nocedal, J. and Wright, S.J. (2006). Numerical Optimization. New York: Springer.

1.45 Fletcher, R. (1981). Practical Methods of Optimization, vol. 1 and 2. Chichester, UK:
Wiley.

1.46 Bertsekas, D.P. (1999). Nonlinear Programming, 2e. Nashua, NH: Athena Scientific.

1.47 Luenberger, D.G. (2003). Linear and Nonlinear Programming, 2e. Norwell, MA:
Kluwer Academic Publishers.

1.48 Antoniou, A. and Lu, W.-S. (2007). Practical Optimization: Algorithms and Engineer-
ing Applications. Berlin: Springer.

1.49 Nash, S.G. and Sofer, A. (1996). Linear and Nonlinear Programming. New York:
McGraw-Hill.

Computer Programs

1.50 Kuester, J.L. and Mize, J.H. (1973). Optimization Techniques with Fortran. New York:
McGraw-Hill.

�

� �

�

References and Bibliography 37

1.51 Khunzi, H.P., Tzschach, H.G., and Zehnder, C.A. (1971). Numerical Methods of Math-
ematical Optimization with ALGOL and FORTRAN Programs. New York: Academic
Press.

1.52 Wolfe, C.S. (1985). Linear Programming with BASIC and FORTRAN. Reston, VA:
Reston Publishing Company.

1.53 Baker, K.R. (2006). Optimization Modeling with Spreadsheets. Belmont, CA: Thom-
son Brooks/Cole.

1.54 Venkataraman, P. (2002). Applied Optimization with MATLAB Programming. New
York: Wiley.

Optimal Control

1.55 Kirk, D.E. (1970). Optimal Control Theory: An Introduction. Englewood Cliffs, NJ:
Prentice-Hall.

1.56 Sage, A.P. and White, C.C. III. (1977). Optimum Systems Control, 2e. Englewood
Cliffs, NJ: Prentice-Hall.

1.57 Anderson, B.D.O. and Moore, J.B. (1971). Linear Optimal Control. Englewood Cliffs,
NJ: Prentice-Hall.

1.58 Bryson, A.E. and Ho, Y.C. (1969). Applied Optimal Control: Optimization, Estimation,
and Control. Waltham, MA: Blaisdell.

Geometric Programming

1.59 Duffin, R.J., Peterson, E.L., and Zener, C. (1967). Geometric Programming: Theory
and Applications. New York: Wiley.

1.60 Zener, C.M. (1971). Engineering Design by Geometric Programming. New York:
Wiley.

1.61 Beightler, C.S. and Phillips, D.T. (1976). Applied Geometric Programming. New York:
Wiley.

1.62 Cao, B.-Y. (2002). Fuzzy Geometric Programming. Dordrecht, The Netherlands:
Kluwer Academic.

1.63 Paoluzzi, A. (2003). Geometric Programming for Computer-Aided Design. New York:
Wiley.

Linear Programming

1.64 Dantzig, G.B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton
University Press.

1.65 Vajda, S. (1981). Linear Programming: Algorithms and Applications. New York:
Methuen.

1.66 Gass, S.I. (1985). Linear Programming: Methods and Applications, 5e. New York:
McGraw-Hill.

1.67 Kim, C. (1971). Introduction to Linear Programming. New York: Holt, Rinehart, &
Winston.

1.68 Thie, P.R. (1979). An Introduction to Linear Programming and Game Theory. New
York: Wiley.

1.69 Gass, S.I. (1990). An Illustrated Guide to Linear Programming. New York: Dover.

1.70 Murty, K.G. (1983). Linear Programming. New York: Wiley.

Integer Programming

1.71 Hu, T.C. (1982). Integer Programming and Network Flows. Reading, MA:
Addison-Wesley.

1.72 Kaufmann, A. and Labordaere, A.H. (1976). Integer and Mixed Programming: Theory
and Applications. New York: Academic Press.

�

� �

�

38 Introduction to Optimization

1.73 Salkin, H.M. (1975). Integer Programming. Reading, MA: Addison-Wesley.

1.74 Taha, H.A. (1975). Integer Programming: Theory, Applications, and Computations.
New York: Academic Press.

1.75 Schrijver, A. (1998). Theory of Linear and Integer Programming. New York: Wiley.

1.76 Karlof, J.K. (ed.) (2006). Integer Programming: Theory and Practice. Boca Raton, FL:
CRC Press.

1.77 Wolsey, L.A. (1998). Integer Programming. New York: Wiley.

Dynamic Programming

1.78 Bellman, R. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

1.79 Bellman, R. and Dreyfus, S.E. (1962). Applied Dynamic Programming. Princeton, NJ:
Princeton University Press.

1.80 Nemhauser, G.L. (1966). Introduction to Dynamic Programming. New York: Wiley.

1.81 Cooper, L. and Cooper, M.W. (1981). Introduction to Dynamic Programming. Oxford,
UK: Pergamon Press.

1.82 Powell, W.B. (2007). Approximate Dynamic Programming: Solving the Curses of
Dimensionality. Hoboken, NJ: Wiley.

1.83 Puterman, M.L. (1978). Dynamic Programming and Its Applications. New York: Aca-
demic Press.

1.84 Sniedovich, M. (1992). Dynamic Programming, Marcel Dekker. New York.

Stochastic Programming

1.85 Sengupta, J.K. (1972). Stochastic Programming: Methods and Applications. Amster-
dam: North-Holland.

1.86 Kall, P. (1976). Stochastic Linear Programming. Berlin: Springer-Verlag.

1.87 Birge, J.R. and Louveaux, F. (1997). Introduction to Stochastic Programming. New
York: Springer.

1.88 Kall, P. and Wallace, S.W. (1994). Stochastic Programming. Chichester, UK:
Wiley.

1.89 Kall, P. and Mayer, J. (2005). Stochastic Linear Programming: Models, Theory, and
Computation. New York: Springer.

Multiobjective Programming

1.90 Steuer, R.E. (1986). Multiple Criteria Optimization: Theory, Computation, and Appli-
cation. New York: Wiley.

1.91 Hwang, C.L. and Masud, A.S.M. (1979). Multiple Objective Decision Making:
Methods and Applications, Lecture Notices in Economics and Mathematical Systems,
vol. 164. Berlin: Springer-Verlag.

1.92 Ignizio, J.P. (1982). Linear Programming in Single and Multi-Objective Systems.
Englewood Cliffs, NJ: Prentice-Hall.

1.93 Goicoechea, A., Hansen, D.R., and Duckstein, L. (1982). Multiobjective Decision
Analysis with Engineering and Business Applications. New York: Wiley.

1.94 Collette, Y. and Siarry, P. (2004). Multiobjective Optimization: Principles and Case
Studies. Berlin: Springer.

1.95 Eschenauer, H., Koski, J., and Osyczka, A. (eds.) (1990). Multicriteria Design Opti-
mization: Procedures and Applications. Berlin: Springer-Verlag.

1.96 Sen, P. and Yang, J.-B. (1998). Multiple Criteria Decision Support in Engineering
Design. Berlin: Springer-Verlag.

1.97 Owen, G. (1995). Game Theory, 3e. San Diego: Academic Press.

�

� �

�

References and Bibliography 39

Nontraditional Optimization Techniques including Metaheuristic Algorithms

1.98 Mitchell, M. (1998). An Introduction to Genetic Algorithms. Cambridge, MA: MIT
Press.

1.99 Fogel, D.B. (2006). Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence, 3e. Piscataway, NJ: IEEE Press.

1.100 Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Chich-
ester, England: Wiley.

1.101 Coello Coello, C.A., van Veldhuizen, D.A., and Lamont, G.B. (2002). Evolutionary
Algorithms for Solving Multi-Objective Problems. New York: Plenum.

1.102 Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison-Wesley.

1.103 van Laarhoven, P.J.M. and Aarts, E. (1987). Simulated Annealing: Theory and Appli-
cations. Dordrecht, The Netherlands: D. Reidel.

1.104 Hopfield, J. and Tank, D. (1985). Neural computation of decisions in optimization prob-
lems. Biological Cybernetics 52: 141–152.

1.105 Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences of the United
States of America 79: 2554–2558.

1.106 Forbes, N. (2004). Imitation of Life: How Biology Is Inspiring Computing. Cambridge,
MA: MIT Press.

1.107 Harris, J. (2006). Fuzzy Logic Applications in Engineering Science. Dordrecht, The
Netherlands: Springer.

1.108 Hanss, M. (2005). Applied Fuzzy Arithmetic: An Introduction with Engineering Appli-
cations. Berlin: Springer.

1.109 Chen, G. and Pham, T.T. (2006). Introduction to Fussy Systems. Boca Raton, FL: Chap-
man & Hall/CRC.

1.110 Ross, T.J. (1995). Fuzzy Logic with Engineering Applications. New York:
McGraw-Hill.

1.111 Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT
Press.

1.112 Kennedy, J., Eberhart, R.C., and Shi, Y. (2001). Swarm Intelligence. San Francisco,
CA: Morgan Kaufmann.

1.113 Spall, J.C. (2003). Introduction to Stochastic Search and Optimization. Wiley Inter-
science.

1.114 Engelbrecht, A.P. (2005). Fundamentals of Computational Swarm Intelligence. Chich-
ester, UK: Wiley.

1.115 Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intelligence: From Natural
to Artificial Systems. Oxford, UK: Oxford University Press.

1.116 Glover, F. and Kochenberger, G.A. (2003). Handbook of Metaheuristics. Springer.

1.117 Talbi, E.G. (2009). Metaheuristics: From Design to Implementation. Wiley.

1.118 Yang, X.S. (2010). Engineering Optimization: An Introduction with Metaheuristic
Applications. Hoboken: Wiley.

1.119 Glover, F. and Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic Publishers.

1.120 Messac, A. (2015). Optimization in Practice with MATLAB. New York: Cambridge
University Press.

1.121 Yang, X.S. and Koziel, S. (2011). Computational Optimization and Applications in
Engineering and Industry. Germany: Springer.

1.122 Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: MIT Press.

1.123 Neumann, F. and Witt, C. (2010). Bio Inspired Computation in Combinatorial Opti-
mization. New York: Springer.

1.124 Haupt, R.L. and Haupt, S.E. (2004). Practical Genetic Algorithms, 2e. Hoboken, NJ:
Wiley.

�

� �

�

40 Introduction to Optimization

Related Areas of Analysis, Design, and Optimization

1.125 Juvinall, R.C. and Marshek, K.M. (1991). Fundamentals of Machine Component
Design, 2e. New York: Wiley.

1.126 Budynas, R.G. and Nisbett, J.K. (2015). Shigley’s Mechanical Engineering Design,
10e. New York: McGraw Hill.

1.127 Rao, S.S. (2017). Mechanical Vibrations, 6e. Hoboken, NJ: Pearson Education.

1.128 Rao, S.S. (2018). The Finite Element Method in Engineering, 6e. Cambridge, MA:
Elsevier-Butterworth-Heinemann.

1.129 MacGregor, J.M. (1988). Reinforced Concrete: Mechanics and Design. Englewood
Cliffs, NJ: Prentice Hall.

1.130 Rao, S.S. (1992). Reliability-Based Design. New York: McGraw-Hill.

1.131 Rao, S.S. (2015). Reliability Engineering. Upper Saddle River, NJ: Pearson Prentice
Hall.

1.132 Cook, N.H. (1984). Mechanics and Materials for Design. New York: McGraw-Hill.

1.133 Ramarathnam, R. and Desai, B.G. (1971). Optimization of polyphase induction motor
design: a nonlinear programming approach. IEEE Transactions on Power Apparatus
and Systems PAS-90 (2): 570–578.

1.134 Rao, S.S. (2002). Applied Numerical Methods for Engineers and Scientists. Upper Sad-
dle River, NJ: Prentice Hall.

1.135 Stark, R.M. and Nicholls, R.L. (1972). Mathematical Foundations for Design: Civil
Engineering Systems. New York: McGraw-Hill.

1.136 Coleman, T.F., Branch, M.A., and Grace, A. (1999). Optimization Toolbox – for Use
with MATLAB®, User’s Guide, Version 2. Natick, MA: MathWorks Inc.

REVIEW QUESTIONS

1.1 Match the following terms and descriptions:

(a) Free feasible point gj(X) = 0
(b) Free infeasible point Some gj(X) = 0 and other gj(X)< 0
(c) Bound feasible point Some gj(X) = 0 and other gj(X)≥ 0
(d) Bound infeasible point Some gj(X)> 0 and other gj(X)< 0
(e) Active constraints All gj(X)< 0

1.2 Answer true or false:

(a) Optimization problems are also known as mathematical programming problems.

(b) The number of equality constraints can be larger than the number of design variables.

(c) Preassigned parameters are part of design data in a design optimization problem.

(d) Side constraints are not related to the functionality of the system.

(e) A bound design point can be infeasible.

(f) It is necessary that some gj(X) = 0 at the optimum point.

(g) An optimal control problem can be solved using dynamic programming techniques.

(h) An integer programming problem is same as a discrete programming problem.

(i) Metaheuristic optimization is a type of mathematical programming technique.

1.3 Define the following terms:

(a) Mathematical programming problem

(b) Trajectory optimization problem

(c) Behavior constraint

(d) Quadratic programming problem

�

� �

�

Problems 41

(e) Posynomial

(f) Geometric programming problem

1.4 Match the following types of problems with their descriptions.

(a) Geometric programming problem Classical optimization problem
(b) Quadratic programming problem Objective and constraints are quadratic
(c) Dynamic programming problem Objective is quadratic and constraints are

linear
(d) Nonlinear programming problem Objective and constraints arise from a

serial system
(e) Calculus of variations problem Objective and constraints are polynomials

with positive coefficients

1.5 How do you solve a maximization problem as a minimization problem?

1.6 State the linear programming problem in standard form.

1.7 Define an OC problem and give an engineering example.

1.8 What is the difference between linear and nonlinear programming problems?

1.9 What is the difference between design variables and preassigned parameters?

1.10 What is a design space?

1.11 What is the difference between a constraint surface and a composite constraint surface?

1.12 What is the difference between a bound point and a free point in the design space?

1.13 What is a merit function?

1.14 Suggest a simple method of handling multiple objectives in an optimization problem.

1.15 What are objective function contours?

1.16 What is operations research?

1.17 State five engineering applications of optimization.

1.18 What is an integer programming problem?

1.19 What is graphical optimization, and what are its limitations?

1.20 Under what conditions can a polynomial in n variables be called a posynomial?

1.21 Define a stochastic programming problem and give two practical examples.

1.22 What is a separable programming problem?

1.23 State four characteristics of a metaheuristic optimization method.

1.24 Name four metaheuristic optimization methods.

1.25 Name two popular metaheuristic optimization methods that were first introduced to the
literature.

PROBLEMS

1.1 A fertilizer company purchases nitrates, phosphates, potash, and an inert chalk base at a
cost of $1500, $500, $1000, and $100 per ton, respectively, and produces four fertilizers
A, B, C, and D. The production cost, selling price, and composition of the four fertilizers
are given below.

�

� �

�

42 Introduction to Optimization

Percentage composition by weight

Fertilizer

Production
cost
($/ton)

Selling
price
($/ton) Nitrates Phosphates Potash Inert chalk base

A 100 350 5 10 5 80
B 150 550 5 15 10 70
C 200 450 10 20 10 60
D 250 700 15 5 15 65

During any week, no more than 1000 tons of nitrate, 2000 tons of phosphates, and
1500 tons of potash will be available. The company is required to supply a minimum
of 5000 tons of fertilizer A and 4000 tons of fertilizer D per week to its customers; but
it is otherwise free to produce the fertilizers in any quantities it pleases. Formulate the
problem of finding the quantity of each fertilizer to be produced by the company to
maximize its profit.

1.2 The two-bar truss shown in Figure 1.15 is symmetric about the y axis. The nondimen-
sional area of cross section of the members A/Aref, and the nondimensional position of
joints 1 and 2, x/h, are treated as the design variables x1 and x2, respectively, where Aref
is the reference value of the area (A) and h is the height of the truss. The coordinates of
joint 3 are held constant. The weight of the truss (f1) and the total displacement of joint
3 under the given load (f2) are to be minimized without exceeding the permissible stress,
𝜎0. The weight of the truss and the displacement of joint 3 can be expressed as

f1(X) = 2𝜌hx2

√
1 + x2

1Aref

f2(X) =
Ph(1 + x2

1)
1.5
√

1 + x4
1

2
√

2Ex2
1x2Aref

h

P

y

x

x

Member 2
Member 1

2 1

3

45°

Figure 1.15 Two-bar truss.

�

� �

�

Problems 43

where 𝜌 is the weight density, P the applied load, and E the Young’s modulus. The stresses
induced in members 1 and 2 (𝜎1 and 𝜎2) are given by

𝜎1(X) =
P(1 + x1)

√
(1 + x2

1)

2
√

2x1x2Aref

𝜎2(X) =
P(x1 − 1)

√
(1 + x2

1)

2
√

2x1x2Aref

In addition, upper and lower bounds are placed on design variables x1 and x2 as

xmin
i ≤ xi ≤ xmax

i ; i = 1, 2

Find the solution of the problem using a graphical method with (a) f1 as the objec-
tive, (b) f2 as the objective, and (c) (f1 + f2) as the objective for the following data:
E = 30× 106 psi, 𝜌 = 0.283 lb/in.3, P = 10,000 lb, 𝜎0 = 20 000 psi, h = 100 in.,
Aref = 1 in.2, xmin

1 = 0.1, xmin
2 = 0.1, xmax

1 = 2.0, and xmax
2 = 2.5.

1.3 Ten jobs are to be performed in an automobile assembly line as noted in the following
table:

Job
number

Time required to
complete the

job (min)

Jobs that must be
completed before
starting this job

1 4 None
2 8 None
3 7 None
4 6 None
5 3 1, 3
6 5 2, 3, 4
7 1 5, 6
8 9 6
9 2 7, 8

10 8 9

It is required to set up a suitable number of workstations, with one worker assigned to
each workstation, to perform certain jobs. Formulate the problem of determining the
number of workstations and the particular jobs to be assigned to each workstation to
minimize the idle time of the workers as an integer programming problem. Hint: Define
variables xij such that xij = 1 if job i is assigned to station j, and xij = 0 otherwise.

1.4 A railroad track of length L is to be constructed over an uneven terrain by adding or
removing dirt (Figure 1.16). The absolute value of the slope of the track is to be restricted
to a value of r1 to avoid steep slopes. The absolute value of the rate of change of the
slope is to be limited to a value r2 to avoid rapid accelerations and decelerations. The
absolute value of the second derivative of the slope is to be limited to a value of r3 to avoid
severe jerks. Formulate the problem of finding the elevation of the track to minimize the
construction costs as an OC problem. Assume the construction costs to be proportional
to the amount of dirt added or removed. The elevation of the track is equal to a and b at
x = 0 and x = L, respectively.

�

� �

�

44 Introduction to Optimization

a b

x L
x

Terrain (known elevation, g(x))

Track (unknown elevation, h(x))

0

g(x)

h(x)

Figure 1.16 Railroad track on an uneven terrain.

1.5 A manufacturer of a particular product produces x1 units in the first week and x2 units in
the second week. The number of units produced in the first and second weeks must be
at least 200 and 400, respectively, to be able to supply the regular customers. The initial
inventory is zero and the manufacturer ceases to produce the product at the end of the
second week. The production cost of a unit, in dollars, is given by 4x2

i , where xi is the
number of units produced in week i (i = 1, 2). In addition to the production cost, there is
an inventory cost of $10 per unit for each unit produced in the first week that is not sold
by the end of the first week. Formulate the problem of minimizing the total cost and find
its solution using a graphical optimization method.

1.6 Consider the slider-crank mechanism shown in Figure 1.17 with the crank rotating at a
constant angular velocity𝜔. Use a graphical procedure to find the lengths of the crank and
the connecting rod to maximize the velocity of the slider at a crank angle of 𝜃 = 30∘ for
𝜔 = 100 rad/s. The mechanism has to satisfy Groshof’s criterion l≥ 2.5r to ensure 360∘
rotation of the crank. Additional constraints on the mechanism are given by 0.5≤ r≤ 10,
2.5≤ l≤ 25, and 10≤ x≤ 20.

1.7 Solve Problem 1.6 to maximize the acceleration (instead of the velocity) of the slider at
𝜃 = 30∘ for 𝜔 = 100 rad/s.

1.8 It is required to stamp four circular disks of radii R1, R2, R3, and R4 from a rectangu-
lar plate in a fabrication shop (Figure 1.18). Formulate the problem as an optimization
problem to minimize the scrap. Identify the design variables, objective function, and the
constraints.

ω

θ

x

Connecting rod, length l

Slider

Crank, length r

Figure 1.17 Slider-crank mechanism.

�

� �

�

Problems 45

x

y

b

a

R2

R4

R1
R3

Figure 1.18 Locations of circular disks in a rectangular plate.

h

Cup

(a) (b)

Cone

T

h

α

α

R2

p.dA

R1
R1

R2

F

Figure 1.19 Cone clutch.

1.9 The torque transmitted (T) by a cone clutch, shown in Figure 1.19, under uniform pressure
condition is given by

T =
2𝜋 fp

3 sin 𝛼
(R3

1 − R3
2)

where p is the pressure between the cone and the cup, f the coefficient of friction, 𝛼 the
cone angle, R1 the outer radius, and R2 the inner radius.

(a) Find R1 and R2 that minimize the volume of the cone clutch with 𝛼 = 30∘, F = 30 lb,
and f = 0.5 under the constraints T≥ 100 lb-in., R1 ≥ 2R2, 0≤R1 ≤ 15 in., and
0≤R2 ≤ 10 in.

(b) What is the solution if the constraint R1 ≥ 2R2 is changed to R1 ≤ 2R2?

(c) Find the solution of the problem stated in part (a) by assuming a uniform wear con-
dition between the cup and the cone. The torque transmitted (T) under uniform wear
condition is given by

T =
𝜋fpR2

sin 𝛼
(R2

1 − R2
2)

Note: Use graphical optimization for the solutions.

�

� �

�

46 Introduction to Optimization

1.10 A hollow circular shaft is to be designed for minimum weight to achieve a minimum
reliability of 0.99 when subjected to a random torque of (T , 𝜎T) = (106

, 104) lb-in., where
T is the mean torque and 𝜎T is the standard deviation of the torque, T. The permissible
shear stress, 𝜏0, of the material is given by (𝜏0, 𝜎𝜏0) = (50,000, 5000) psi, where 𝜏0 is the
mean value and 𝜎

𝜏0 is the standard deviation of 𝜏0. The maximum induced stress (𝜏) in
the shaft is given by

𝜏 =
Tro

J

where ro is the outer radius and J is the polar moment of inertia of the cross section of the
shaft. The manufacturing tolerances on the inner and outer radii of the shaft are specified
as ±0.06 in. The length of the shaft is given by 50± 1 in. and the specific weight of the
material by 0.3± 0.03 lb/in.3. Formulate the optimization problem and solve it using a
graphical procedure. Assume normal distribution for all the random variables and 3𝜎
values for the specified tolerances. Hints:

(1) The minimum reliability requirement of 0.99 can be expressed, equivalently, as
[1.130]

z1 = 2.326 ≤ 𝜏 − 𝜏0√
𝜎

2
𝜏 + 𝜎2

𝜏0

(2) If f (x1, x2, . . . , xn) is a function of the random variables x1, x 2, . . . , xn, the mean
value of f (f) and the standard deviation of f (𝜎f) are given by

f = f (x1, x2, . . . , xn)

𝜎f =
⎡⎢⎢⎣

n∑
i=1

(
𝜕f

𝜕xi

|||||x1 ,x2 , . . . , xn

)2

𝜎
2
xi

⎤⎥⎥⎦
1∕2

where xi is the mean value of xi, and 𝜎xi is the standard deviation of xi.

1.11 Certain nonseparable optimization problems can be reduced to a separable form by using
suitable transformation of variables. For example, the product term f = x1 x2 can be
reduced to the separable form f = y2

1 − y2
2 by introducing the transformations

y1 = 1
2
(x1 + x2), y2 = 1

2
(x1 − x2)

Suggest suitable transformations to reduce the following terms to separable form:

f = x2
1x3

2, x1 > 0,x2 > 0

(a) f = xx2
1 , x1 > 0

1.12 In the design of a shell-and-tube heat exchanger (Figure 1.20), it is decided to have the
total length of tubes equal to at least 𝛼1 [1.10]. The cost of the tube is 𝛼2 per unit length
and the cost of the shell is given by 𝛼3D2.5L, where D is the diameter and L is the length of
the heat exchanger shell. The floor space occupied by the heat exchanger costs 𝛼4 per unit
area and the cost of pumping cold fluid is 𝛼5L/d5N2 per day, where d is the diameter of the
tube and N is the number of tubes. The maintenance cost is given by 𝛼6NdL. The thermal
energy transferred to the cold fluid is given by 𝛼7/N1.2dL1.4 + 𝛼8/d0.2L. Formulate the
mathematical programming problem of minimizing the overall cost of the heat exchanger
with the constraint that the thermal energy transferred be greater than a specified amount
𝛼9. The expected life of the heat exchanger is 𝛼10 years. Assume that 𝛼i, i = 1, 2, . . . , 10,
are known constants, and each tube occupies a cross-sectional square of width and depth
equal to d.

�

� �

�

Problems 47

Tubes of diameter d
Number of tubes N

L

D

Figure 1.20 Shell-and-tube heat exchanger.

R1 R3

R4

I4

I3
I1

I2
I5

R5

R2

Figure 1.21 Electrical bridge network.

1.13 The bridge network shown in Figure 1.21 consists of five resistors Ri (i = 1, 2, . . . , 5). If Ii
is the current flowing through the resistance Ri, the problem is to find the resistances R1,
R2, . . . , R5 so that the total power dissipated by the network is a minimum. The current Ii
can vary between the lower and upper limits Ii,min and Ii,max, and the voltage drop, Vi = Ri
Ii, must be equal to a constant ci for 1≤ i≤ 5. Formulate the problem as a mathematical
programming problem.

1.14 A traveling saleswoman has to cover n towns. She plans to start from a particular town
numbered 1, visit each of the other n− 1 towns, and return to the town 1. The distance
between towns i and j is given by dij. Formulate the problem of selecting the sequence in
which the towns are to be visited to minimize the total distance traveled.

1.15 A farmer has a choice of planting barley, oats, rice, or wheat on his 200-acre farm. The
labor, water, and fertilizer requirements, yields per acre, and selling prices are given in
the following table:

Type of
crop

Labor
cost
($)

Water
required

(m3)

Fertilizer
required

(lb)
Yield
(lb)

Selling
price
($/lb)

Barley 300 10 000 100 1 500 0.5
Oats 200 7 000 120 3 000 0.2
Rice 250 6 000 160 2 500 0.3
Wheat 360 8 000 200 2 000 0.4

The farmer can also give part or all of the land for lease, in which case he gets $200 per
acre. The cost of water is $0.02/m3 and the cost of the fertilizer is $2/lb. Assume that
the farmer has no money to start with and can get a maximum loan of $50 000 from the
land mortgage bank at an interest of 8%. He can repay the loan after six months. The
irrigation canal cannot supply more than 4× 105 m3 of water. Formulate the problem of
finding the planting schedule for maximizing the expected returns of the farmer.

�

� �

�

48 Introduction to Optimization

1.16 There are two different sites, each with four possible targets (or depths) to drill an oil
well. The preparation cost for each site and the cost of drilling at site i to target j are
given below:

Drilling cost
to target j

Site i 1 2 3 4 Preparation cost

1 4 1 9 7 11
2 7 9 5 2 13

Formulate the problem of determining the best site for each target so that the total cost
is minimized.

1.17 A four-pole dc motor, whose cross section is shown in Figure 1.22, is to be designed with
the length of the stator and rotor x1, the overall diameter of the motor x2, the unnotched
radius x3, the depth of the notches x4, and the ampere turns x5 as design variables. The air
gap is to be less than k1

√
x2 + 7.5 where k1 is a constant. The temperature of the external

surface of the motor cannot exceed ΔT above the ambient temperature. Assuming that
the heat can be dissipated only by radiation, formulate the problem for maximizing the
power of the motor [1.59]. Hints:

Rotor

Stator

Air gap

Slots (to house armature winding)

N

x2

x4x4
x3 x3

Figure 1.22 Cross section of an idealized motor.

�

� �

�

Problems 49

1. The heat generated due to current flow is given by k2x1x−1
2 x−1

4 x2
5, where k2 is a con-

stant. The heat radiated from the external surface for a temperature difference of ΔT
is given by k3 x1 x2ΔT, where k3 is a constant.

2. The expression for power is given by k4NBx1x3x5, where k4 is a constant, N is the
rotational speed of the rotor, and B is the average flux density in the air gap.

3. The units of the various quantities are as follows. Lengths: centimeter, heat generated,
heat dissipated; power: watt; temperature: ∘C; rotational speed: rpm; flux density:
gauss.

1.18 A gas pipeline is to be laid between two cities A and E, making it pass through one of the
four locations in each of the intermediate towns B, C, and D (Figure 1.23). The associated
costs are indicated in the following tables.

Costs for A–B and D–E

Station i

1 2 3 4

From A to point i of B 30 35 25 40
From point i of D to E 50 40 35 25

Costs for B–C and C–D

To:
From: 1 2 3 4

1 22 18 24 18
2 35 25 15 21
3 24 20 26 20
4 22 21 23 22

Formulate the problem of minimizing the cost of the pipeline.

1.19 A beam-column of rectangular cross section is required to carry an axial load of 25 lb
and a transverse load of 10 lb, as shown in Figure 1.24. It is to be designed to avoid the
possibility of yielding and buckling and for minimum weight. Formulate the optimization
problem by assuming that the beam-column can bend only in the vertical (xy) plane.

City A
City E

3

4

Town B

2

1

3

4

Town C

2

1

3

4

Town D

2

1

Figure 1.23 Possible paths of the pipeline between A and E.

�

� �

�

50 Introduction to Optimization

l = 50 in

Px = 10 lb

Py = 25 lb
d

b

Figure 1.24 Beam-column.

Assume the material to be steel with a specific weight of 0.3 lb/in.3, Young’s modulus of
30× 106 psi, and a yield stress of 30 000 psi. The width of the beam is required to be at
least 0.5 in. and not greater than twice the depth. Also, find the solution of the problem
graphically. Hint: The compressive stress in the beam-column due to Py is Py/bd and that
due to Px is

Pxld

2Izz

=
6Pxl

bd2

The axial buckling load is given by

(Py)cri =
𝜋

2EIzz

4l2
= 𝜋

2Ebd3

48l2

1.20 A two-bar truss is to be designed to carry a load of 2 W as shown in Figure 1.25. Both
bars have a tubular section with mean diameter d and wall thickness t. The material
of the bars has Young’s modulus E and yield stress 𝜎y. The design problem involves
the determination of the values of d and t so that the weight of the truss is a minimum
and neither yielding nor buckling occurs in any of the bars. Formulate the problem as a
nonlinear programming problem.

1.21 Consider the problem of determining the economic lot sizes for four different items.
Assume that the demand occurs at a constant rate over time. The stock for the ith item
is replenished instantaneously upon request in lots of sizes Qi. The total storage space
available is A, whereas each unit of item i occupies an area di. The objective is to find
the values of Qi that optimize the per unit cost of holding the inventory and of ordering

Section A-A

h

2b

2W

A
A

d

t

Figure 1.25 Two-bar truss.

�

� �

�

Problems 51

subject to the storage area constraint. The cost function is given by

C =
4∑

i=1

(
ai

Qi

+ biQi

)
,Qi > 0

where ai and bi are fixed constants. Formulate the problem as a dynamic programming
(optimal control) model. Assume that Qi is discrete.

1.22 The layout of a processing plant, consisting of a pump (P), a water tank (T), a compressor
(C), and a fan (F), is shown in Figure 1.26. The locations of the various units, in terms of
their (x, y) coordinates, are also indicated in this figure. It is decided to add a new unit,
a heat exchanger (H), to the plant. To avoid congestion, it is decided to locate H within
a rectangular area defined by {−15≤ x≤ 15, −10≤ y≤ 10}. Formulate the problem of
finding the location of H to minimize the sum of its x and y distances from the existing
units, P, T, C, and F.

1.23 Two copper-based alloys (brasses), A and B, are mixed to produce a new alloy, C. The
composition of alloys A and B and the requirements of alloy C are given in the following
table:

Composition by weight

Alloy Copper Zinc Lead Tin

A 80 10 6 4
B 60 20 18 2
C ≥ 75 ≥ 15 ≥ 16 ≥ 3

If alloy B costs twice as much as alloy A, formulate the problem of determining the
amounts of A and B to be mixed to produce alloy C at a minimum cost.

1.24 An oil refinery produces four grades of motor oil in three process plants. The refinery
incurs a penalty for not meeting the demand of any particular grade of motor oil. The
capacities of the plants, the production costs, the demands of the various grades of motor
oil, and the penalties are given in the following table:

100 ft

80 ft

Pump (P)

Fan (F)
Compressor (C)

15 15

Tank (T)

x

y

(–25, –35)

(–30, 20)

(0, 0)

(40, 30)

(20, –15)

10

10

Figure 1.26 Processing plant layout (coordinates in ft).

�

� �

�

52 Introduction to Optimization

Production cost ($/day)
to manufacture motor

oil of grade:Process
plant

Capacity of the plant
(kgal/day) 1 2 3 4

1 100 750 900 1000 1200
2 150 800 950 1100 1400
3 200 900 1000 1200 1600
Demand (kgal/day) 50 150 100 75
Penalty (per each kilogallon shortage) $10 $12 $16 $20

Formulate the problem of minimizing the overall cost as an LP problem.

1.25 A part-time graduate student in engineering is enrolled in a four-unit mathematics course
and a three-unit design course. Since the student has to work for 20 hours a week at a
local software company, he can spend a maximum of 40 hours a week to study outside the
class. It is known from students who took the courses previously that the numerical grade
(g) in each course is related to the study time spent outside the class as gm = tm/6 and
gd = td/5, where g indicates the numerical grade (g = 4 for A, 3 for B, 2 for C, 1 for D, and
0 for F), t represents the time spent in hours per week to study outside the class, and the
subscripts m and d denote the courses, mathematics and design, respectively. The student
enjoys design more than mathematics and hence would like to spend at least 75 minutes
to study for design for every 60 minutes he spends to study mathematics. Also, as far as
possible, the student does not want to spend more time on any course beyond the time
required to earn a grade of A. The student wishes to maximize his grade point P, given
by P = 4gm + 3gd, by suitably distributing his study time. Formulate the problem as an
LP problem.

1.26 The scaffolding system, shown in Figure 1.27, is used to carry a load of 10 000 lb. Assum-
ing that the weights of the beams and the ropes are negligible, formulate the problem of
determining the values of x1, x2, x3, and x4 to minimize the tension in ropes A and B while
maintaining positive tensions in ropes C, D, E, and F.

1.27 Formulate the problem of minimum weight design of a power screw subjected to an
axial load, F, as shown in Figure 1.28 using the pitch (p), major diameter (d), nut height
(h), and screw length (s) as design variables. Consider the following constraints in the
formulation:

1. The screw should be self-locking [1.126].

2. The shear stress in the screw should not exceed the yield strength of the material in
shear. Assume the shear strength in shear (according to distortion energy theory), to
be 0.577𝜎y, where 𝜎y is the yield strength of the material.

10 ft

Beam 2

Beam 1

Beam 3

P = 10,000 lb

x1

x4
x5

x3 x2

x5

A B

C D

E F

Figure 1.27 Scaffolding system.

�

� �

�

Problems 53

Screw

2

F = Load

(a) (b)

F

p

d
h

d
F

2

Nut

F

Figure 1.28 Power screw.

3. The bearing stress in the threads should not exceed the yield strength of the
material, 𝜎y.

4. The critical buckling load of the screw should be less than the applied load, F.

1.28 .(a) A simply supported beam of hollow rectangular section is to be designed for mini-
mum weight to carry a vertical load Fy and an axial load P as shown in Figure 1.29.
The deflection of the beam in the y direction under the self-weight and Fy should
not exceed 0.5 in. The beam should not buckle either in the yz or the xz plane under
the axial load. Assuming the ends of the beam to be pin ended, formulate the opti-
mization problem using xi, i = 1, 2, 3, 4 as design variables for the following data:
Fy = 300 lb, P = 40 000 lb, l = 120 in., E = 30× 106 psi, 𝜌 = 0.284 lb/in.3, lower
bound on x1 and x2 = 0.125 in., upper bound on x1, and x2 = 4 in.

(b) Formulate the problem stated in part (a) using x1 and x2 as design variables, assuming
the beam to have a solid rectangular cross section. Also find the solution of the
problem using a graphical technique.

1.29 A cylindrical pressure vessel with hemispherical ends (Figure 1.30) is required to hold at
least 20 000 gal of a fluid under a pressure of 2500 psia. The thicknesses of the cylindrical
and hemispherical parts of the shell should be equal to at least those recommended by
section VIII of the ASME pressure vessel code, which are given by

tc =
pR

Se + 0.4p

th =
pR

Se + 0.8p

(a) (b)

Cross section
of beam

y

x
P

y

z

Fy

P

2
l

2
l

x2
x4

x3
x1

Figure 1.29 Simply supported beam under loads.

�

� �

�

54 Introduction to Optimization

R

x2

x2

x4 x4

x3

x1

Figure 1.30 Pressure vessel.

where S is the yield strength, e the joint efficiency, p the pressure, and R the radius.
Formulate the design problem for minimum structural volume using xi, i = 1, 2, 3, 4, as
design variables. Assume the following data: S = 30 000 psi and e = 1.0.

1.30 A crane hook is to be designed to carry a load F as shown in Figure 1.31. The hook can
be modeled as a three-quarter circular ring with a rectangular cross section. The stresses
induced at the inner and outer fibers at section AB should not exceed the yield strength
of the material. Formulate the problem of minimum volume design of the hook using ro,
ri, b, and h as design variables. Note: The stresses induced at points A and B are given
by [1.126]

𝜎A =
Mco

Aero

𝜎B =
Mci

Aeri

(a) (b)

Cross section ABF

h

B

R

BA

e

A
b

rn

ri

ri

ro

ro

Figure 1.31 Crane hook carrying a load.

�

� �

�

Problems 55

where M is the bending moment due to the load (=FR), R the radius of the centroid, ro the
radius of the outer fiber, ri the radius of the inner fiber, co the distance of the outer fiber
from the neutral axis = Ro − rn, ci the distance of inner fiber from neutral axis = rn − ri,
rn the radius of neutral axis, given by

rn = h
In(ro∕ri)

A the cross-sectional area of the hook = bh, and e the distance between the centroidal
and neutral axes = R− rn.

1.31 Consider the four-bar truss shown in Figure 1.32, in which members 1, 2, and 3 have
the same cross-sectional area x1 and the same length l, while member 4 has an area of
cross section x2 and length

√
3 l. The truss is made of a lightweight material for which

Young’s modulus and the weight density are given by 30× 106 psi and 0.033 33 lb/in.3,
respectively. The truss is subject to the loads P1 = 10 000 lb and P2 = 20 000 lb. The
weight of the truss per unit value of l can be expressed as

f = 3x1(1)(0.03333) + x2

√
3(0.03333) = 0.1x1 + 0.05773x2

The vertical deflection of joint A can be expressed as

𝛿A = 0.6
x1

+ 0.3464
x2

and the stresses in members 1 and 4 can be written as

𝜎1 = 5(10,000)
x1

= 50,000
x1

, 𝜎4 =
−2
√

3(10,000)
x2

= −34,640
x2

The weight of the truss is to be minimized with constraints on the vertical deflection of
the joint A and the stresses in members 1 and 4. The maximum permissible deflection
of joint A is 0.1 in. and the permissible stresses in members are 𝜎max = 8333.3333 psi
(tension) and 𝜎min = −4948.5714 psi (compression). The optimization problem can be
stated as a separable programming problem as follows:

Minimize f (x1, x2) = 0.1x1 + 0.05773x2

subject to

0.6
x1

+ 0.3464
x2

− 0.1 ≤ 0, 6 − x1 ≤ 0, 7 − x2 ≤ 0

Determine the solution of the problem using a graphical procedure.

3

4

1

2

A

l, x1

P1

P2l, x1

l, x1

x2
√3l

Figure 1.32 Four-bar truss.

�

� �

�

56 Introduction to Optimization

x2

x1

p0 per unit length

Cross-section

P

L

L
2

Figure 1.33 A simply supported beam subjected to concentrated and distributed loads.

1.32 A simply supported beam, with a uniform rectangular cross section, is subjected to both
distributed and concentrated loads as shown in Figure 1.33. It is desired to find the cross
section of the beam to minimize the weight of the beam while ensuring that the maximum
stress induced in the beam does not exceed the permissible stress (𝜎0) of the material and
the maximum deflection of the beam does not exceed a specified limit (𝛿0).
The data of the problem are P = 105 N, p0 = 106 N/m, L = 1 m, E = 207 GPa, weight
density (𝜌w) = 76.5 kN/m3, 𝜎0 = 220 MPa, and 𝛿0 = 0.02 m.

(a) Formulate the problem as a mathematical programming problem assuming that
the cross-sectional dimensions of the beam are restricted as x1 ≤ x2, 0.04 m
≤ x1 ≤ 0.12 m, and 0.06 m≤ x2 ≤ 0.20 m.

(b) Find the solution of the problem formulated in part (a) graphically.

1.33 Solve Problem 1.32, parts (a) and (b), assuming the cross section of the beam to be hollow
circular with inner diameter x1 and outer diameter x2. Assume the data and bounds on
the design variables to be as given in Problem 1.32.

�

� �

�

2

Classical Optimization
Techniques

2.1 INTRODUCTION

The classical methods of optimization are useful in finding the optimum solution of
continuous and differentiable functions. These methods are analytical and make use
of the techniques of differential calculus in locating the optimum points. Since some
of the practical problems involve objective functions that are not continuous and/or
differentiable, the classical optimization techniques have limited scope in practical
applications. However, a study of the calculus methods of optimization forms a basis
for developing most of the numerical techniques of optimization presented in sub-
sequent chapters. In this chapter we present the necessary and sufficient conditions
for locating the optimum solution of a single-variable function, a multivariable func-
tion with no constraints, and a multivariable function with equality and inequality
constraints.

2.2 SINGLE-VARIABLE OPTIMIZATION

A function of one variable f (x) is said to have a relative or local minimum at x = x* if
f (x*)≤ f (x*+ h) for all sufficiently small positive and negative values of h. Similarly,
a point x* is called a relative or local maximum if f (x*)≥ f (x*+ h) for all values of h
sufficiently close to zero. A function f (x) is said to have a global or absolute minimum
at x* if f (x*)≤ f (x) for all x, and not just for all x close to x*, in the domain over which
f (x) is defined. Similarly, a point x* will be a global maximum of f (x) if f (x*)≥ f (x)
for all x in the domain. Figure 2.1 shows the difference between the local and global
optimum points.

A single-variable optimization problem is one in which the value of x = x* is to be
found in the interval [a, b] such that x* minimizes f (x). The following two theorems
provide the necessary and sufficient conditions for the relative minimum of a function
of a single variable [2.1, 2.2].

Theorem 2.1 Necessary Condition If a function f (x) is defined in the interval
a≤ x≤ b and has a relative minimum at x = x*, where a< x* < b, and if the derivative
df (x)/dx = f ′(x) exists as a finite number at x = x*, then f ′(x*) = 0.

Proof: It is given that

f ′(x∗) = lim
h→0

f (x∗ + h) − f (x∗)
h

(2.1)

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

57

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

58 Classical Optimization Techniques

A1, A2, A3 = Relative maxima
A2 = Global maximum

B1, B2 = Relative minima

Relative minimum
is also global
minimum

B1 = Global minimum
f(x) f(x)

x x

A3

B2

B1

a ba b

A2

A1

Figure 2.1 Relative and global minima.

exists as a definite number, which we want to prove to be zero. Since x* is a relative
minimum, we have

f (x∗) ≤ f (x∗ + h)

for all values of h sufficiently close to zero. Hence

f (x∗ + h) − f (x∗)
h

≥ 0 if h > 0

f (x∗ + h) − f (x∗)
h

≤ 0 if h < 0

Thus Eq. (2.1) gives the limit as h tends to zero through positive values as

f ′(x∗) ≥ 0 (2.2)

while it gives the limit as h tends to zero through negative values as

f ′(x∗) ≤ 0 (2.3)

The only way to satisfy both Eqs. (2.2) and (2.3) is to have

f ′(x∗) = 0 (2.4)

This proves the theorem.

Notes:
1. This theorem can be proved even if x* is a relative maximum.
2. The theorem does not say what happens if a minimum or maximum occurs at

a point x* where the derivative fails to exist. For example, in Figure 2.2,

lim
h→0

f (x∗ + h) − f (x∗)
h

= m+(positive) or m−(negative)

depending on whether h approaches zero through positive or negative values,
respectively. Unless the numbers m+ and m− are equal, the derivative f ′ (x*)
does not exist. If f ′(x*) does not exist, the theorem is not applicable.

�

� �

�

2.2 Single-Variable Optimization 59

f(x)

Negative slope m–

Positive slope m+

m– m+

f(x*)

x
x*

Figure 2.2 Derivative undefined at x*.

3. The theorem does not say what happens if a minimum or maximum occurs at
an endpoint of the interval of definition of the function. In this case

lim
h→0

f (x∗ + h) − f (x∗)
h

exists for positive values of h only or for negative values of h only, and hence
the derivative is not defined at the endpoints.

4. The theorem does not say that the function necessarily will have a minimum or
maximum at every point where the derivative is zero. For example, the deriva-
tive f ′(x) = 0 at x = 0 for the function shown in Figure 2.3. However, this point
is neither a minimum nor a maximum. In general, a point x* at which f ′(x*) = 0
is called a stationary point.

If the function f (x) possesses continuous derivatives of every order that come into
question, in the neighborhood of x = x*, the following theorem provides sufficient
condition for the minimum or maximum value of the function [2.3, 2.4].

f(x)

Stationary
point, fʹ(x) = 0

x
0

Figure 2.3 Stationary (inflection) point.

�

� �

�

60 Classical Optimization Techniques

Theorem 2.2 Sufficient Condition Let f ′(x*) = f ′′(x*) = ⋯ = f (n−1) (x*) = 0, but
f (n) (x*)≠ 0. Then f (x*) is (i) a minimum value of f (x) if f (n) (x*) > 0 and n is even;
(ii) a maximum value of f (x) if f (n) (x*) < 0 and n is even; (iii) neither a maximum
nor a minimum if n is odd.

Proof: Applying Taylor’s theorem with remainder after n terms, we have

f (x∗ + h) = f (x∗) + hf ′(x∗) + h2

2!
f ′′(x∗) +⋯ + hn−1

(n − 1)!
f (n−1)(x∗)

+ hn

n!
f (n)(x∗ + 𝜃h) for 0 < 𝜃 < 1 (2.5)

since f ′(x*) = f ′′(x*) = ⋯ = f (n− 1)(x*) = 0, Eq. (2.5) becomes

f (x∗ + h) − f (x∗) = hn

n!
f (n)(x∗ + 𝜃h)

As f (n) (x*)≠ 0, there exists an interval around x* for every point x of which the nth
derivative f (n) (x) has the same sign, namely, that of f (n)(x*). Thus, for every point
x*+ h of this interval, f (n) (x*+ 𝜃h) has the sign of f (n) (x*). When n is even, hn/n!
is positive irrespective of whether h is positive or negative, and hence f (x*+ h)−
f (x*) will have the same sign as that of f (n) (x*). Thus x* will be a relative minimum
if f (n) (x*) is positive and a relative maximum if f (n) (x*) is negative. When n is odd,
hn/n! changes sign with the change in the sign of h and hence the point x* is neither a
maximum nor a minimum. In this case the point x* is called a point of inflection.

Example 2.1 Determine the maximum and minimum values of the function

f (x) = 12x5 − 45x4 + 40x3 + 5

SOLUTION Since f ′ (x) = 60(x4 − 3x3 + 2x2) = 60x2(x− 1)(x− 2), f ′ (x) = 0 at x = 0,
x = 1, and x = 2. The second derivative is

f ′′(x) = 60(4x3 − 9x2 + 4x)

At x = 1, f ′′(x) = −60 and hence x = 1 is a relative maximum. Therefore,

fmax = f (x = 1) = 12

At x = 2, f ′′(x) = 240 and hence x = 2 is a relative minimum. Therefore,

fmin = f (x = 2) = −11

At x = 0, f ′′(x) = 0 and hence we must investigate the next derivative:

f ′′′(x) = 60(12x2 − 18x + 4) = 240 at x = 0

Since f′′′(x)≠ 0 at x = 0, x = 0 is neither a maximum nor a minimum, and it is an
inflection point.

�

� �

�

2.2 Single-Variable Optimization 61

Example 2.2 In a two-stage compressor, the working gas leaving the first stage of
compression is cooled (by passing it through a heat exchanger) before it enters the
second stage of compression to increase the efficiency [2.5]. The total work input to a
compressor (W) for an ideal gas, for isentropic compression, is given by

W = cpT1

[(
p2

p1

)(k−1)∕k

+
(

p3

p2

)(k−1)∕k

− 2

]
where cp is the specific heat of the gas at constant pressure, k is the ratio of specific heat
at constant pressure to that at constant volume of the gas, and T1 is the temperature
at which the gas enters the compressor. Find the pressure, p2, at which intercooling
should be done to minimize the work input to the compressor. Also determine the
minimum work done on the compressor.

SOLUTION The necessary condition for minimizing the work done on the compres-
sor is

dW
dp2

= cpT1
k

k − 1

[(
1
p1

)(k−1)∕k
k − 1

k
(p2)−1∕k

+(p3)(k−1)∕k −k + 1
k

(p2)(1−2k)∕k

]
= 0

which yields
p2 = (p1p3)1∕2

The second derivative of W with respect to p2 gives

d2W

dp2
2

= cpT1

[
−
(

1
p1

) (k−1)∕k
1
k
(p2)−(1+k)∕k

−(p3)(k−1)∕k 1 − 2k
k

(p2)(1−3k)∕k

]
(

d2W

dp2
2

)
p2=(p1p3)1∕2

=
2cpT1

k−1
k

p(3k−1)∕2k
1 p(k+1)∕2k

3

Since the ratio of specific heats k is greater than 1, we get(
d2W

dp2
2

)
> 0 at p2 = (p1p3)1∕2

and hence the solution corresponds to a relative minimum. The minimum work done
is given by

Wmin = 2cpT1
k

k − 1

[(
p3

p1

)(k−1)∕2k

− 1

]

�

� �

�

62 Classical Optimization Techniques

2.3 MULTIVARIABLE OPTIMIZATION WITH NO CONSTRAINTS

In this section we consider the necessary and sufficient conditions for the minimum or
maximum of an unconstrained function of several variables [2.6, 2.7]. Before seeing
these conditions, we consider the Taylor’s series expansion of a multivariable function.

2.3.1 Definition: rth Differential of f

If all partial derivatives of the function f through order r≥ 1 exist and are continuous
at a point X*, the polynomial

drf (X∗) =
n∑

i=1

n∑
j=1

⋯
n∑

k=1

hi

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

r summations

hj ⋯ hk
𝜕

rf (X∗)
𝜕xi𝜕xj ⋯ 𝜕xk

(2.6)

is called the rth differential of f at X*. Notice that there are r summations and one hi
is associated with each summation in Eq. (2.6).

For example, when r = 2 and n = 3, we have

d2f (X∗) = d2f (x∗1, x
∗
2, x

∗
3) =

3∑
i=1

3∑
j=1

hihj
𝜕

2f (X∗)
𝜕xi𝜕xj

= h2
1

𝜕
2f

𝜕x2
1

(X∗) + h2
2

𝜕
2f

𝜕x2
2

(X∗) + h2
3

𝜕
2f

𝜕x2
3

(X∗)

+ 2h1h2
𝜕

2f

𝜕x1𝜕x2
(X∗) + 2h2h3

𝜕
2f

𝜕x2𝜕x3
(X∗) + 2h1h3

𝜕
2f

𝜕x1𝜕x3
(X∗)

The Taylor’s series expansion of a function f (X) about a point X* is given by

f (X) = f (X∗) + df (X∗) + 1
2!

d2f (X∗) + 1
3!

d3f (X∗)

+⋯ + 1
N!

dNf (X∗) + RN(X∗
, h) (2.7)

where the last term, called the remainder, is given by

RN(X∗
, h) = 1

(N + 1)!
dN+1f (X∗ + 𝜃h) (2.8)

where 0<𝜃 < 1 and h = X−X*.

Example 2.3 Find the second-order Taylor’s series approximation of the function

f (x1, x2, x3) = x2
2x3 + x1ex3

about the point X* = {1, 0,−2}T.

SOLUTION The second-order Taylor’s series approximation of the function f about
point X* is given by

f (X) = f
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ + df
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ + 1
2!

d2f
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠

�

� �

�

2.3 Multivariable Optimization with no Constraints 63

where

f
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ = e−2

df
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ = h1
𝜕f

𝜕x1

⎛⎜⎜⎝
1
0
−2

⎞⎟⎟⎠ + h2
𝜕f

𝜕x2

⎛⎜⎜⎝
1
0
−2

⎞⎟⎟⎠ + h3
𝜕f

𝜕x3

⎛⎜⎜⎝
1
0
−2

⎞⎟⎟⎠
= [h1ex3 + h2(2x2x3) + h3x2

2 + h3x1ex3]
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ = h1e−2 + h3e−2

d2f
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ =
3∑

i=1

3∑
j=1

hihj
𝜕

2f

𝜕xi𝜕xj

⎛⎜⎜⎝
1
0
−2

⎞⎟⎟⎠ =
(

h2
1

𝜕
2f

𝜕x2
1

+ h2
2

𝜕
2f

𝜕x2
2

+ h2
3

𝜕
2f

𝜕x2
3

+ 2h1h2
𝜕

2f

𝜕x1𝜕x2
+ 2h2h3

𝜕
2f

𝜕x2𝜕x3
+ 2h1h3

𝜕
2f

𝜕x1𝜕x3

)⎛⎜⎜⎝
1
0
−2

⎞⎟⎟⎠
= [h2

1(0) + h2
2(2x3) + h2

3(x1ex3) + 2h1h2(0) + 2h2h3(2x2)

+ 2h1h3(ex3)]
⎛⎜⎜⎝

1
0
−2

⎞⎟⎟⎠ = −4h2
2 + e−2h2

3 + 2h1h3e−2

Thus, the Taylor’s series approximation is given by

f (X) ≃ e−2 + e−2(h1 + h3) +
1
2!
(−4h2

2 + e−2h2
3 + 2h1h3e−2)

where h1 = x1−1, h2 = x2, and h3 = x3 + 2.

Theorem 2.3 Necessary Condition If f (X) has an extreme point (maximum or min-
imum) at X = X* and if the first partial derivatives of f (X) exist at X*, then

𝜕f

𝜕x1
(X∗) =

𝜕f

𝜕x2
(X∗) = ⋯ =

𝜕f

𝜕xn
(X∗) = 0 (2.9)

Proof: The proof given for Theorem 2.1 can easily be extended to prove the present
theorem. However, we present a different approach to prove this theorem. Suppose
that one of the first partial derivatives, say the kth one, does not vanish at X*. Then,
by Taylor’s theorem,

f (X∗ + h) = f (X∗) +
n∑

i=1

hi
𝜕f

𝜕xi
(X∗) + R1(X∗

,h)

that is,

f (X∗ + h) − f (X∗) = hk
𝜕f

𝜕xk
(X∗) + 1

2!
d2f (X∗ + 𝜃h), 0 < 𝜃 < 1

�

� �

�

64 Classical Optimization Techniques

Since d2f (X*+ 𝜃h) is of order h2
i , the terms of order h will dominate the higher-order

terms for small h. Thus, the sign of f (X*+h)− f (X*) is decided by the sign of
hk 𝜕f (X*)/𝜕xk. Suppose that 𝜕f (X*)/𝜕xk > 0. Then the sign of f (X*+h)− f (X*)
will be positive for hk > 0 and negative for hk < 0. This means that X* cannot be
an extreme point. The same conclusion can be obtained even if we assume that 𝜕f
(X*)/𝜕xk < 0. Since this conclusion is in contradiction with the original statement that
X* is an extreme point, we may say that 𝜕f/𝜕xk = 0 at X = X*. Hence the theorem is
proved.

Theorem 2.4 Sufficient Condition A sufficient condition for a stationary point X*
to be an extreme point is that the matrix of second partial derivatives (Hessian matrix)
of f (X) evaluated at X* is (i) positive definite when X* is a relative minimum point,
and (ii) negative definite when X* is a relative maximum point.

Proof: From Taylor’s theorem we can write

f (X∗ + h) = f (X∗) +
n∑

i=1

hi
𝜕f

𝜕xi
(X∗) + 1

2!

n∑
i=1

n∑
j=1

hihj
𝜕

2f

𝜕xi𝜕xj

|||||X=X∗+𝜃h

,

0 < 𝜃 < 1 (2.10)

Since X* is a stationary point, the necessary conditions give (Theorem 2.3)

𝜕f

𝜕xi
= 0, i = 1, 2, . . . , n

Thus Eq. (2.10) reduces to

f (X∗ + h) − f (X∗) = 1
2!

n∑
i=1

n∑
j=1

hihj
𝜕

2f

𝜕xi𝜕xj

|||||X=X∗+𝜃h

, 0 < 𝜃 < 1

Therefore, the sign of
f (X∗ + h) − f (X∗)

will be same as that of
n∑

i=1

n∑
j=1

hihj
𝜕

2f

𝜕xi𝜕xj

|||||X=X∗+𝜃h

Since the second partial derivative of 𝜕2 f (X)/𝜕xi 𝜕xj is continuous in the neighborhood
of X*,

𝜕
2f

𝜕xi𝜕xj

|||||X=X∗+𝜃h

will have the same sign as (𝜕2f/𝜕xi𝜕xj)|X = X* for all sufficiently small h. Thus f
(X*+ h)− f (X*) will be positive, and hence X* will be a relative minimum, if

Q =
n∑

i=1

n∑
j=1

hihj
𝜕

2f

𝜕xi𝜕xj

||||||X=X∗

(2.11)

is positive. This quantity Q is a quadratic form and can be written in matrix form as

Q = hTJh|X=X∗ (2.12)

�

� �

�

2.3 Multivariable Optimization with no Constraints 65

where

J|X=X∗ =

[
𝜕

2f

𝜕xi𝜕xj

|||||X=X∗

]
(2.13)

is the matrix of second partial derivatives and is called the Hessian matrix of f (X).
It is known from matrix algebra that the quadratic form of Eqs. (2.11) or (2.12)

will be positive for all h if and only if [J] is positive definite at X = X*. This means
that a sufficient condition for the stationary point X* to be a relative minimum is that
the Hessian matrix evaluated at the same point be positive definite. This completes the
proof for the minimization case. By proceeding in a similar manner, it can be proved
that the Hessian matrix will be negative definite if X* is a relative maximum point.

Note: A matrix A will be positive definite if all its eigenvalues are positive; that
is, all the values of 𝜆 that satisfy the determinantal equation

|A − λI| = 0 (2.14)

should be positive. Similarly, the matrix A will be negative definite if its eigenvalues
are negative. A matrix A will be positive semidefinite (or negative semidefinite) if all
of its eigenvalues are nonnegative (or nonpositive).

Another test that can be used to find the positive definiteness of a matrix A of
order n involves evaluation of the determinants

A = |a11|,
A2 =

||||a11 a12
a21 a22

|||| , An =

||||||||||
a11 a12 a13 ⋯ a1n
a21 a22 a23 ⋯ a2n
a31 a32 a33 ⋯ a3n
⋮

an1 an2 an3 ⋯ ann

||||||||||
A3 =

||||||
a11 a12 a13
a21 a22 a23
a31 a32 a33

|||||| , . . . ,
(2.15)

The matrix A will be positive definite if and only if all the values A1, A2, A3, . . . , An
are positive. The matrix A will be negative definite if and only if the sign of Aj is (−1)j

for j = 1, 2, . . . , n. If some of the Aj are positive and the remaining Aj are zero, the
matrix A will be positive semidefinite.

Example 2.4 Figure 2.4 shows two frictionless rigid bodies (carts) A and B connected
by three linear elastic springs having spring constants k1, k2, and k3. The springs are
at their natural positions when the applied force P is zero. Find the displacements x1
and x2 under the force P by using the principle of minimum potential energy.

SOLUTION According to the principle of minimum potential energy, the system will
be in equilibrium under the load P if the potential energy is a minimum. The potential
energy of the system is given by

potential energy (U)

= strain energy of springs − work done by external forces

=
[1

2
k2x2

1 +
1
2

k3(x2 − x1)2 +
1
2

k1x2
2

]
− Px2

�

� �

�

66 Classical Optimization Techniques

B

P
A

k1

k2

x1 x2

k3

Figure 2.4 Spring–cart system.

The necessary conditions for the minimum of U are

𝜕U
𝜕x1

= k2x1 − k3(x2 − x1) = 0 (E1)

𝜕U
𝜕x2

= k3(x2 − x1) + k1x2 − P = 0 (E2)

The values of x1 and x2 corresponding to the equilibrium state, obtained by solving
Eqs. (E1) and (E2), are given by

x∗1 =
Pk3

k1k2 + k1k3 + k2k3

x∗2 =
P(k2 + k3)

k1k2 + k1k3 + k2k3

The sufficiency conditions for the minimum at (x∗1, x
∗
2) can also be verified by testing

the positive definiteness of the Hessian matrix of U. The Hessian matrix of U evaluated
at (x∗1, x

∗
2) is

J|(x∗1 ,x∗2) =
⎡⎢⎢⎢⎢⎢⎣

𝜕
2U

𝜕x2
1

𝜕
2U

𝜕x1𝜕x2

𝜕
2U

𝜕x1𝜕x2

𝜕
2U

𝜕x2
2

⎤⎥⎥⎥⎥⎥⎦(x∗1 ,x∗2)
=

[
k2 + k3 −k3

−k3 k1 + k3

]

The determinants of the square submatrices of J are

J1 = |k2 + k3| = k2 + k3 > 0

J2 =
|||||
k2 + k3 −k3

−k3 k1 + k3

||||| = k1k2 + k1k3 + k2k3 > 0

since the spring constants are always positive. Thus, the matrix J is positive definite
and hence (x∗1, x

∗
2) corresponds to the minimum of potential energy.

�

� �

�

2.3 Multivariable Optimization with no Constraints 67

2.3.2 Semidefinite Case

We now consider the problem of determining sufficient conditions for the case when
the Hessian matrix of the given function is semidefinite. In the case of a function of
a single variable, the problem of determining sufficient conditions for the case when
the second derivative is zero was resolved quite easily. We simply investigated the
higher-order derivatives in the Taylor’s series expansion. A similar procedure can be
followed for functions of n variables. However, the algebra becomes quite involved,
and hence we rarely investigate the stationary points for sufficiency in actual practice.
The following theorem, analogous to Theorem 2.2, gives the sufficiency conditions
for the extreme points of a function of several variables.

Theorem 2.5 Let the partial derivatives of f of all orders up to the order k≥ 2 be
continuous in the neighborhood of a stationary point X*, and

drf |X=X∗ = 0, 1 ≤ r ≤ k − 1

drf |X=X∗ ≠ 0, r = k

so that dkf |X=X∗ is the first nonvanishing higher-order differential of f at X*. If k is
even, then (i) X* is a relative minimum if dkf |X=X∗ is positive definite, (ii) X* is a
relative maximum if dkf |X=X∗ is negative definite, and (iii) if dkf |X=X∗ is semidefinite
(but not definite), no general conclusion can be drawn. On the other hand, if k is odd,
X* is not an extreme point of f (X).

Proof: A proof similar to that of Theorem 2.2 can be found in Ref. [2.7].

2.3.3 Saddle Point

In the case of a function of two variables, f (x, y), the Hessian matrix may be neither
positive nor negative definite at a point (x*, y*) at which

𝜕f

𝜕x
=
𝜕f

𝜕y
= 0

In such a case, the point (x*, y*) is called a saddle point. The characteristic of a saddle
point is that it corresponds to a relative minimum or maximum of f (x, y) with respect
to one variable, say, x (the other variable being fixed at y = y*) and a relative maximum
or minimum of f (x, y) with respect to the second variable y (the other variable being
fixed at x*).

As an example, consider the function f (x, y) = x2 − y2. For this function,

𝜕f

𝜕x
= 2x and

𝜕f

𝜕y
= −2y

These first derivatives are zero at x* = 0 and y* = 0. The Hessian matrix of f at (x*,
y*) is given by

J =
[

2 0
0 −2

]
Since this matrix is neither positive definite nor negative definite, the point (x* = 0,
y* = 0) is a saddle point. The function is shown graphically in Figure 2.5. It can be

�

� �

�

68 Classical Optimization Techniques

x

y

f(x,y)

(x*,y*)

Figure 2.5 Saddle point of the function f (x, y) = x2 − y2.

seen that f (x, y*) = f (x, 0) has a relative minimum and f (x*, y) = f (0, y) has a relative
maximum at the saddle point (x*, y*). Saddle points may exist for functions of more
than two variables also. The characteristic of the saddle point stated above still holds
provided that x and y are interpreted as vectors in multidimensional cases.

Example 2.5 Find the extreme points of the function

f (x1, x2) = x3
1 + x3

2 + 2x2
1 + 4x2

2 + 6

SOLUTION The necessary conditions for the existence of an extreme point are

𝜕f

𝜕x1
= 3x2

1 + 4x1 = x1(3x1 + 4) = 0

𝜕f

𝜕x2
= 3x2

2 + 8x2 = x2(3x2 + 8) = 0

These equations are satisfied at the points

(0, 0),
(

0,−8
3

)
,

(
−4

3
, 0
)
, and

(
−4

3
,−8

3

)
To find the nature of these extreme points, we have to use the sufficiency conditions.
The second-order partial derivatives of f are given by

𝜕
2f

𝜕x2
1

= 6x1 + 4

𝜕
2f

𝜕x2
2

= 6x2 + 8

𝜕
2f

𝜕x1𝜕x2
= 0

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 69

The Hessian matrix of f is given by

J =
|||||
6x1 + 4 0

0 6x2 + 8

|||||
If J1 = |6x1 + 4| and J2 =

|||||6x1 + 4 0

0 6x2 + 8

|||||, the values of J1 and J2 and the nature

of the extreme point are as given below:

Point X Value of J1 Value of J2 Nature of J Nature of X f (X)

(0, 0) +4 +32 Positive definite Relative minimum 6(
0,− 8

3

)
+4 −32 Indefinite Saddle point 418/27(

− 4
3
, 0
)

−4 −32 Indefinite Saddle point 194/27(
− 4

3
,− 8

3

)
−4 +32 Negative definite Relative maximum 50/3

2.4 MULTIVARIABLE OPTIMIZATION WITH EQUALITY
CONSTRAINTS

In this section we consider the optimization of continuous functions subjected to equal-
ity constraints:

Minimize f = f (X)

subject to

gj(X) = 0, j = 1, 2, . . . ,m (2.16)

where

X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭
Here m is less than or equal to n; otherwise (if m> n), the problem becomes overde-
fined and, in general, there will be no solution. There are several methods available for
the solution of this problem. The methods of direct substitution, constrained variation,
and Lagrange multipliers are discussed in the following sections [2.8–2.10].

2.4.1 Solution by Direct Substitution

For a problem with n variables and m equality constraints, it is theoretically possible
to solve simultaneously the m equality constraints and express any set of m variables
in terms of the remaining n−m variables. When these expressions are substituted into
the original objective function, there results a new objective function involving only
n−m variables. The new objective function is not subjected to any constraint, and
hence its optimum can be found by using the unconstrained optimization techniques
discussed in Section 2.3.

This method of direct substitution, although it appears to be simple in theory, is
not convenient from a practical point of view. The reason for this is that the constraint
equations will be nonlinear for most of practical problems, and often it becomes

�

� �

�

70 Classical Optimization Techniques

impossible to solve them and express any m variables in terms of the remaining n−m
variables. However, the method of direct substitution might prove to be very simple
and direct for solving simpler problems, as shown by the following example.

Example 2.6 Find the dimensions of a box of largest volume that can be inscribed in
a sphere of unit radius.

SOLUTION Let the origin of the Cartesian coordinate system x1, x2, x3 be at the
center of the sphere and the sides of the box be 2x1, 2x2, and 2x3. The volume of the
box is given by

f (x1, x2, x3) = 8x1x2x3 (E1)

Since the corners of the box lie on the surface of the sphere of unit radius, x1, x2, and
x3 have to satisfy the constraint

x2
1 + x2

2 + x2
3 = 1 (E2)

This problem has three design variables and one equality constraint. Hence the equality
constraint can be used to eliminate any one of the design variables from the objective
function. If we choose to eliminate x3, Eq. (E2) gives

x3 = (1 − x2
1 − x2

2)
1∕2 (E3)

Thus, the objective function becomes

f (x1, x2) = 8x1x2(1 − x2
1 − x2

2)
1∕2 (E4)

which can be maximized as an unconstrained function in two variables.
The necessary conditions for the maximum of f give

𝜕f

𝜕x1
= 8x2

[
(1 − x2

1 − x2
2)

1∕2 −
x2

1

(1 − x2
1 − x2

2)1∕2

]
= 0 (E5)

𝜕f

𝜕x2
= 8x1

[
(1 − x2

1 − x2
2)

1∕2 −
x2

2

(1 − x2
1 − x2

2)1∕2

]
= 0 (E6)

Equations (E5) and (E6) can be simplified to obtain

1 − 2x2
1 − x2

2 = 0

1 − x2
1 − 2x2

2 = 0

from which it follows that x∗1 = x∗2 = 1∕
√

3 and hence x∗3 = 1∕
√

3. This solution gives
the maximum volume of the box as

fmax = 8

3
√

3

To find whether the solution found corresponds to a maximum or a minimum, we apply
the sufficiency conditions to f (x1, x2) of Eq. (E4). The second-order partial derivatives

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 71

of f at (x∗1, x
∗
2) are given by

𝜕
2f

𝜕x2
1

= − 32√
3

at (x∗1, x
∗
2)

𝜕
2f

𝜕x2
2

= − 32√
3

at (x∗1, x
∗
2)

𝜕
2f

𝜕x1𝜕x2
= − 16√

3
at (x∗1, x

∗
2)

Since
𝜕

2f

𝜕x2
1

< 0 and
𝜕

2f

𝜕x2
1

𝜕
2f

𝜕x2
2

−
(

𝜕
2f

𝜕x1𝜕x2

)2

> 0

the Hessian matrix of f is negative definite at (x∗1, x
∗
2). Hence the point (x∗1, x

∗
2) corre-

sponds to the maximum of f.

2.4.2 Solution by the Method of Constrained Variation

The basic idea used in the method of constrained variation is to find a closed-form
expression for the first-order differential of f (df) at all points at which the constraints
gj(X) = 0, j = 1, 2, . . . , m, are satisfied. The desired optimum points are then obtained
by setting the differential df equal to zero. Before presenting the general method, we
indicate its salient features through the following simple problem with n= 2 and m= 1:

Minimize f (x1, x2) (2.17)

subject to
g(x1, x2) = 0 (2.18)

A necessary condition for f to have a minimum at some point (x∗1, x
∗
2) is that the total

derivative of f (x1, x2) with respect to x1 must be zero at (x∗1, x
∗
2). By setting the total

differential of f (x1, x2) equal to zero, we obtain

df =
𝜕f

𝜕x1
dx1 +

𝜕f

𝜕x2
dx2 = 0 (2.19)

Since g(x∗1, x
∗
2) = 0 at the minimum point, any variations dx1 and dx2 taken about the

point (x∗1, x
∗
2) are called admissible variations provided that the new point lies on the

constraint:
g(x∗1 + dx1, x

∗
2 + dx2) = 0 (2.20)

The Taylor’s series expansion of the function in Eq. (2.20) about the point (x∗1, x
∗
2)

gives

g(x∗1 + dx1, x
∗
2 + dx2)

≃ g(x∗1, x
∗
2) +

𝜕g

𝜕x1
(x∗1, x

∗
2)dx1 +

𝜕g

𝜕x2
(x∗1, x

∗
2)dx2 = 0 (2.21)

where dx1 and dx2 are assumed to be small. Since g(x∗1, x
∗
2) = 0, Eq. (2.21) reduces to

dg =
𝜕g

𝜕x1
dx1 +

𝜕g

𝜕x2
dx2 = 0 at (x∗1, x

∗
2) (2.22)

�

� �

�

72 Classical Optimization Techniques

D
C

A

B

x1

x2

g(x1, x2) = 0
P

Q

Figure 2.6 Variations about A.

Thus Eq. (2.22) has to be satisfied by all admissible variations. This is illustrated in
Figure 2.6, where PQ indicates the curve at each point of which Eq. (2.18) is satisfied.
If A is taken as the base point (x∗1, x

∗
2), the variations in x1 and x2 leading to points B

and C are called admissible variations. On the other hand, the variations in x1 and x2
representing point D are not admissible since point D does not lie on the constraint
curve, g (x1, x2) = 0. Thus any set of variations (dx1, dx2) that does not satisfy Eq.
(2.22) leads to points such as D, which do not satisfy constraint Eq. (2.18).

Assuming that 𝜕g/𝜕x2 ≠ 0, Eq. (2.22) can be rewritten as

dx2 = −
𝜕g∕𝜕x1

𝜕g∕𝜕x2
(x∗1, x

∗
2)dx1 (2.23)

This relation indicates that once the variation in x1(dx1) is chosen arbitrarily, the vari-
ation in x2 (dx2) is decided automatically in order to have dx1 and dx2 as a set of
admissible variations. By substituting Eq. (2.23) in Eq. (2.19), we obtain

df =
(
𝜕f

𝜕x1
−
𝜕g∕𝜕x1

𝜕g∕𝜕x2

𝜕f

𝜕x2

)|||||(x∗1 ,x∗2)dx1 = 0 (2.24)

The expression on the left-hand side is called the constrained variation of f. Note that
Eq. (2.24) has to be satisfied for all values of dx1. Since dx1 can be chosen arbitrarily,
Eq. (2.24) leads to (

𝜕f

𝜕x1

𝜕g

𝜕x2
−
𝜕f

𝜕x2

𝜕g

𝜕x1

)|||||(x∗1 ,x∗2) = 0 (2.25)

Equation (2.25) represents a necessary condition in order to have (x∗1, x
∗
2) as an extreme

point (minimum or maximum).

Example 2.7 A beam of uniform rectangular cross section is to be cut from a log
having a circular cross section of diameter 2a. The beam has to be used as a cantilever
beam (the length is fixed) to carry a concentrated load at the free end. Find the dimen-
sions of the beam that correspond to the maximum tensile (bending) stress carrying
capacity.

SOLUTION From elementary strength of materials, we know that the tensile stress
induced in a rectangular beam (𝜎) at any fiber located a distance y from the neutral
axis is given by

𝜎

y
= M

I

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 73

y

x (Neutral axis)

x2 + y2 = a2

2y

2x

a

Figure 2.7 Cross section of the log.

where M is the bending moment acting and I is the moment of inertia of the cross
section about the x axis. If the width and depth of the rectangular beam shown in
Figure 2.7 are 2x and 2y, respectively, the maximum tensile stress induced is given by

𝜎max = M
I

y =
My

1
12
(2x)(2y)3

= 3
4

M
xy2

Thus, for any specified bending moment, the beam is said to have maximum tensile
stress carrying capacity if the maximum induced stress (𝜎max) is a minimum. Hence,
we need to minimize k/xy2 or maximize Kxy2, where k = 3 M/4 and K = 1/k, subject
to the constraint

x2 + y2 = a2

This problem has two variables and one constraint; hence Eq. (2.25) can be applied
for finding the optimum solution. Since

f = kx−1y−2 (E1)

g = x2 + y2 − a2 (E2)

we have

𝜕f

𝜕x
= −kx−2y−2

𝜕f

𝜕y
= −2kx−1y−3

𝜕g

𝜕x
= 2x

𝜕g

𝜕y
= 2y

Equation (2.25) gives

−kx−2y−2(2y) + 2kx−1y−3(2x) = 0 at (x∗, y∗)

�

� �

�

74 Classical Optimization Techniques

that is,
y∗ =

√
2x∗ (E3)

Thus, the beam of maximum tensile stress carrying capacity has a depth of
√

2 times
its breadth. The optimum values of x and y can be obtained from Eqs. (E3) and (E2) as

x∗ = a√
3

and y∗ =
√

2
a√
3

Necessary Conditions for a General Problem. The procedure indicated above can
be generalized to the case of a problem in n variables with m constraints. In this case,
each constraint equation gj(X) = 0, j = 1, 2, . . . , m, gives rise to a linear equation in
the variations dxi, i = 1, 2, . . . , n. Thus, there will be in all m linear equations in n
variations. Hence, any m variations can be expressed in terms of the remaining n−m
variations. These expressions can be used to express the differential of the objective
function, df, in terms of the n−m independent variations. By letting the coefficients
of the independent variations vanish in the equation df = 0, one obtains the necessary
conditions for the constrained optimum of the given function. These conditions can
be expressed as [2.7]

J

(
f , g1, g2, . . . , gm

xk, x1, x2, x3, . . . , xm

)
=

|||||||||||||||||||||||

𝜕f

𝜕xk

𝜕f

𝜕x1

𝜕f

𝜕x2
⋯

𝜕f

𝜕xm
𝜕g1

𝜕xk

𝜕g1

𝜕x1

𝜕g1

𝜕x2
⋯

𝜕g1

𝜕xm
𝜕g2

𝜕xk

𝜕g2

𝜕x1

𝜕g2

𝜕x2
⋯

𝜕g2

𝜕xm

⋮

𝜕gm

𝜕xk

𝜕gm

𝜕x1

𝜕gm

𝜕x2
⋯

𝜕gm

𝜕xm

|||||||||||||||||||||||

= 0 (2.26)

where k=m+ 1, m+ 2, . . . , n. It is to be noted that the variations of the first m variables
(dx1, dx2, . . . , dxm) have been expressed in terms of the variations of the remaining
n −m variables (dxm+1, dxm+2, . . . , dxn) in deriving Eq. (2.26). This implies that the
following relation is satisfied:

J

(
g1,g2, . . . , gm

x1, x2, . . . , xm

)
≠ 0 (2.27)

The n −m equations given by Eq. (2.26) represent the necessary conditions for the
extremum of f (X) under the m equality constraints, gj (X) = 0, j = 1, 2, . . . , m.

Example 2.8

Minimum f (Y) = 1
2
(y2

1 + y2
2 + y2

3 + y2
4) (E1)

subject to

g1(Y) = y1 + 2y2 + 3y3 + 5y4 − 10 = 0 (E2)

g2(Y) = y1 + 2y2 + 5y3 + 6y4 − 15 = 0 (E3)

SOLUTION This problem can be solved by applying the necessary conditions given
by Eq. (2.26). Since n = 4 and m = 2, we have to select two variables as independent

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 75

variables. First, we show that any arbitrary set of variables cannot be chosen as
independent variables since the remaining (dependent) variables have to satisfy the
condition of Eq. (2.27).

In terms of the notation of our equations, let us take the independent variables as

x3 = y3 and x4 = y4 so that x1 = y1 and x2 = y2

Then the Jacobian of Eq. (2.27) becomes

J

(
g1, g2

x1, x2

)
=

|||||||||
𝜕g1

𝜕y1

𝜕g1

𝜕y2
𝜕g2

𝜕y1

𝜕g2

𝜕y2

|||||||||
=
||||1 2
1 2

|||| = 0

and hence the necessary conditions of Eq. (2.26) cannot be applied.
Next, let us take the independent variables as x3 = y2 and x4 = y4 so that x1 = y1

and x2 = y3. Then the Jacobian of Eq. (2.27) becomes

J

(
g1, g2

x1, x2

)
=

|||||||||
𝜕g1

𝜕y1

𝜕g1

𝜕y3
𝜕g2

𝜕y1

𝜕g2

𝜕y3

|||||||||
=
||||1 3
1 5

|||| = 2 ≠ 0

and hence the necessary conditions of Eq. (2.26) can be applied. Equations (2.26) give
for k = m+ 1 = 3||||||||||||||

𝜕f

𝜕x3

𝜕f

𝜕x1

𝜕f

𝜕x2
𝜕g1

𝜕x3

𝜕g1

𝜕x1

𝜕g1

𝜕x2
𝜕g2

𝜕x3

𝜕g2

𝜕x1

𝜕g2

𝜕x2

||||||||||||||
=

||||||||||||||

𝜕f

𝜕y2

𝜕f

𝜕y1

𝜕f

𝜕y3
𝜕g1

𝜕y2

𝜕g1

𝜕y1

𝜕g1

𝜕y3
𝜕g2

𝜕y2

𝜕g2

𝜕y1

𝜕g2

𝜕y3

||||||||||||||
=
||||||
y2 y1 y3
2 1 3
2 1 5

||||||
= y2(5 − 3) − y1(10 − 6) + y3(2 − 2)

= 2y2 − 4y1 = 0 (E4)

and for k = m+ 2 = n = 4,||||||||||||||

𝜕f

𝜕x4

𝜕f

𝜕x1

𝜕f

𝜕x2
𝜕g1

𝜕x4

𝜕g1

𝜕x1

𝜕g1

𝜕x2
𝜕g2

𝜕x4

𝜕g2

𝜕x1

𝜕g2

𝜕x2

||||||||||||||
=

||||||||||||||

𝜕f

𝜕y4

𝜕f

𝜕y1

𝜕f

𝜕y3
𝜕g1

𝜕y4

𝜕g1

𝜕y1

𝜕g1

𝜕y3
𝜕g2

𝜕y4

𝜕g2

𝜕y1

𝜕g2

𝜕y3

||||||||||||||
=
||||||
y4 y1 y3
5 1 3
6 1 5

||||||
= y4(5 − 3) − y1(25 − 18) + y3(5 − 6)

= 2y4 − 7y1 − y3 = 0 (E5)

�

� �

�

76 Classical Optimization Techniques

Equations (E4) and (E5) give the necessary conditions for the minimum or the maxi-
mum of f as

y1 = 1
2

y2

y3 = 2y4 − 7y1 = 2y4 −
7
2

y2 (E6)

When Eqs. (E6) are substituted, Eqs. (E2) and (E3) take the form

−8y2 + 11y4 = 10

−15y2 + 16y4 = 15

from which the desired optimum solution can be obtained as

y∗1 = − 5
74

y∗2 = − 5
37

y∗3 = 155
74

y∗4 = 30
37

Sufficiency Conditions for a General Problem. By eliminating the first m variables,
using the m equality constraints (this is possible, at least in theory), the objective func-
tion f can be made to depend only on the remaining variables, xm+1, xm+2, . . . , xn. Then
the Taylor’s series expansion of f, in terms of these variables, about the extreme point
X* gives

f (X∗ + dX) ≃ f (X∗) +
n∑

i=m+1

(
𝜕f

𝜕xi

)
g

dxi

+ 1
2!

n∑
i=m+1

n∑
j=m+1

(
𝜕

2f

𝜕xi𝜕xj

)
g

dxidxj (2.28)

where (𝜕f/𝜕xi)g is used to denote the partial derivative of f with respect to xi (holding
all the other variables xm+1, xm+2, . . . , xi−1, xi+1, xi+2, . . . , xn constant) when x1, x2,
. . . , xm are allowed to change so that the constraints gj (X*+ dX) = 0, j = 1, 2, . . . , m,
are satisfied; the second derivative, (𝜕2f/𝜕xi𝜕xj)g, is used to denote a similar meaning.

As an example, consider the problem of minimizing

f (X) = f (x1, x2, x3)

subject to the only constraint

g1(X) = x2
1 + x2

2 + x2
3 − 8 = 0

Since n= 3 and m= 1 in this problem, one can think of any of the m variables, say x1, to
be dependent and the remaining n−m variables, namely x2 and x3, to be independent.

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 77

Here the constrained partial derivative (𝜕f/𝜕x2)g, for example, means the rate of change
of f with respect to x2 (holding the other independent variable x3 constant) and at the
same time allowing x1 to change about X* so as to satisfy the constraint g1 (X) = 0.
In the present case, this means that dx1 has to be chosen to satisfy the relation

g1(X∗ + dX) ≃ g1(X∗) +
𝜕g1

𝜕x1
(X∗)dx1 +

𝜕g1

𝜕x2
(X∗)dx2 +

𝜕g1

𝜕x3
(X∗)dx3 = 0

that is,
2x∗1dx1 + 2x∗2dx2 = 0

since g1 (X*) = 0 at the optimum point and dx3 = 0 (x3 is held constant).
Notice that (𝜕f/𝜕xi)g has to be zero for i = m+ 1, m+ 2, . . . , n since the dxi appear-

ing in Eq. (2.28) are all independent. Thus, the necessary conditions for the existence
of constrained optimum at X* can also be expressed as(

𝜕f

𝜕xi

)
g

= 0, i = m + 1,m + 2, . . . , n (2.29)

Of course, with little manipulation, one can show that Eqs. (2.29) are nothing but
Eq. (2.26). Further, as in the case of optimization of a multivariable function with no
constraints, one can see that a sufficient condition for X* to be a constrained relative
minimum (maximum) is that the quadratic form Q defined by

Q =
n∑

i=m+1

n∑
j=m+1

(
𝜕

2f

𝜕xi𝜕xj

)
g

dxidxj (2.30)

is positive (negative) for all nonvanishing variations dxi. As in Theorem 2.4, the matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(
𝜕

2f

𝜕x2
m+1

)
g

(
𝜕

2f

𝜕xm+1𝜕xm+2

)
g

⋯
(

𝜕
2f

𝜕xm+1𝜕xn

)
g

⋮(
𝜕

2f

𝜕xn𝜕xm+1

)
g

(
𝜕

2f

𝜕xn𝜕xm+2

)
g

⋯
(
𝜕

2f

𝜕x2
n

)
g

⎤⎥⎥⎥⎥⎥⎥⎥⎦
has to be positive (negative) definite to have Q positive (negative) for all choices of
dxi. It is evident that computation of the constrained derivatives (𝜕2f/𝜕xi 𝜕xj)g is a diffi-
cult task and may be prohibitive for problems with more than three constraints. Thus,
the method of constrained variation, although it appears to be simple in theory, is
very difficult to apply since the necessary conditions themselves involve evaluation of
determinants of order m+ 1. This is the reason that the method of Lagrange multipli-
ers, discussed in the following section, is more commonly used to solve a multivariable
optimization problem with equality constraints.

2.4.3 Solution By the Method of Lagrange Multipliers

The basic features of the Lagrange multiplier method is given initially for a simple
problem of two variables with one constraint. The extension of the method to a general
problem of n variables with m constraints is given later.

�

� �

�

78 Classical Optimization Techniques

Problem with Two Variables and One Constraint. Consider the problem

Minimize f (x1, x2) (2.31)

subject to
g(x1, x2) = 0

For this problem, the necessary condition for the existence of an extreme point at
X = X* was found in Section 2.4.2 to be(

𝜕f

𝜕x1
−
𝜕f∕𝜕x2

𝜕g∕𝜕x2

𝜕g

𝜕x1

)|||||(x∗1 ,x∗2) = 0 (2.32)

By defining a quantity 𝜆, called the Lagrange multiplier, as

λ = −
(
𝜕f∕𝜕x2

𝜕g∕𝜕x2

)|||||(x∗1 ,x∗2) (2.33)

Equation (2.32) can be expressed as(
𝜕f

𝜕x1
+ λ

𝜕g

𝜕x1

)|||||(x∗1 ,x∗2) = 0 (2.34)

and Eq. (2.33) can be written as(
𝜕f

𝜕x2
+ λ

𝜕g

𝜕x2

)|||||(x∗1 ,x∗2) = 0 (2.35)

In addition, the constraint equation has to be satisfied at the extreme point, that is,

g(x1, x2)|(x∗1 ,x∗2) = 0 (2.36)

Thus Eqs. (2.34)–(2.36) represent the necessary conditions for the point (x∗1, x
∗
2) to be

an extreme point.
Notice that the partial derivative (𝜕g∕𝜕x2)|(x∗1 ,x∗2) has to be nonzero to be able

to define 𝜆 by Eq. (2.33). This is because the variation dx2 was expressed in terms
of dx1 in the derivation of Eq. (2.32) (see Eq. (2.23)). On the other hand, if we
choose to express dx1 in terms of dx2, we would have obtained the requirement
that (𝜕g∕𝜕x1)|(x∗1 ,x∗2) be nonzero to define 𝜆. Thus, the derivation of the necessary
conditions by the method of Lagrange multipliers requires that at least one of the
partial derivatives of g (x1, x2) be nonzero at an extreme point.

The necessary conditions given by Eqs. (2.34)–(2.36) are more commonly gener-
ated by constructing a function L, known as the Lagrange function, as

L(x1, x2, λ) = f (x1, x2) + λg(x1, x2) (2.37)

By treating L as a function of the three variables x1, x2, and 𝜆, the necessary conditions
for its extremum are given by

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 79

𝜕L
𝜕x1

(x1, x2, λ) =
𝜕f

𝜕x1
(x1, x2) + λ

𝜕g

𝜕x1
(x1, x2) = 0

𝜕L
𝜕x2

(x1, x2, λ) =
𝜕f

𝜕x2
(x1, x2) + λ

𝜕g

𝜕x2
(x1, x2) = 0

𝜕L
𝜕𝜆

(x1, x2, λ) = g(x1, x2) = 0 (2.38)

Equations (2.38) can be seen to be same as Eqs. (2.34)–(2.36). The sufficiency condi-
tions are given later.

Example 2.9 Find the solution of Example 2.7 using the Lagrange multiplier method:

Minimize f (x, y) = kx−1y−2

subject to
g(x, y) = x2 + y2 − a2 = 0

SOLUTION The Lagrange function is

L(x, y, λ) = f (x, y) + λg(x, y) = kx−1y−2 + λ(x2 + y2 − a2)

The necessary conditions for the minimum of f (x, y) (Eq. (2.38)) give

𝜕L
𝜕x

= −kx−2y−2 + 2xλ = 0 (E1)

𝜕L
𝜕y

= −2kx−1y−3 + 2yλ = 0 (E2)

𝜕L
𝜕𝜆

= x2 + y2 − a2 = 0 (E3)

Equations (E1) and (E2) yield

2λ = k
x3y2

= 2k
xy4

from which the relation x* = (1/
√

2)y* can be obtained. This relation, along with
Eq. (E3), gives the optimum solution as

x∗ = a√
3

and y∗ =
√

2
a√
3

Necessary Conditions for a General Problem. The equations derived above can be
extended to the case of a general problem with n variables and m equality constraints:

Minimize f (X) (2.39)

subject to
gj(X) = 0, j = 1, 2, . . . ,m

�

� �

�

80 Classical Optimization Techniques

The Lagrange function, L, in this case is defined by introducing one Lagrange multi-
plier 𝜆j for each constraint gj(X) as

L(x1, x2, . . . , xn, λ1, λ2, . . . , λm)

= f (X) + λ1g1(X) + λ2g2(X) +⋯ + λmgm(X) (2.40)

By treating L as a function of the n+m unknowns, x1, x2, . . . , xn, 𝜆1, 𝜆2, . . . , 𝜆m, the
necessary conditions for the extremum of L, which also correspond to the solution of
the original problem stated in Eq. (2.39), are given by

𝜕L
𝜕xi

=
𝜕f

𝜕xi
+

m∑
j=1

λj

𝜕gj

𝜕xi
= 0, i = 1, 2, . . . , n (2.41)

𝜕L
𝜕λj

= gj(X) = 0, j = 1, 2, . . . ,m (2.42)

Equations (2.41) and (2.42) represent n+m equations in terms of the n+m unknowns,
xi and 𝜆j. The solution of Eqs. (2.41) and (2.42) gives

X∗ =

⎧⎪⎪⎨⎪⎪⎩

x∗1
x∗2
⋮

x∗n

⎫⎪⎪⎬⎪⎪⎭
and λ∗ =

⎧⎪⎪⎨⎪⎪⎩

λ∗1
λ∗2
⋮

λ∗m

⎫⎪⎪⎬⎪⎪⎭
The vector X* corresponds to the relative constrained minimum of f (X) (sufficient
conditions are to be verified) while the vector 𝜆* provides the sensitivity information,
as discussed in the next subsection.

Sufficiency Conditions for a General Problem. A sufficient condition for f (X) to
have a constrained relative minimum at X* is given by the following theorem.

Theorem 2.6 Sufficient Condition A sufficient condition for f (X) to have a relative
minimum at X* is that the quadratic, Q, defined by

Q =
n∑

i=1

n∑
j=1

𝜕
2L

𝜕xi𝜕xj
dxidxj (2.43)

evaluated at X = X* must be positive definite for all values of dX for which the con-
straints are satisfied.

Proof: The proof is similar to that of Theorem 2.4.

Notes

1. If

Q =
n∑

i=1

n∑
j=1

𝜕
2L

𝜕xi𝜕xj
(X∗

, 𝛌∗)dxidxj

is negative for all choices of the admissible variations dxi, X* will be a con-
strained maximum of f (X).

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 81

2. It has been shown by Hancock [2.1] that a necessary condition for the quadratic
form Q, defined by Eq. (2.43), to be positive (negative) definite for all admissi-
ble variations dX is that each root of the polynomial zi, defined by the following
determinantal equation, be positive (negative):||||||||||||||||||||||

L11 − z L12 L13 . . . L1n g11 g21 . . . gm1

L21 L22 − z L23 . . . L2n g12 g22 . . . gm2

⋮

Ln1 Ln2 Ln3 . . . Lnn − z g1n g2n . . . gmn

g11 g12 g13 . . . g1n 0 0 . . . 0

g21 g22 g23 . . . g2n 0 0 . . . 0

⋮

gm1 gm2 gm3 . . . gmn 0 0 . . . 0

||||||||||||||||||||||

= 0 (2.44)

where

Lij =
𝜕

2L
𝜕xi𝜕xj

(X∗
, 𝛌∗) (2.45)

gij =
𝜕gi

𝜕xj
(X∗) (2.46)

3. Equation (2.44), on expansion, leads to an (n − m)th-order polynomial in z. If
some of the roots of this polynomial are positive while the others are negative,
the point X* is not an extreme point.

The application of the necessary and sufficient conditions in the Lagrange multi-
plier method is illustrated with the help of the following example.

Example 2.10 Find the dimensions of a cylindrical tin (with top and bottom) made
up of sheet metal to maximize its volume such that the total surface area is equal to
A0 = 24𝜋.

SOLUTION If x1 and x2 denote the radius of the base and length of the tin, respec-
tively, the problem can be stated as

Maximize f (x1, x2) = 𝜋x2
1x2

subject to
2𝜋x2

1 + 2𝜋x1x2 = A0 = 24𝜋

The Lagrange function is

L(x1, x2, λ) = 𝜋x2
1x2 + λ(2𝜋x2

1 + 2𝜋x1x2 − A0)

and the necessary conditions for the maximum of f give

𝜕L
𝜕x1

= 2𝜋x1x2 + 4𝜋λx1 + 2𝜋λx2 = 0 (E1)

𝜕L
𝜕x2

= 𝜋x2
1 + 2𝜋λx1 = 0 (E2)

𝜕L
𝜕𝜆

= 2𝜋x2
1 + 2𝜋x1x2 − A0 = 0 (E3)

�

� �

�

82 Classical Optimization Techniques

Equations (E1) and (E2) lead to

λ = −
x1x2

2x1 + x2
= −1

2
x1

that is,

x1 = 1
2

x2 (E4)

and Eqs. (E3) and (E4) give the desired solution as

x∗1 =
(

A0

6𝜋

)1∕2

, x∗2 =
(

2A0

3𝜋

)1∕2

, and λ∗ = −
(

A0

24𝜋

)1∕2

This gives the maximum value of f as

f ∗ =

(
A3

0

54𝜋

)1∕2

If A0 = 24𝜋, the optimum solution becomes

x∗1 = 2, x∗2 = 4, λ∗ = −1, and f ∗ = 16𝜋

To see that this solution really corresponds to the maximum of f, we apply the suffi-
ciency condition of Eq. (2.44). In this case

L11 = 𝜕
2L

𝜕x2
1

|||||(X∗,𝛌∗)

= 2𝜋x∗2 + 4𝜋λ∗ = 4𝜋

L12 = 𝜕
2L

𝜕x1𝜕x2

||||(X∗,𝛌∗)
= L21 = 2𝜋x∗1 + 2𝜋λ∗ = 2𝜋

L22 = 𝜕
2L

𝜕x2
2

|||||(X∗,𝛌∗)

= 0

g11 =
𝜕g1

𝜕x1

||||(X∗,𝛌∗)
= 4𝜋x∗1 + 2𝜋x∗2 = 16𝜋

g12 =
𝜕g1

𝜕x2

||||(X∗,𝛌∗)
= 2𝜋x∗1 = 4𝜋

Thus Eq. (2.44) becomes ||||||
4𝜋 − z 2𝜋 16𝜋

2𝜋 0 − z 4𝜋
16𝜋 4𝜋 0

|||||| = 0

that is,
272𝜋2z + 192𝜋3 = 0

This gives

z = −12
17
𝜋

Since the value of z is negative, the point (x∗1, x
∗
2) corresponds to the maximum of f.

�

� �

�

2.4 Multivariable Optimization with Equality Constraints 83

Interpretation of the Lagrange Multipliers. To find the physical meaning of the
Lagrange multipliers, consider the following optimization problem involving only a
single equality constraint:

Minimize f (X) (2.47)

subject to
g
̃
(X) = b or g(X) = b − g

̃
(X) = 0 (2.48)

where b is a constant. The necessary conditions to be satisfied for the solution of the
problem are

𝜕f

𝜕xi
+ λ

𝜕g

𝜕xi
= 0, i = 1, 2, . . . , n (2.49)

g = 0 (2.50)

Let the solution of Eqs. (2.49) and (2.50) be given by X*, 𝜆*, and f* = f (X*). Suppose
that we want to find the effect of a small relaxation or tightening of the constraint on
the optimum value of the objective function (i.e. we want to find the effect of a small
change in b on f*). For this we differentiate Eq. (2.48) to obtain

db − dg
̃
= 0

or

db − dg
̃
=

n∑
i=1

𝜕g
̃

𝜕xi
dxi (2.51)

Equation (2.49) can be rewritten as

𝜕f

𝜕xi
+ λ

𝜕g

𝜕xi
=
𝜕f

𝜕xi
− λ

𝜕g
̃

𝜕xi
= 0 (2.52)

or
𝜕g
̃

𝜕xi
=
𝜕f∕𝜕xi

λ
, i = 1, 2, . . . , n (2.53)

Substituting Eq. (2.53) into Eq. (2.51), we obtain

db =
n∑

i=1

1
λ
𝜕f

𝜕xi
dxi =

df

λ
(2.54)

since

df =
n∑

i=1

𝜕f

𝜕xi
dxi (2.55)

Equation (2.54) gives

λ =
df

db
or λ∗ =

df ∗

db
(2.56)

or
df ∗ = λ∗db (2.57)

�

� �

�

84 Classical Optimization Techniques

Thus 𝜆* denotes the sensitivity (or rate of change) of f with respect to b or the
marginal or incremental change in f* with respect to b at x*. In other words, 𝜆*
indicates how tightly the constraint is binding at the optimum point. Depending on
the value of 𝜆* (positive, negative, or zero), the following physical meaning can be
attributed to 𝜆*:

1. 𝜆* > 0. In this case, a unit decrease in b is positively valued since one gets a
smaller minimum value of the objective function f. In fact, the decrease in f*
will be exactly equal to 𝜆* since df = 𝜆* (−1) = −𝜆* < 0. Hence 𝜆* may be
interpreted as the marginal gain (further reduction) in f* due to the tightening of
the constraint. On the other hand, if b is increased by 1 unit, f will also increase
to a new optimum level, with the amount of increase in f* being determined
by the magnitude of 𝜆* since df = 𝜆*(+1) > 0. In this case, 𝜆* may be thought
of as the marginal cost (increase) in f* due to the relaxation of the constraint.

2. 𝜆* < 0. Here a unit increase in b is positively valued. This means that it
decreases the optimum value of f. In this case the marginal gain (reduction) in
f* due to a relaxation of the constraint by 1 unit is determined by the value
of 𝜆* as df* = 𝜆*(+1) < 0. If b is decreased by 1 unit, the marginal cost
(increase) in f* by the tightening of the constraint is df* = 𝜆*(−1) > 0 since,
in this case, the minimum value of the objective function increases.

3. 𝜆* = 0. In this case, any incremental change in b has absolutely no effect on the
optimum value of f and hence the constraint will not be binding. This means
that the optimization of f subject to g = 0 leads to the same optimum point X*
as with the unconstrained optimization of f

In economics and operations research, Lagrange multipliers are known as shadow
prices of the constraints since they indicate the changes in optimal value of the objec-
tive function per unit change in the right-hand side of the equality constraints.

Example 2.11 Find the maximum of the function f (X) = 2x1 + x2 + 10 subject to
g(X) = x1 + 2x2

2 = 3 using the Lagrange multiplier method. Also find the effect of
changing the right-hand side of the constraint on the optimum value of f.

SOLUTION The Lagrange function is given by

L(X, λ) = 2x1 + x2 + 10 + λ(3 − x1 − 2x2
2) (E1)

The necessary conditions for the solution of the problem are

𝜕L
𝜕x1

= 2 − λ = 0

𝜕L
𝜕x2

= 1 − 4λx2 = 0

𝜕L
𝜕𝜆

= 3 − x1 − 2x2
2 = 0 (E2)

The solution of Eq. (E2) is

X∗ =

{
x∗1

x∗2

}
=

{
2.97

0.13

}
λ∗ = 2.0 (E3)

�

� �

�

2.5 Multivariable Optimization with Inequality Constraints 85

The application of the sufficiency condition of Eq. (2.44) yields|||||||||
L11 − z L12 g11

L21 L22 − z g12

g11 g12 0

|||||||||
= 0

||||||||
−z 0 −1

0 −4λ − z −4x2

−1 −4x2 0

|||||||| =
||||||||
−z 0 −1

0 −8 − z −0.52

−1 −0.52 0

|||||||| = 0

0.2704z + 8 + z = 0

z = −6.2972

Hence X* will be a maximum of f with f* = f (X*) = 16.07.
One procedure for finding the effect on f* of changes in the value of b (right-hand

side of the constraint) would be to solve the problem all over with the new value of
b. Another procedure would involve the use of the value of 𝜆*. When the original
constraint is tightened by 1 unit (i.e. db = −1), Eq. (2.57) gives

df ∗ = λ∗db = 2(−1) = −2

Thus, the new value of f* is f*+ df*= 14.07. On the other hand, if we relax the original
constraint by 2 units (i.e. db = 2), we obtain

df ∗ = λ∗db = 2(+2) = 4

and hence the new value of f* is f*+ df* = 20.07.

2.5 MULTIVARIABLE OPTIMIZATION WITH INEQUALITY
CONSTRAINTS

This section is concerned with the solution of the following problem:

Minimize f (X)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (2.58)

The inequality constraints in Eq. (2.58) can be transformed to equality constraints by
adding nonnegative slack variables, y2

j , as

gj(X) + y2
j = 0, j = 1, 2, . . . ,m (2.59)

where the values of the slack variables are yet unknown. The problem now becomes

Minimize f (X)

subject to
Gj(X,Y) = gj(X) + y2

j = 0, j = 1, 2, . . . ,m (2.60)

where Y = {y1, y2, . . . , ym}T is the vector of slack variables.

�

� �

�

86 Classical Optimization Techniques

This problem can be solved conveniently by the method of Lagrange multipliers.
For this, we construct the Lagrange function L as

L(X,Y, 𝛌) = f (X) +
m∑

j=1

λjGj(X,Y) (2.61)

where 𝜆 = {𝜆1, 𝜆2, . . . , 𝜆m}T is the vector of Lagrange multipliers. The stationary
points of the Lagrange function can be found by solving the following equations (nec-
essary conditions):

𝜕L
𝜕xi

(X,Y, 𝛌) = 𝜕f

𝜕xi
(X) +

m∑
j=1

λj

𝜕gj

𝜕xi
(X) = 0, i = 1, 2, . . . , n (2.62)

𝜕L
𝜕λj

(X,Y, 𝛌) = Gj(X,Y) = gj(X) + y2
j = 0, j = 1, 2, . . . ,m (2.63)

𝜕L
𝜕yj

(X,Y, 𝛌) = 2λjyj = 0, j = 1, 2, . . . ,m (2.64)

It can be seen that Eqs. (2.62)–(2.64) represent (n+ 2m) equations in the (n+ 2m)
unknowns, X, 𝜆, and Y. The solution of Eqs. (2.62)–(2.64) thus gives the optimum
solution vector, X*; the Lagrange multiplier vector, 𝜆*; and the slack variable vector,
Y*.

Equations (2.63) ensure that the constraints gj(X)≤ 0, j= 1, 2, . . . , m, are satisfied,
while Eq. (2.64) imply that either 𝜆j = 0 or yj = 0. If 𝜆j = 0, it means that the jth
constraint is inactive1 and hence can be ignored. On the other hand, if yj = 0, it means
that the constraint is active (gj = 0) at the optimum point. Consider the division of
the constraints into two subsets, J1 and J2, where J1 + J2 represent the total set of
constraints. Let the set J1 indicate the indices of those constraints that are active at the
optimum point and J2 include the indices of all the inactive constraints.

Thus, for j ∈ J1,2 yj = 0 (constraints are active), for j ∈ J2, 𝜆j = 0 (constraints are
inactive), and Eq. (2.62) can be simplified as

𝜕f

𝜕xi
+
∑
j∈J1

λj

𝜕gj

𝜕xi
= 0, i = 1, 2, . . . , n (2.65)

Similarly, Eq. (2.63) can be written as

gj(X) = 0, j ∈ J1 (2.66)

gj(X) + y2
j = 0, j ∈ J2 (2.67)

Equations (2.65)–(2.67) represent n+ p+ (m− p) = n+m equations in the n+m
unknowns xi (i = 1, 2, . . . , n), 𝜆j(j ∈ J1), and yj(j ∈ J2), where p denotes the number
of active constraints.

Assuming that the first p constraints are active, Eq. (2.65) can be expressed as

−
𝜕f

𝜕xi
= λ1

𝜕g1

𝜕xi
+ λ2

𝜕g2

𝜕xi
+ . . . + λp

𝜕gp

𝜕xi
, i = 1, 2, . . . , n (2.68)

1Those constraints that are satisfied with an equality sign, gj = 0, at the optimum point are called the active
constraints, while those that are satisfied with a strict inequality sign, gj < 0, are termed inactive constraints.
2The symbol ∈ is used to denote the meaning “belongs to” or “element of”.

�

� �

�

2.5 Multivariable Optimization with Inequality Constraints 87

These equations can be written collectively as

−∇f = λ1∇g1 + λ2∇g2 +⋯ + λp∇gp (2.69)

where ∇f and ∇gj are the gradients of the objective function and the jth constraint,
respectively:

∇f =
⎧⎪⎨⎪⎩
𝜕f∕𝜕x1
𝜕f∕𝜕x2

⋮
𝜕f∕𝜕xn

⎫⎪⎬⎪⎭ and ∇gj =
⎧⎪⎨⎪⎩
𝜕gj∕𝜕x1
𝜕gj∕𝜕x2

⋮
𝜕gj∕𝜕xn

⎫⎪⎬⎪⎭
Equation (2.69) indicates that the negative of the gradient of the objective function can
be expressed as a linear combination of the gradients of the active constraints at the
optimum point.

Further, we can show that in the case of a minimization problem, the 𝜆j values
(j ∈ J1) have to be positive. For simplicity of illustration, suppose that only two con-
straints are active (p = 2) at the optimum point. Then Eq. (2.69) reduces to

−∇f = λ1∇g1 + λ2∇g2 (2.70)

Let S be a feasible direction3 at the optimum point. By premultiplying both sides of
Eq. (2.70) by ST, we obtain

−ST∇f = λ1ST∇g1 + λ2ST∇g2 (2.71)

where the superscript T denotes the transpose. Since S is a feasible direction, it should
satisfy the relations

ST∇g1 < 0

ST∇g2 < 0 (2.72)

Thus, if 𝜆1 > 0 and 𝜆2 > 0, the quantity ST ∇ f can be seen always to be positive. As
∇f indicates the gradient direction, along which the value of the function increases at
the maximum rate,4 ST ∇ f represents the component of the increment of f along the
direction S. If ST ∇ f> 0, the function value increases as we move along the direction S.
Hence, if 𝜆1 and 𝜆2 are positive, we will not be able to find any direction in the feasible

3A vector S is called a feasible direction from a point X if at least a small step can be taken along S that does
not immediately leave the feasible region. Thus, for problems with sufficiently smooth constraint surfaces,
vector S satisfying the relation

ST∇gj < 0

can be called a feasible direction. On the other hand, if the constraint is either linear or concave, as shown
in Figure 2.8b and c, any vector satisfying the relation

ST∇gj ≤ 0

can be called a feasible direction. The geometric interpretation of a feasible direction is that the vector
S makes an obtuse angle with all the constraint normals, except that for the linear or outward-curving
(concave) constraints, the angle may go to as low as 90∘.
4See Section 6.10.2 for a proof of this statement.

�

� �

�

88 Classical Optimization Techniques

g1 = 0

g2 < 0

g2 > 0

g1 > 0

S

90°

Angle greater
than 90°

S

S

(a) (b)

(c)

g2 = 0
g2 = 0

Angles greater
than 90°

(Linear
constraint)

Angle equal
to 90°

Concave constraint
surface

Angle greater
than 90°

g1 < 0

g1 > 0

∇g1

∇g1

∇g1

∇g2

∇g2 ∇g2

g1 < 0

g1 < 0
g2 < 0

g1 > 0

g1 = 0

g1 = 0

g2 = 0

g2 < 0

g2 > 0

g2 > 0

Figure 2.8 Feasible direction S.

domain along which the function value can be decreased further. Since the point at
which Eq. (2.72) is valid is assumed to be optimum, 𝜆1 and 𝜆2 have to be positive.
This reasoning can be extended to cases where there are more than two constraints
active. By proceeding in a similar manner, one can show that the 𝜆j values have to be
negative for a maximization problem.

Example 2.12 Consider the following optimization problem:

Minimize f (x1, x2) = x2
1 + x2

2

subject to

x1 + 2x2 ≤ 15

1 ≤ xi ≤ 10; i = 1, 2

Derive the conditions to be satisfied at the point X1 = {1, 7}T by the search direction
S = {s1, s2}T if it is a (a) usable direction, and (b) feasible direction.

�

� �

�

2.5 Multivariable Optimization with Inequality Constraints 89

SOLUTION The objective function and the constraints can be stated as

f (x1, x2) = x2
1 + x2

2

g1(X) = x1 + 2x2 ≤ 15

g2(X) = 1 − x1 ≤ 0

g3(X) = 1 − x2 ≤ 0

g4(X) = x1 − 10 ≤ 0

g5(X) = x2 − 10 ≤ 0

At the given point X1 = {1, 7}T, all the constraints can be seen to be satisfied with g1
and g2 being active. The gradients of the objective and active constraint functions at
point X1 = {1, 7}T are given by

∇f =
⎧⎪⎨⎪⎩
𝜕f

𝜕x1

𝜕f

𝜕x2

⎫⎪⎬⎪⎭
X1

=
{

2x1
2x2

}
X1

=
{

2
14

}

∇g1 =
⎧⎪⎨⎪⎩
𝜕g1

𝜕x1
𝜕g1

𝜕x2

⎫⎪⎬⎪⎭
X1

=
{

1
2

}

∇g2 =
⎧⎪⎨⎪⎩
𝜕g2

𝜕x1
𝜕g2

𝜕x2

⎫⎪⎬⎪⎭
X1

=
{
−1
0

}

For the search direction S = {s1, s2}T, the usability and feasibility conditions can be
expressed as

(a) Usability condition:

ST∇f ≤ 0 or (s1 s2)
{

2
14

}
≤ 0 or 2s1 + 14s2 ≤ 0 (E1)

(b) Feasibility conditions:

ST∇g1 ≤ 0 or (s1 s2)
{

1
2

}
≤ 0 or s1 + 2s2 ≤ 0 (E2)

ST∇g2 ≤ 0 or (s1 s2)
{
−1
0

}
≤ 0 or − s1 ≤ 0 (E3)

Note: Any two numbers for s1 and s2 that satisfy the inequality (E1) will constitute
a usable direction S. For example, s1 = 1 and s2 = −1 gives the usable direction
S = {1, −1}T. This direction can also be seen to be a feasible direction because it
satisfies the inequalities (E2) and (E3).

�

� �

�

90 Classical Optimization Techniques

2.5.1 Kuhn–Tucker Conditions

As shown above, the conditions to be satisfied at a constrained minimum point, X*,
of the problem stated in Eq. (2.58) can be expressed as

𝜕f

𝜕xi
+
∑
j∈J1

λj

𝜕gj

𝜕xi
= 0, i = 1, 2, . . . , n (2.73)

λj > 0, j ∈ J1 (2.74)

These are called Kuhn–Tucker conditions after the mathematicians who derived them
as the necessary conditions to be satisfied at a relative minimum of f (X) [2.11].
These conditions are, in general, not sufficient to ensure a relative minimum. How-
ever, there is a class of problems, called convex programming problems,5 for which
the Kuhn–Tucker conditions are necessary and sufficient for a global minimum.

If the set of active constraints is not known, the Kuhn–Tucker conditions can be
stated as follows:

𝜕f

𝜕xi
+

m∑
j=1

λj

𝜕gj

𝜕xi
= 0, i = 1, 2, . . . , n

λjgj = 0,6 j = 1, 2, . . . ,m

gj ≤ 0, j = 1, 2, . . . ,m

λj ≥ 0, j = 1, 2, . . . ,m (2.75)

Note that if the problem is one of maximization or if the constraints are of the type
gj ≥ 0, the 𝜆j have to be nonpositive in Eq. (2.75). On the other hand, if the problem is
one of maximization with constraints in the form gj ≥ 0, the 𝜆j have to be nonnegative
in Eq. (2.75).

2.5.2 Constraint Qualification

When the optimization problem is stated as

Minimize f (X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

hk(X) = 0 k = 1, 2, . . . , p (2.76)

the Kuhn–Tucker conditions become

∇f +
m∑

j=1

λj∇gj −
p∑

k=1

𝛽k∇hk = 𝟎

λjgj = 0, j = 1, 2, . . . ,m

gj ≤ 0, j = 1, 2, . . . ,m

hk = 0, k = 1, 2, . . . , p

𝜆j ≥ 0, j = 1, 2, . . . ,m (2.77)

5See Sections 2.6 and 7.14 for a detailed discussion of convex programming problems.
6This condition is the same as Eq. (2.64).

�

� �

�

2.5 Multivariable Optimization with Inequality Constraints 91

where 𝜆j and 𝛽k denote the Lagrange multipliers associated with the constraints gj ≤ 0
and hk = 0, respectively. Although we found qualitatively that the Kuhn–Tucker con-
ditions represent the necessary conditions of optimality, the following theorem gives
the precise conditions of optimality.

Theorem 2.7 Let X* be a feasible solution to the problem of Eq. (2.76). If ∇gj(X*),
j ∈ J1 and ∇hk (X*), k = 1, 2,. . . . , p, are linearly independent, there exist 𝛌* and 𝛃*
such that (X*, 𝛌*, 𝛃*) satisfy Eq. (2.77).

Proof: See Ref. [2.12, 2.13].
The requirement that ∇gj (X*), j ∈ J1 and ∇hk (X*), k = 1, 2, . . . , p, be linearly

independent is called the constraint qualification. If the constraint qualification is vio-
lated at the optimum point, Eq. (2.77) may or may not have a solution. It is difficult
to verify the constraint qualification without knowing X* beforehand. However, the
constraint qualification is always satisfied for problems having any of the following
characteristics:

1. All the inequality and equality constraint functions are linear.
2. All the inequality constraint functions are convex, all the equality constraint

functions are linear, and at least one feasible vector X̃ exists that lies strictly
inside the feasible region, so that

gj(X̃) < 0, j = 1, 2, . . . ,m and hk(X̃) = 0, k = 1, 2, . . . , p

Example 2.13 Consider the following problem:

Minimize f (x1, x2) = (x1 − 1)2 + x2
2 (E1)

subject to

g1(x1, x2) = x3
1 − 2x2 ≤ 0 (E2)

g2(x1, x2) = x3
1 + 2x2 ≤ 0 (E3)

Determine whether the constraint qualification and the Kuhn–Tucker conditions are
satisfied at the optimum point.

SOLUTION The feasible region and the contours of the objective function are shown
in Figure 2.9. It can be seen that the optimum solution is (0, 0). Since g1 and g2 are
both active at the optimum point (0, 0), their gradients can be computed as

∇g1(X∗) =

{
3x2

1

−2

}
(0,0)

=
{

0
−2

}
and ∇g2(X∗) =

{
3x2

1

2

}
(0,0)

=
{

0
2

}
It is clear that ∇g1(X*) and ∇g2(X*) are not linearly independent. Hence the con-

straint qualification is not satisfied at the optimum point. Noting that

∇f (X∗) =

{
2(x1 − 1)

2x2

}
(0,0)

=
{
−2
0

}

�

� �

�

92 Classical Optimization Techniques

20

24

x2

x1

16

g2 = 0

g1 = 0

12

–8

–12

–16

–20

–24

Feasible space

f = 16

f = 1

f = 4

–5 –4 –3 –2 –1
0

1 2

3 4 5

2

4

8

4

Figure 2.9 Feasible region and contours of the objective function.

the Kuhn–Tucker conditions can be written, using Eqs. (2.73) and (2.74), as

−2 + λ1(0) + λ2(0) = 0 (E4)

0 + λ1(−2) + λ2(2) = 0 (E5)

λ1 > 0 (E6)

λ2 > 0 (E7)

Since Eq. (E4) is not satisfied and Eq. (E5) can be satisfied for negative values of
𝜆1 = 𝜆2 also, the Kuhn–Tucker conditions are not satisfied at the optimum point.

Example 2.14 A manufacturing firm producing small refrigerators has entered into
a contract to supply 50 refrigerators at the end of the first month, 50 at the end of the
second month, and 50 at the end of the third. The cost of producing x refrigerators
in any month is given by $(x2 + 1000). The firm can produce more refrigerators in
any month and carry them to a subsequent month. However, it costs $20 per unit for

�

� �

�

2.5 Multivariable Optimization with Inequality Constraints 93

any refrigerator carried over from one month to the next. Assuming that there is no
initial inventory, determine the number of refrigerators to be produced in each month
to minimize the total cost.

SOLUTION Let x1, x2, and x3 represent the number of refrigerators produced in the
first, second, and third month, respectively. The total cost to be minimized is given by

total cost = production cost + holding cost

or

f (x1, x2, x3) = (x2
1 + 1000) + (x2

2 + 1000) + (x2
3 + 1000) + 20(x1 − 50)

+ 20(x1 + x2 − 100)

= x2
1 + x2

2 + x2
3 + 40x1 + 20x2

The constraints can be stated as

g1(x1, x2, x3) = x1 − 50 ≥ 0

g2(x1, x2, x3) = x1 + x2 − 100 ≥ 0

g3(x1, x2, x3) = x1 + x2 + x3 − 150 ≥ 0

The Kuhn–Tucker conditions are given by

𝜕f

𝜕xi
+ λ1

𝜕g1

𝜕xi
+ λ2

𝜕g2

𝜕xi
+ λ3

𝜕g3

𝜕xi
= 0, i = 1, 2, 3

that is,

2x1 + 40 + λ1 + λ2 + λ3 = 0 (E1)

2x2 + 20 + λ2 + λ3 = 0 (E2)

2x3 + λ3 = 0 (E3)

λjgj = 0, j = 1, 2, 3

that is,

λ1(x1 − 50) = 0 (E4)

λ2(x1 + x2 − 100) = 0 (E5)

λ3(x1 + x2 + x3 − 150) = 0 (E6)

gj ≤ 0, j = 1, 2, 3

that is,

x1 − 50 ≥ 0 (E7)

x1 + x2 − 100 ≥ 0 (E8)

x1 + x2 + x3 − 150 ≥ 0 (E9)

λj ≤ 0, j = 1, 2, 3

�

� �

�

94 Classical Optimization Techniques

that is,

λ1 ≤ 0 (E10)

λ2 ≤ 0 (E11)

λ3 ≤ 0 (E12)

The solution of Eqs. (E1)–(E12) can be found in several ways. We proceed to solve
these equations by first nothing that either 𝜆1 = 0 or x1 = 50 according to Eq. (E4).
Using this information, we investigate the following cases to identify the optimum
solution of the problem.

Case 1: 𝜆1 = 0.

Equations (E1)–(E3) give

x3 = −
λ3

2

x2 = −10 −
λ2

2
−

λ3

2

x1 = −20 −
λ2

2
−

λ3

2
(E13)

Substituting Eq. (E13) in Eqs. (E5) and (E6), we obtain

λ2(−130 − λ2 − λ3) = 0

λ3

(
−180 − λ2 −

3
2
λ3

)
= 0 (E14)

The four possible solutions of Eq. (E14) are

1. λ2 = 0,−180 − λ2 −
3
2
λ3 = 0. These equations, along with Eq. (E13), yield the

solution

λ2 = 0, λ3 = −120, x1 = 40, x2 = 50, x3 = 60

This solution satisfies Eqs. (E10)–(E12) but violates Eqs. (E7) and (E8) and
hence cannot be optimum.

2. 𝜆3 = 0, −130− 𝜆2 − 𝜆3 = 0. The solution of these equations leads to

λ2 = −130, λ3 = 0, x1 = 45, x2 = 55, x3 = 0

This solution can be seen to satisfy Eqs. (E10)–(E12) but violate Eqs. (E7) and
(E9).

3. 𝜆2 = 0, 𝜆3 = 0. Equations (E13) give

x1 = −20, x2 = −10, x3 = 0

This solution satisfies Eqs. (E10)–(E12) but violates the constraints, Eqs.
(E7)–(E9).

�

� �

�

2.5 Multivariable Optimization with Inequality Constraints 95

4. −130− 𝜆2 − 𝜆3 = 0, −180− 𝜆2 −
3
2 𝜆3 = 0. The solution of these equations and

Eq. (E13) yields

λ2 = −30, λ3 = −100, x1 = 45, x2 = 55, x3 = 50

This solution satisfies Eqs. (E10)–(E12) but violates the constraint, Eq. (E7).

Case 2: x1 = 50.

In this case, Eqs. (E1)–(E3) give

λ3 = −2x3

λ2 = −20 − 2x2 − λ3 = −20 − 2x2 + 2x3

λ1 = −40 − 2x1 − λ2 − λ3 = −120 + 2x2 (E15)

Substitution of Eq. (E15) in Eqs. (E5) and (E6) leads to

(−20 − 2x2 + 2x3)(x1 + x2 − 100) = 0

(−2x3)(x1 + x2 + x3 − 150) = 0 (E16)

Once again, it can be seen that there are four possible solutions to Eq. (E16), as indi-
cated below:

1. −20− 2x2 + 2x3 = 0, x1 + x2 + x3 − 150 = 0: The solution of these equations
yields

x1 = 50, x2 = 45, x3 = 55

This solution can be seen to violate Eq. (E8).
2. −20− 2x2 + 2x3 = 0, −2x3 = 0: These equations lead to the solution

x1 = 50, x2 = −10, x3 = 0

This solution can be seen to violate Eqs. (E8) and (E9).
3. x1 + x2 − 100 = 0, −2x3 = 0: These equations give

x1 = 50, x2 = 50, x3 = 0

This solution violates the constraint Eq. (E9).
4. x1 + x2 − 100 = 0, x1 + x2 + x3 − 150 = 0: The solution of these equations

yields
x1 = 50, x2 = 50, x3 = 50

This solution can be seen to satisfy all the constraint Eqs. (E7)–(E9). The val-
ues of 𝜆1, 𝜆2, and 𝜆3 corresponding to this solution can be obtained from Eq.
(E15) as

λ1 = −20, λ2 = −20, λ3 = −100

Since these values of 𝜆i satisfy the requirements (Eqs. (E10)–(E12)), this solu-
tion can be identified as the optimum solution. Thus

x∗1 = 50, x∗2 = 50, x∗3 = 50

�

� �

�

96 Classical Optimization Techniques

2.6 CONVEX PROGRAMMING PROBLEM

The optimization problem stated in Eq. (2.58) is called a convex programming prob-
lem if the objective function f (X) and the constraint functions gj(X) are convex. The
definition and properties of a convex function are given in Appendix A. Suppose that
f (X) and gj (X), j = 1, 2, . . . , m, are convex functions. The Lagrange function of
Eq. (2.61) can be written as

L(X,Y, 𝛌) = f (X) +
m∑

j=1

λj[gj(X) + y2
j] (2.78)

If 𝜆j ≥ 0, then 𝜆jgj (X) is convex, and since 𝜆jyj = 0 from Eq. (2.64), L (X, Y, 𝛌)
will be a convex function. As shown earlier, a necessary condition for f (X) to be a
relative minimum at X* is that L (X, Y, 𝛌) have a stationary point at X*. However, if
L (X, Y, 𝛌) is a convex function, its derivative vanishes only at one point, which must
be an absolute minimum of the function f (X). Thus, the Kuhn–Tucker conditions are
both necessary and sufficient for an absolute minimum of f (X) at X*.

Notes:
1. If the given optimization problem is known to be a convex programming prob-

lem, there will be no relative minima or saddle points, and hence the extreme
point found by applying the Kuhn–Tucker conditions is guaranteed to be an
absolute minimum of f (X). However, it is often very difficult to ascertain
whether the objective and constraint functions involved in a practical engineer-
ing problem are convex.

2. The derivation of the Kuhn–Tucker conditions was based on the development
given for equality constraints in Section 2.4. One of the requirements for these
conditions was that at least one of the Jacobians composed of the m constraints
and m of the n + m variables (x1, x2, . . . , xn; y1, y2, . . . , ym) be nonzero. This
requirement is implied in the derivation of the Kuhn–Tucker conditions.

REFERENCES AND BIBLIOGRAPHY

2.1 Hancock, H. (1960). Theory of Maxima and Minima. Dover, NY: Dover Publications.

2.2 Levenson, M.E. (1967). Maxima and Minima. New York: Macmillan.

2.3 Thomas, G.B. Jr. (1967). Calculus and Analytic Geometry. Reading, MA:
Addison-Wesley.

2.4 Richmond, A.E. (1972). Calculus for Electronics. New York: McGraw-Hill.

2.5 Howell, J.R. and Buckius, R.O. (1992). Fundamentals of Engineering Thermodynamics,
2e. New York: McGraw-Hill.

2.6 Kolman, B. and Trench, W.F. (1971). Elementary Multivariable Calculus. New York:
Academic Press.

2.7 Beveridge, G.S.G. and Schechter, R.S. (1970). Optimization: Theory and Practice. New
York: McGraw-Hill.

2.8 Gue, R. and Thomas, M.E. (1968). Mathematical Methods of Operations Research. New
York: Macmillan.

2.9 Ayres, F. Jr. (1962). Theory and Problems of Matrices, Schaum’s Outline Series. New
York: Schaum.

�

� �

�

Review Questions 97

2.10 Panik, M.J. (1976). Classical Optimization: Foundations and Extensions. North-Holland,
Amsterdam.

2.11 Kuhn, H.W. and Tucker, A. (1951). Nonlinear programming. In: Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University
of California Press.

2.12 Bazaraa, M.S. and Shetty, C.M. (1979). Nonlinear Programming: Theory and Algo-
rithms. New York: Wiley.

2.13 Simmons, D.M. (1975). Nonlinear Programming for Operations Research. Engle-wood
Cliffs, NJ: Prentice Hall.

REVIEW QUESTIONS

2.1 State the necessary and sufficient conditions for the minimum of a function f (x).

2.2 Under what circumstances can the condition df (x)/dx = 0 not be used to find the mini-
mum of the function f (x)?

2.3 Define the rth differential, d r f (X), of a multivariable function f (X).

2.4 Write the Taylor’s series expansion of a function f (X).

2.5 State the necessary and sufficient conditions for the maximum of a multivariable function
f (X).

2.6 What is a quadratic form?

2.7 How do you test the positive, negative, or indefiniteness of a square matrix [A]?

2.8 Define a saddle point and indicate its significance.

2.9 State the various methods available for solving a multivariable optimization problem
with equality constraints.

2.10 State the principle behind the method of constrained variation.

2.11 What is the Lagrange multiplier method?

2.12 What is the significance of Lagrange multipliers?

2.13 Convert an inequality constrained problem into an equivalent unconstrained
problem.

2.14 State the Kuhn–Tucker conditions.

2.15 What is an active constraint?

2.16 Define a usable feasible direction.

2.17 What is a convex programming problem? What is its significance?

2.18 Answer whether each of the following quadratic forms is positive definite, negative
definite, or neither:

(a) f = x2
1 − x2

2

(b) f = 4x1x2

(c) f = x2
1 + 2x2

2

(d) f = −x2
1 + 4x1x2 + 4x2

2

(e) f = −x2
1 + 4x1x2 − 9x2

2 + 2x1x3 + 8x2x3 − 4x2
3

�

� �

�

98 Classical Optimization Techniques

2.19 State whether each of the following functions is convex, concave, or neither:

(a) f = − 2x2 + 8x+ 4

(b) f = x2 + 10x+ 1

(c) f = x2
1 − x2

2

(d) f = −x2
1 + 4x1x2

(e) f = e−x, x> 0

(f) f =
√

x, x > 0

(g) f = x1x2

(h) f = (x1 − 1)2 + 10(x2 − 2)2

2.20 Match the following equations and their characteristics:

(a) f = 4x1 − 3x2 + 2 Relative maximum at (1, 2)
(b) f = (2x1 − 2)2 + (x2 − 2)2 Saddle point at origin
(c) f = − (x1 − 1)2 − (x2 − 2)2 No minimum
(d) f = x1x2 Inflection point at origin
(e) f = x3 Relative minimum at (1, 2)

PROBLEMS

2.1 A dc generator has an internal resistance R ohms and develops an open-circuit voltage
of V volts (Figure 2.10). Find the value of the load resistance r for which the power
delivered by the generator will be a maximum.

2.2 Find the maxima and minima, if any, of the function

f (x) = x4

(x − 1)(x − 3)3

2.3 Find the maxima and minima, if any, of the function

f (x) = 4x3 − 18x2 + 27x − 7

2.4 The efficiency of a screw jack is given by

𝜂 = tan 𝛼
tan(𝛼 + 𝜙)

where 𝛼 is the lead angle and 𝜑 is a constant. Prove that the efficiency of the screw jack
will be maximum when 𝛼 = 45∘ −𝜑/2 with 𝜂max = (1− sin 𝜑)/(1+ sin 𝜑).

2.5 Find the minimum of the function

f (x) = 10x6 − 48x5 + 15x4 + 200x3 − 120x2 − 480x + 100

V

Generator

R

r

Figure 2.10 Electric generator with load.

�

� �

�

Problems 99

2.6 Find the angular orientation of a cannon to maximize the range of the projectile.

2.7 In a submarine telegraph cable the speed of signaling varies as x2 log (1/x), where x is
the ratio of the radius of the core to that of the covering. Show that the greatest speed is
attained when this ratio is 1 ∶

√
e.

2.8 The horsepower generated by a Pelton wheel is proportional to u (V − u), where u is the
velocity of the wheel, which is variable, and V is the velocity of the jet, which is fixed.
Show that the efficiency of the Pelton wheel will be maximum when u = V/2.

2.9 A pipe of length l and diameter D has at one end a nozzle of diameter d through which
water is discharged from a reservoir. The level of water in the reservoir is maintained at
a constant value h above the center of nozzle. Find the diameter of the nozzle so that the
kinetic energy of the jet is a maximum. The kinetic energy of the jet can be expressed as

1
4
𝜋𝜌d2

(
2gD5h

D5 + 4fld4

)3∕2

where 𝜌 is the density of water, f the friction coefficient and g the gravitational constant.

2.10 An electric light is placed directly over the center of a circular plot of lawn 100 m in
diameter. Assuming that the intensity of light varies directly as the sine of the angle at
which it strikes an illuminated surface, and inversely as the square of its distance from
the surface, how high should the light be hung in order that the intensity may be as great
as possible at the circumference of the plot?

2.11 If a crank is at an angle 𝜃 from dead center with 𝜃 = 𝜔t, where 𝜔 is the angular velocity
and t is time, the distance of the piston from the end of its stroke (x) is given by

x = r(1 − cos 𝜃) + r2

4l
(1 − cos 2𝜃)

where r is the length of the crank and l is the length of the connecting rod. For r = 1 and
l = 5, find (a) the angular position of the crank at which the piston moves with maximum
velocity, and (b) the distance of the piston from the end of its stroke at that instant.

Determine whether each of the matrices in Problems 2.12–2.14 is positive definite, neg-
ative definite, or indefinite by finding its eigenvalues.

2.12 [A] =
⎡⎢⎢⎣

3 1 −1
1 3 −1
−1 −1 5

⎤⎥⎥⎦
2.13 [B] =

⎡⎢⎢⎣
4 2 −4
2 4 −2
−4 −2 4

⎤⎥⎥⎦
2.14 [C] =

⎡⎢⎢⎣
−1 −1 −1
−1 −2 −2
−1 −2 −3

⎤⎥⎥⎦
Determine whether each of the matrices in Problems 2.15–2.17 is positive definite, neg-
ative definite, or indefinite by evaluating the signs of its submatrices.

2.15 [A] =
⎡⎢⎢⎣

3 1 −1
1 3 −1
−1 −1 5

⎤⎥⎥⎦
2.16 [B] =

⎡⎢⎢⎣
4 2 −4
2 4 −2
−4 −2 4

⎤⎥⎥⎦
2.17 [C] =

⎡⎢⎢⎣
−1 −1 −1
−1 −2 −2
−1 −2 −3

⎤⎥⎥⎦

�

� �

�

100 Classical Optimization Techniques

2.18 Express the function

f (x1, x2, x3) = −x2
1 − x2

2 + 2x1x2 − x2
3 + 6x1x3

+ 4x1 − 5x3 + 2

in matrix form as
f (X) = 1

2
XT[A]X + BTX + C

and determine whether the matrix [A] is positive definite, negative definite, or indefinite.

2.19 Determine whether the following matrix is positive or negative definite:

[A] =
⎡⎢⎢⎣

4 −3 0
−3 0 4

0 4 2

⎤⎥⎥⎦
2.20 Determine whether the following matrix is positive definite:

[A] =
⎡⎢⎢⎣
−14 3 0

3 −1 4
0 4 2

⎤⎥⎥⎦
2.21 The potential energy of the two-bar truss shown in Figure 2.11 is given by

f (x1, x2) =
EA
s

(1
2s

)2

x2
1 +

EA
s

(h
s

)2

x2
2 − Px1 cos 𝜃 − Px2 sin 𝜃

where E is Young’s modulus, A the cross-sectional area of each member, l the span of
the truss, s the length of each member, h the height of the truss, P the applied load, 𝜃
the angle at which the load is applied, and x1 and x2 are, respectively, the horizontal and
vertical displacements of the free node. Find the values of x1 and x2 that minimize the
potential energy when E = 207× 109 Pa, A = 10−5 m2, l = 1.5 m, h = 4.0 m, P = 104 N,
and 𝜃 = 30∘

2.22 The profit per acre of a farm is given by

20x1 + 26x2 + 4x1x2 − 4x2
1 − 3x2

2

where x1 and x2 denote, respectively, the labor cost and the fertilizer cost. Find the values
of x1 and x2 to maximize the profit.

l

A
s h

s

A

Px2

x1θ

αα

Figure 2.11 Two-bar truss.

�

� �

�

Problems 101

2.23 The temperatures measured at various points inside a heated wall are as follows:

Distance from the heated surface as a
percentage of wall thickness, d

0 25 50 75 100

Temperature, t(∘C) 380 200 100 20 0

It is decided to approximate this table by a linear equation (graph) of the form t = a+ bd,
where a and b are constants. Find the values of the constants a and b that minimize the
sum of the squares of all differences between the graph values and the tabulated values.

2.24 Find the second-order Taylor’s series approximation of the function

f (x1, x2) = (x1 − 1)2ex2 + x1

at the points (a) (0,0) and (b) (1,1).

2.25 Find the third-order Taylor’s series approximation of the function

f (x1, x2, x3) = x2
2x3 + x1ex3

at point (1, 0, −2).

2.26 The volume of sales (f) of a product is found to be a function of the number of newspaper
advertisements (x) and the number of minutes of television time (y) as

f = 12xy − x2 − 3y2

Each newspaper advertisement or each minute on television costs $1000. How should
the firm allocate $48 000 between the two advertising media for maximizing its sales?

2.27 Find the value of x* at which the following function attains its maximum:

f (x) = 1

10
√

2𝜋
e−(1∕2)[(x−100)∕10]2

2.28 It is possible to establish the nature of stationary points of an objective function based
on its quadratic approximation. For this, consider the quadratic approximation of a
two-variable function as

f (X) ≈ a + bTX + 1
2

XT[c]X

where

X =
{

x1
x2

}
, b =

{
b1
b2

}
, [c] =

[
c11 c12
c12 c22

]
If the eigenvalues of the Hessian matrix, [c], are denoted as 𝛽1 and 𝛽2, identify the nature
of the contours of the objective function and the type of stationary point in each of the
following situations.

(a) 𝛽1 = 𝛽2; both positive

(b) 𝛽1 >𝛽2; both positive

(c) |𝛽1| = |𝛽2|; 𝛽1 and 𝛽2 have opposite signs

(d) 𝛽1 > 0, 𝛽2 = 0

Plot the contours of each of the following functions and identify the nature of its sta-
tionary point.

2.29 f = 2− x2 − y2 + 4xy

�

� �

�

102 Classical Optimization Techniques

2.30 f = 2+ x2 − y2

2.31 f = xy

2.32 f = x3 − 3xy2

2.33 Find the admissible and constrained variations at the point X = {0, 4}T for the following
problem:

Minimize f = x2
1 + (x2 − 1)2

subject to
−2x2

1 + x2 = 4

2.34 Find the diameter of an open cylindrical can that will have the maximum volume for a
given surface area, S.

2.35 A rectangular beam is to be cut from a circular log of radius r. Find the cross-sectional
dimensions of the beam to (a) maximize the cross-sectional area of the beam, and (b)
maximize the perimeter of the beam section.

2.36 Find the dimensions of a straight beam of circular cross section that can be cut from a
conical log of height h and base radius r to maximize the volume of the beam.

2.37 The deflection of a rectangular beam is inversely proportional to the width and the cube
of depth. Find the cross-sectional dimensions of a beam, which corresponds to minimum
deflection, that can be cut from a cylindrical log of radius r.

2.38 A rectangular box of height a and width b is placed adjacent to a wall (Figure 2.12).
Find the length of the shortest ladder that can be made to lean against the wall.

2.39 Show that the right circular cylinder of given surface (including the ends) and maximum
volume is such that its height is equal to the diameter of the base.

2.40 Find the dimensions of a closed cylindrical soft drink can that can hold soft drink of
volume V for which the surface area (including the top and bottom) is a minimum.

2.41 An open rectangular box is to be manufactured from a given amount of sheet metal (area
S). Find the dimensions of the box to maximize the volume.

2.42 Find the dimensions of an open rectangular box of volume V for which the amount of
material required for manufacture (surface area) is a minimum.

Ladder

a

b

Figure 2.12 Ladder against a wall.

�

� �

�

Problems 103

2.43 A rectangular sheet of metal with sides a and b has four equal square portions (of side
d) removed at the corners, and the sides are then turned up in order to form an open
rectangular box. Find the depth of the box that maximizes the volume.

2.44 Show that the cone of the greatest volume that can be inscribed in a given sphere has
an altitude equal to two-thirds of the diameter of the sphere. Also prove that the curved
surface of the cone is a maximum for the same value of the altitude.

2.45 Prove Theorem 2.6.

2.46 A log of length l is in the form of a frustum of a cone whose ends have radii a and
b(a> b). It is required to cut from it a beam of uniform square section. Prove that the
beam of greatest volume that can be cut has a length of al/[3(a− b)].

2.47 It has been decided to leave a margin of 30 mm at the top and 20 mm each at the left
side, right side, and the bottom on the printed page of a book. If the area of the page is
specified as 5× 104 mm2, determine the dimensions of a page that provide the largest
printed area.

2.48 . Minimize f = 9 − 8x1 − 6x2 − 4x3 + 2x2
1

+ 2x2
2 + x2

3 + 2x1x2 + 2x1x3

subject to
x1 + x2 + 2x3 = 3

by (a) direct substitution, (b) constrained variation, and (c) Lagrange multiplier method.

2.49 . Minimize f (X) = 1
2
(x2

1 + x2
2 + x2

3)

subject to
g1(X) = x1 − x2 = 0

g2(X) = x1 + x2 + x3 − 1 = 0

by (a) direct substitution, (b) constrained variation, and (c) Lagrange multiplier method.

2.50 Find the values of x, y, and z that maximize the function

f (x, y, z) =
6xyz

x + 2y + 2z

when x, y, and z are restricted by the relation xyz = 16.

2.51 A tent on a square base of side 2a consists of four vertical sides of height b surmounted
by a regular pyramid of height h. If the volume enclosed by the tent is V, show that the
area of canvas in the tent can be expressed as

2V
a

− 8ah
3

+ 4a
√

h2 + a2

Also, show that the least area of the canvas corresponding to a given volume V, if a and
h can both vary, is given by

a =
√

5h

2
and h = 2b

2.52 A department store plans to construct a one-story building with a rectangular planform.
The building is required to have a floor area of 22 500 ft2 and a height of 18 ft. It is
proposed to use brick walls on three sides and a glass wall on the fourth side. Find the
dimensions of the building to minimize the cost of construction of the walls and the roof,
assuming that the glass wall costs twice as much as that of the brick wall and the roof
costs three times as much as that of the brick wall per unit area.

�

� �

�

104 Classical Optimization Techniques

2.53 Find the dimensions of the rectangular building described in Problem 2.52 to minimize
the heat loss, assuming that the relative heat losses per unit surface area for the roof,
brick wall, glass wall, and floor are in the proportion 4 : 2 : 5 : 1.

2.54 A funnel, in the form of a right circular cone, is to be constructed from a sheet metal.
Find the dimensions of the funnel for minimum lateral surface area when the volume of
the funnel is specified as 200 in.3

2.55 Find the effect on f* when the value of A0 is changed to (a) 25𝜋 and (b) 22𝜋 in
Example 2.10 using the property of the Lagrange multiplier.

2.56
.
(a) Find the dimensions of a rectangular box of volume V = 1000 in.3 for which the

total length of the 12 edges is a minimum using the Lagrange multiplier method.

(b) Find the change in the dimensions of the box when the volume is changed to
1200 in.3 by using the value of 𝜆* found in part (a).

(c) Compare the solution found in part (b) with the exact solution.

2.57 Find the effect on f* of changing the constraint to (a) x+ x2 + 2x3 = 4 and (b)
x+ x2 + 2x3 = 2 in Problem 2.48. Use the physical meaning of Lagrange multiplier in
finding the solution.

2.58 A real estate company wants to construct a multistory apartment building on a
500× 500-ft lot. It has been decided to have a total floor space of 8× 105 ft2. The
height of each story is required to be 12 ft, the maximum height of the building is to be
restricted to 75 ft, and the parking area is required to be at least 10% of the total floor
area according to the city zoning rules. If the cost of the building is estimated at $(500,
000h+ 2000F+ 500P), where h is the height in feet, F is the floor area in square feet,
and P is the parking area in square feet. Find the minimum cost design of the building.

2.59 The Brinell hardness test is used to measure the indentation hardness of materials. It
involves penetration of an indenter, in the form of a ball of diameter D (mm), under a
load P (kgf), as shown in Figure 2.13a. The Brinell hardness number (BHN) is defined
as

BHN = P
A

≡ 2P

𝜋D(D −
√
D2 − d2)

(2.79)

d

d

h

h

D

P

(a)

(b)

Indentation or crater
of diameter d and depth h

Spherical (ball)
indenter of
diameter D

Figure 2.13 Brinell hardness test.

�

� �

�

Problems 105

where A (in mm2) is the spherical surface area and d (in mm) is the diameter of the
crater or indentation formed. The diameter d and the depth h of indentation are related
by (Figure 2.13b)

d = 2
√

h(D − h) (2.80)

It is desired to find the size of indentation, in terms of the values of d and h, when a
tungsten carbide ball indenter of diameter 10 mm is used under a load of P = 3000 kgf
on a stainless steel test specimen of BHN 1250. Find the values of d and h by formulating
and solving the problem as an unconstrained minimization problem.
Hint: Consider the objective function as the sum of squares of the equations implied by
Eqs. (2.79) and (2.80).

2.60 A manufacturer produces small refrigerators at a cost of $60 per unit and sells them to
a retailer in a lot consisting of a minimum of 100 units. The selling price is set at $80
per unit if the retailer buys 100 units at a time. If the retailer buys more than 100 units
at a time, the manufacturer agrees to reduce the price of all refrigerators by 10 cents for
each unit bought over 100 units. Determine the number of units to be sold to the retailer
to maximize the profit of the manufacturer.

2.61 Consider the following problem:

Minimize f = (x1 − 2)2 + (x2 − 1)2

subject to
2 ≥ x1 + x2

x2 ≥ x2
1

Using Kuhn–Tucker conditions, find which of the following vectors are local minima:

X1 =
{

1.5
0.5

}
, X2 =

{
1
1

}
, X3 =

{
2
0

}

2.62 Using Kuhn–Tucker conditions, find the value(s) of 𝛽 for which the point x∗1 = 1, x∗2 = 2
will be optimal to the problem:

Maximize f (x1, x2) = 2x1 + 𝛽x2

subject to
g1(x1, x2) = x2

1 + x2
2 − 5 ≤ 0

g2(x1, x2) = x1 + x2 − 2 ≤ 0

Verify your result using a graphical procedure.

2.63 Consider the following optimization problem:

Maximize f = −x1 − x2

subject to
x2

1 + x2 ≥ 2

4 ≤ x1 + 3x2

x1 + x4
2 ≤ 30

(a) Find whether the design vector X = {1, 1}T satisfies the Kuhn–Tucker conditions
for a constrained optimum.

(b) What are the values of the Lagrange multipliers at the given design vector?

�

� �

�

106 Classical Optimization Techniques

2.64 Consider the following problem:

Maximize f (X) = x2
1 + x2

2 + x2
3

subject to
x1 + x2 + x3 ≥ 5

2 − x2x3 ≤ 0

x1 ≥ 0, x2 ≥ 0, x3 ≥ 2

Determine whether the Kuhn–Tucker conditions are satisfied at the following points:

X1 =

⎧⎪⎪⎨⎪⎪⎩

3
2
3
2
2

⎫⎪⎪⎬⎪⎪⎭
, X2 =

⎧⎪⎪⎨⎪⎪⎩

4
3
2
3
3

⎫⎪⎪⎬⎪⎪⎭
, X3 =

⎧⎪⎨⎪⎩
2
1
2

⎫⎪⎬⎪⎭
2.65 Find a usable and feasible direction S at (a) X1 = {−1, 5}T and (b) X2 = {2, 3}T for the

following problem:

Minimize f (X) = (x1 − 1)2 + (x2 − 5)2

subject to
g1(X) = −x2

1 + x2 − 4 ≤ 0

g2(X) = −(x1 − 2)2 + x2 − 3 ≤ 0

2.66 Consider the following problem:

Maximize f = x2
1 − x2

subject to
26 ≥ x2

1 + x2
2

x1 + x2 ≥ 6

x1 ≥ 0

Determine whether the following search direction is usable, feasible, or both at the

design vector X =
{

5
1

}
:

S =
{

0
1

}
, S =

{
−1
1

}
, S =

{
1
0

}
, S =

{
−1

2

}

2.67 Consider the following problem:

Minimize f = x3
1 − 6x2

1 + 11x1 + x3

subject to
x2

1 + x2
2 − x2

3 ≤ 0

4 − x2
1 − x2

2 − x2
3 ≤ 0

xi ≥ 0, i = 1, 2, 3, x3 ≤ 5

�

� �

�

Problems 107

Determine whether the following vector represents an optimum solution:

X =
⎧⎪⎨⎪⎩

0√
2√
2

⎫⎪⎬⎪⎭
2.68 . Minimize f = x2

1 + 2x2
2 + 3x2

3

subject to the constraints

g1 = x1 − x2 − 2x3 ≤ 12

g2 = x1 + 2x2 − 3x3 ≤ 8

using Kuhn–Tucker conditions.

2.69 . Minimize f (x1, x2) = (x1 − 1)2 + (x2 − 5)2

subject to
−x2

1 + x2 ≤ 4

−(x1 − 2)2 + x2 ≤ 3

by (a) the graphical method and (b) Kuhn–Tucker conditions.

2.70 . Maximize f = 8x1 + 4x2 + x1x2 − x2
1 − x2

2

subject to
2x1 + 3x2 ≤ 24

−5x1 + 12x2 ≤ 24

x2 ≤ 5

by applying Kuhn–Tucker conditions.

2.71 Consider the following problem:

Maximize f (x) = (x − 1)2

subject to
−2 ≤ x ≤ 4

Determine whether the constraint qualification and Kuhn–Tucker conditions are satisfied
at the optimum point.

2.72 Consider the following problem:

Minimize f = (x1 − 1)2 + (x2 − 1)2

subject to
2x2 − (1 − x1)3 ≤ 0

x1 ≥ 0

x2 ≥ 0

Determine whether the constraint qualification and the Kuhn–Tucker conditions are sat-
isfied at the optimum point.

�

� �

�

108 Classical Optimization Techniques

2.73 Verify whether the following problem is convex:

Minimize f (X) = −4x1 + x2
1 − 2x1x2 + 2x2

2

subject to
2x1 + x2 ≤ 6

x1 − 4x2 ≤ 0

x1 ≥ 0, x2 ≥ 0

2.74 Check the convexity of the following problems.

(a) . Minimize f (X) = 2x1 + 3x2 − x3
1 − 2x2

2

subject to
x1 + 3x2 ≤ 6

5x1 + 2x2 ≤ 10

x1 ≥ 0, x2 ≥ 0

(b) . Minimize f (X) = 9x2
1 − 18x1x2 + 13x1 − 4

subject to
x2

1 + x2
2 + 2x1 ≥ 16

2.75 Identify the optimum point among the given design vectors, X1, X2, and X3, by applying
the Kuhn–Tucker conditions to the following problem:

Minimize f (X) = 100(x2 − x2
1)

2 + (1 − x1)2

subject to
x2

2 − x1 ≥ 0

x2
1 − x2 ≥ 0

−1
2
≤ x1 ≤ 1

2
, x2 ≤ 1

X1 =
{

0
0

}
, X2 =

{
0
−1

}
, X3 =

⎧⎪⎨⎪⎩
−1

2
1
4

⎫⎪⎬⎪⎭
2.76 Consider the following optimization problem:

Minimize f = −x2
1 − x2

2 + x1x2 + 7x1 + 4x2

subject to
2x1 + 3x2 ≤ 24

−5x1 + 12x2 ≤ 24

x1 ≥ 0, x2 ≥ 0, x2 ≤ 4

Find a usable feasible direction at each of the following design vectors:

X1 =
{

1
1

}
, X2 =

{
6
4

}

�

� �

�

3

Linear Programming I: Simplex
Method

3.1 INTRODUCTION

Linear programming (LP) is an optimization method applicable for the solution of
problems in which the objective function and the constraints appear as linear functions
of the decision variables [3.1–3.8]. The constraint equations in a linear programming
problem may be in the form of equalities or inequalities. The linear programming type
of optimization problem was first recognized in the 1930s by economists while devel-
oping methods for the optimal allocation of resources. During World War II the U.S.
Air Force sought more effective procedures of allocating resources and turned to linear
programming. George B. Dantzig, who was a member of the Air Force group, formu-
lated the general linear programming problem and devised the simplex method of solu-
tion in 1947 [3.1]. This has become a significant step in bringing linear programming
into wider use. Afterward, much progress was made in the theoretical development and
in the practical applications of linear programming. Among all the works, the theoret-
ical contributions made by Kuhn and Tucker had a major impact in the development
of the duality theory in LP. The works of Charnes and Cooper were responsible for
industrial applications of LP.

Linear programming is considered a revolutionary development that permits us to
make optimal decisions in complex situations. At least four Nobel Prizes were awarded
for contributions related to linear programming. For example, when the Nobel Prize
in Economics was awarded in 1975 jointly to L.V. Kantorovich of the former Soviet
Union and T.C. Koopmans of the United States, the citation for the prize mentioned
their contributions on the application of LP to the economic problem of allocating
resources [3.9–3.11]. George Dantzig, the inventor of LP, was awarded the National
Medal of Science by President Gerald Ford in 1976.

Although several other methods have been developed over the years for solving LP
problems, the simplex method continues to be the most efficient and popular method
for solving general LP problems. Among other methods, Karmarkar’s method, devel-
oped in 1984, has been shown to be up to 50 times as fast as the simplex algorithm of
Dantzig [3.12]. In this chapter we present the theory, development, and applications
of the simplex method for solving LP problems. Additional topics, such as the revised
simplex method, duality theory, decomposition method, postoptimality analysis, and
Karmarkar’s method, are considered in Chapter 4.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

109

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

110 Linear Programming I: Simplex Method

3.2 APPLICATIONS OF LINEAR PROGRAMMING

The number of applications of linear programming has been so large that it is not possi-
ble to describe all of them here [3.13–3.17]. Only the early applications are mentioned
here and the exercises at the end of this chapter give additional example applications
of linear programming. One of the early industrial applications of linear programming
was made in the petroleum refineries. In general, an oil refinery has a choice of buying
crude oil from several different sources with differing compositions and at differing
prices. It can manufacture different products, such as aviation fuel, diesel fuel, and
gasoline, in varying quantities. The constraints may be due to the restrictions on the
quantity of the crude oil available from a particular source, the capacity of the refinery
to produce a particular product, and so on. A mix of the purchased crude oil and the
manufactured products is sought that gives the maximum profit.

The optimal production plan in a manufacturing firm can also be decided using
linear programming. Since the sales of a firm fluctuate, the company can have various
options. It can build up an inventory of the manufactured products to carry it through
the period of peak sales, but this involves an inventory holding cost. It can also pay
overtime rates to achieve higher production during periods of higher demand. Finally,
the firm need not meet the extra sales demand during the peak sales period, thus losing
a potential profit. Linear programming can take into account the various cost and loss
factors and arrive at the most profitable production plan.

In the food-processing industry, linear programming has been used to determine
the optimal shipping plan for the distribution of a particular product from different
manufacturing plants to various warehouses. In the iron and steel industry, linear
programming is used to decide the types of products to be made in their rolling mills
to maximize the profit. Metalworking industries use linear programming for shop
loading and for determining the choice between producing and buying a part. Paper
mills use it to decrease the amount of trim losses. The optimal routing of messages
in a communication network and the routing of aircraft and ships can also be decided
using linear programming.

Linear programming has also been applied to formulate and solve several types of
engineering design problems, such as the plastic design of frame structures, as illus-
trated in the following example.

Example 3.1 In the limit design of steel frames, it is assumed that plastic hinges
will be developed at points with peak moments. When a sufficient number of hinges
develop, the structure becomes an unstable system referred to as a collapse mechanism.
Thus a design will be safe if the energy-absorbing capacity of the frame (U) is greater
than the energy imparted by the externally applied loads (E) in each of the deformed
shapes as indicated by the various collapse mechanisms [3.13].

For the rigid frame shown in Figure 3.1, plastic moments may develop at the
points of peak moments (numbered 1 through 7 in Figure 3.1). Four possible collapse
mechanisms are shown in Figure 3.2 for this frame. Assuming that the weight is a
linear function of the plastic moment capacities, find the values of the ultimate moment
capacities Mb and Mc for minimum weight. Assume that the two columns are identical
and that P1 = 3, P2 = 1, h = 8, and l = 10.

SOLUTION The objective function can be expressed as

f (Mb,Mc) = weight of beam + weight of columns

= 𝛼(2l Mb + 2h Mc)

where 𝛼 is a constant indicating the weight per unit length of the member with a unit
plastic moment capacity. Since a constant multiplication factor does not affect the

�

� �

�

3.2 Applications of Linear Programming 111

h

l l

2

1

6
3 4 5

7

P1

P2

Figure 3.1 Rigid frame.

h

Mc

Mc

Mc

Mc
Mc

Mc

Mc

Mb Mb

Mb

Mb

Mb

Mb

Mb

Mc

E = P1 δ = 24θ
U = 4Mcθ

E = P2 δ = 10θ
U = 4Mbθ

E = P1 δ1 + P2 δ2 = 34θ
U = 4Mbθ + 2Mcθ

E = P1 δ1 = 24θ
U = 2Mbθ + 2Mcθ

δ = hθ

δ1 = hθ

δ2 = lθ

δ = lθ
θ

θ

θ θ

θ θ
θ

θ

θθ
P1

P1 P1

P1

P2 P2

P2

P2

δ1

Figure 3.2 Collapse mechanisms of the frame. Mb, moment carrying capacity of beam; Mc,
moment carrying capacity of column [3.13].

result, f can be taken as
f = 2l Mb + 2h Mc = 20Mb + 16Mc (E1)

The constraints (U≥E) from the four collapse mechanisms can be expressed as

Mc ≥ 6

Mb ≥ 2.5

2Mb + Mc ≥ 17

Mb + Mc ≥ 12 (E2)

�

� �

�

112 Linear Programming I: Simplex Method

3.3 STANDARD FORM OF A LINEAR PROGRAMMING
PROBLEM

The general linear programming problem can be stated in the following standard
forms:

3.3.1 Scalar Form

Minimize f (x1, x2, . . . , xn) = c1x1 + c2x2 +⋯ + cnxn (3.1a)

subject to the constraints

a11x1 + a12x2 +⋯ + a1nxn = b1

a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x2 +⋯ + amnxn = bm (3.2a)

x1 ≥ 0

x2 ≥ 0

⋮

xn ≥ 0 (3.3a)

where cj, bj, and aij(i = 1, 2, . . . , m; j = 1, 2, . . . , n) are known constants, and xj are
the decision variables.

3.3.2 Matrix Form

Minimize f (X) = cTX (3.1b)

subject to the constraints
aX = b (3.2b)

X ≥ 𝟎 (3.3b)

where

X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭ , b =
⎧⎪⎨⎪⎩

b1
b2
⋮

bm

⎫⎪⎬⎪⎭ , c =
⎧⎪⎨⎪⎩

c1
c2
⋮
cn

⎫⎪⎬⎪⎭ ,

a =
⎡⎢⎢⎢⎣

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮

am1 am2 ⋯ amn

⎤⎥⎥⎥⎦
The characteristics of a linear programming problem, stated in standard

form, are

1. The objective function is of the minimization type.
2. All the constraints are of the equality type.
3. All the decision variables are nonnegative.

�

� �

�

3.3 Standard form of a Linear Programming Problem 113

It is now shown that any linear programming problem can be expressed in standard
form by using the following transformations.

1. The maximization of a function f (x1, x2, . . . , xn) is equivalent to the minimiza-
tion of the negative of the same function. For example, the objective function

minimize f = c1x1 + c2x2 +⋯ + cnxn

is equivalent to

maximize f ′ = −f = −c1x1 − c2x2 −⋯ − cnxn

Consequently, the objective function can be stated in the minimization form in
any linear programming problem.

2. In most engineering optimization problems, the decision variables represent
some physical dimensions, and hence the variables xj will be nonnegative.
However, a variable may be unrestricted in sign in some problems. In such
cases, an unrestricted variable (which can take a positive, negative, or zero
value) can be written as the difference of two nonnegative variables. Thus, if
xj is unrestricted in sign, it can be written as xj = x′j − x′′j , where

x′j ≥ 0 and x′′j ≥ 0

It can be seen that xj will be negative, zero, or positive, depending on whether
x′′j is greater than, equal to, or less than x′j .

3. If a constraint appears in the form of a “less than or equal to” type of inequality
as

ak1x1 + ak2x2 +⋯ + aknxn ≤ bk

it can be converted into the equality form by adding a nonnegative slack vari-
able xn+1 as follows:

ak1x1 + ak2x2 +⋯ + aknxn + xn+1 = bk

Similarly, if the constraint is in the form of a “greater than or equal to” type of
inequality as

ak1x1 + ak2x2 +⋯ + aknxn ≥ bk

it can be converted into the equality form by subtracting a variable as

ak1x1 + ak2x2 +⋯ + aknxn − xn+1 = bk

where xn+1 is a nonnegative variable known as a surplus variable.

It can be seen that there are m equations in n decision variables in a linear program-
ming problem. We can assume that m< n; for if m> n, there would be m− n redundant
equations that could be eliminated. The case n = m is of no interest, for then there is
either a unique solution X that satisfies Eqs. (3.2b) and (3.3b) (in which case there
can be no optimization) or no solution, in which case the constraints are inconsistent.
The case m< n corresponds to an underdetermined set of linear equations, which, if
they have one solution, have an infinite number of solutions. The problem of linear
programming is to find one of these solutions that satisfies Eqs. (3.2b) and (3.3b) and
yields the minimum of f.

�

� �

�

114 Linear Programming I: Simplex Method

3.4 GEOMETRY OF LINEAR PROGRAMMING PROBLEMS

A linear programming problem with only two variables presents a simple case for
which the solution can be obtained by using a rather elementary graphical method.
Apart from the solution, the graphical method gives a physical picture of certain geo-
metrical characteristics of linear programming problems. The following example is
considered to illustrate the graphical method of solution.

Example 3.2 A manufacturing firm produces two machine parts using lathes, milling
machines, and grinding machines. The different machining times required for each
part, the machining times available on different machines, and the profit on each
machine part are given in the following table.

Machining time required (min)

Type of machine Machine part I Machine part II
Maximum time available

per week (min)

Lathes 10 5 2500
Milling machines 4 10 2000
Grinding machines 1 1.5 450
Profit per unit $50 $100

Determine the number of parts I and II to be manufactured per week to maximize
the profit.

SOLUTION Let the number of machine parts I and II manufactured per week be
denoted by x and y, respectively. The constraints due to the maximum time limitations
on the various machines are given by

10x + 5y ≤ 2500 (E1)

4x + 10y ≤ 2000 (E2)

x + 1.5y ≤ 450 (E3)

Since the variables x and y cannot take negative values, we have

x ≥ 0

y ≥ 0 (E4)

The total profit is given by

f (x, y) = 50x + 100y (E5)

Thus the problem is to determine the nonnegative values of x and y that satisfy
the constraints stated in Eqs. (E1)–(E3) and maximize the objective function given by
Eq. (E5). The inequalities (E1)–(E4) can be plotted in the xy plane and the feasible
region identified as shown in Figure 3.3 Our objective is to find at least one point
out of the infinite points in the shaded region of Figure 3.3 that maximizes the profit
function (E5).

The contours of the objective function, f, are defined by the linear equation

50x + 100y = k = constant

�

� �

�

3.4 Geometry of Linear Programming Problems 115

G(187.5, 125.0)

(0,0) B

C

E

A

y

F D
x

Figure 3.3 Feasible region given by Eqs. (E1) to (E4).

(187.5, 125.0)

0
B

C
G

P‴

P′

P

P″

Q‴

Q′ $20,000

Q $10,000

Q″ $21,875

y

x

Figure 3.4 Contours of objective function.

As k is varied, the objective function line is moved parallel to itself. The maximum
value of f is the largest k whose objective function line has at least one point in common
with the feasible region. Such a point can be identified as point G in Figure 3.4. The
optimum solution corresponds to a value of x* = 187.5, y* = 125.0 and a profit of
$21 875.00.

In some cases, the optimum solution may not be unique. For example, if the profit
rates for the machine parts I and II are $40 and $100 instead of $50 and $100, respec-
tively, the contours of the profit function will be parallel to side CG of the feasible
region as shown in Figure 3.5. In this case, line P′′Q′′, which coincides with the
boundary line CG, will correspond to the maximum (feasible) profit. Thus, there is
no unique optimal solution to the problem and any point between C and G on line
P′′Q′′ can be taken as an optimum solution with a profit value of $20 000. There are
three other possibilities. In some problems, the feasible region may not be a closed
convex polygon. In such a case, it may happen that the profit level can be increased to

�

� �

�

116 Linear Programming I: Simplex Method

0 B

C
G

P‴

P′

P

P″

Q‴

Q′

Q

Q″

y

x

f = 20,000

f = 30,000

f = 10,000

f = 0

Figure 3.5 Infinite solutions.

P′

P

P″

Q′

Q

Q″

y

x

Figure 3.6 Unbounded solution.

an infinitely large value without leaving the feasible region, as shown in Figure 3.6. In
this case the solution of the linear programming problem is said to be unbounded. On
the other extreme, the constraint set may be empty in some problems. This could be
due to the inconsistency of the constraints; or, sometimes, even though the constraints
may be consistent, no point satisfying the constraints may also satisfy the nonnegativ-
ity restrictions. The last possible case is when the feasible region consists of a single
point. This can occur only if the number of constraints is at least equal to the num-
ber of variables. A problem of this kind is of no interest to us since there is only one
feasible point and there is nothing to be optimized.

Thus, a linear programming problem may have (i) a unique and finite optimum
solution, (ii) an infinite number of optimal solutions, (iii) an unbounded solution, (iv)
no solution, or (v) a unique feasible point. Assuming that the linear programming

�

� �

�

3.5 Definitions and Theorems 117

problem is properly formulated, the following general geometrical characteristics can
be noted from the graphical solution:

1. The feasible region is a convex polygon.1

2. The optimum value occurs at an extreme point or vertex of the feasible region.

3.5 DEFINITIONS AND THEOREMS

The geometrical characteristics of a linear programming problem stated in Section 3.4
can be proved mathematically. Some of the more powerful methods of solving lin-
ear programming problems take advantage of these characteristics. The terminology
used in linear programming and some of the important theorems are presented in this
section [3.1].

3.5.1 Definitions

1. Point in n-dimensional space. A point X in an n-dimensional space is char-
acterized by an ordered set of n values or coordinates (x1, x2, . . . , xn). The
coordinates of X are also called the components of X.

2. Line segment in n dimensions (L). If the coordinates of two points A and
B are given by x(1)j and x(2)j (j = 1, 2, . . . , n), the line segment (L) joining
these points is the collection of points X(𝜆) whose coordinates are given by
xj = λx(1)j + (1 − λ)x(2)j , j = 1, 2, . . . , n, with 0≤ 𝜆≤ 1.
Thus

L =
{

X ∣ X = λX(1) + (1 − λ)X(2)} (3.4)

In one dimension, for example, it is easy to see that the definition is in accor-
dance with our experience (Figure 3.7):

x(2) − x(λ) = λ[x(2) − x(1)], 0 ≤ λ ≤ 1 (3.5)

whence
x(λ) = λx(1) + (1 − λ)x(2), 0 ≤ λ ≤ 1 (3.6)

3. Hyperplane. In n-dimensional space, the set of points whose coordinates sat-
isfy a linear equation

a1x1 +⋯ + anxn = aTX = b (3.7)

is called a hyperplane. A hyperplane, H, is represented as

H(a, b) = {X ∣ aTX = b} (3.8)

A hyperplane has n− 1 dimensions in an n-dimensional space. For example,
in three-dimensional space it is a plane, and in two-dimensional space it is

A

0

B

x
x(1) x(λ) x(2)

Figure 3.7 Line segment.

1A convex polygon consists of a set of points having the property that the line segment joining any two
points in the set is entirely in the convex set. In problems having more than two decision variables, the
feasible region is called a convex polyhedron, which is defined in the next section.

�

� �

�

118 Linear Programming I: Simplex Method

a line. The set of points whose coordinates satisfy a linear inequality like
a1x1 +⋯+ anxn ≤ b is called a closed half-space, closed due to the inclu-
sion of an equality sign in the inequality above. A hyperplane partitions the
n-dimensional space (En) into two closed half-spaces, so that

H+ = {X ∣ aTX ≥ b} (3.9)

H− = {X ∣ aTX ≤ b} (3.10)

This is illustrated in Figure 3.8 in the case of a two-dimensional space (E2).

H–

H+
x1

x2

Hyperplane

Figure 3.8 Hyperplane in two dimensions.

4. Convex set. A convex set is a collection of points such that if X(1) and X(2) are
any two points in the collection, the line segment joining them is also in the
collection. A convex set, S, can be defined mathematically as follows:

If X(1)
,X(2) ∈ S, then X ∈ S

where
X = λX(1) + (1 − λ)X(2)

, 0 ≤ λ ≤ 1

A set containing only one point is always considered to be convex. Some
examples of convex sets in two dimensions are shown shaded in Figure 3.9.
On the other hand, the sets depicted by the shaded region in Figure 3.10 are
not convex. The L-shaped region, for example, is not a convex set, because it
is possible to find two points a and b in the set such that not all points on the
line joining them belong to the set.

Figure 3.9 Convex sets.

b

a

Figure 3.10 Nonconvex sets.

�

� �

�

3.5 Definitions and Theorems 119

5. Convex polyhedron and convex polytope. A convex polyhedron is a set of
points common to one or more half-spaces. A convex polyhedron that is
bounded is called a convex polytope.
Figure 3.11a and b represents convex polytopes in two and three dimensions,
and Figure 3.11c and d denotes convex polyhedra in two and three dimen-
sions. It can be seen that a convex polygon, shown in Figure 3.11a and c, can
be considered as the intersection of one or more half-planes.

(a) (b)

x1

x1

x3

x2

x2

(c) (d)

x1

x1

x3

x2 x2

Figure 3.11 Convex polytopes in two and three dimensions (a, b) and convex polyhedra in
two and three dimensions (c, d).

6. Vertex or extreme point. This is a point in the convex set that does not lie on a
line segment joining two other points of the set. For example, every point on
the circumference of a circle and each corner point of a polygon can be called
a vertex or extreme point.

7. Feasible solution. In a linear programming problem, any solution that satisfies
the constraints (see Eqs. (3.2b) and (3.3b)) is called a feasible solution.

8. Basic solution. A basic solution is one in which n − m variables are set equal
to zero. A basic solution can be obtained by setting n − m variables to zero
and solving the constraint Eq. (3.2b) simultaneously.

9. Basis. The collection of variables not set equal to zero to obtain the basic
solution is called the basis.

10. Basic feasible solution. This is a basic solution that satisfies the nonnegativity
conditions of Eq. (3.3b).

11. Nondegenerate basic feasible solution. This is a basic feasible solution that
has got exactly m positive xi.

�

� �

�

120 Linear Programming I: Simplex Method

12. Optimal solution. A feasible solution that optimizes the objective function is
called an optimal solution.

13. Optimal basic solution. This is a basic feasible solution for which the objec-
tive function is optimal.

3.5.2 Theorems

The basic theorems of linear programming can now be stated and proved.2

Theorem 3.1 The intersection of any number of convex sets is also convex.

Proof: Let the given convex sets be represented as Ri(i = 1, 2, . . . , K) and their inter-
section as R, so that3

R =
K
∩

i=1
Ri

If the points X(1), X(2) ∈ R, then from the definition of intersection,

X = λX(𝟏) + (1 − λ)X(2) ∈ Ri (i = 1, 2, . . . ,K)

0 ≤ λ ≤ 1

Thus

X ∈ R =
K
∩

i=1
Ri

and the theorem is proved. Physically, the theorem states that if there are a number of
convex sets represented by R1, R2, . . . , the set of points R common to all these sets
will also be convex. Figure 3.12 illustrates the meaning of this theorem for the case of
two convex sets.

Theorem 3.2 The feasible region of a linear programming problem is convex.

Proof: The feasible region S of a standard linear programming problem is defined as

S = {X ∣ aX = b,X ≥ 𝟎} (3.11)

Let the points X1 and X2 belong to the feasible set S so that

aX1 = b, X1 ≥ 0 (3.12)

R1
R2R

a

b

Figure 3.12 Intersection of two convex sets.

2The proofs of the theorems are not needed for an understanding of the material presented in subsequent
sections.
3The symbol ∩ represents the intersection of sets.

�

� �

�

3.5 Definitions and Theorems 121

aX2 = b, X2 ≥ 0 (3.13)

Multiply Eq. (3.12) by 𝜆 and Eq. (3.13) by (1− 𝜆) and add them to obtain

a[λX1 + (1 − λ)X2] = λb + (1 − λ)b = b

that is,
aXλ = b

where
Xλ = λX1 + (1 − λ)X2

Thus, the point X
𝜆

satisfies the constraints and if

0 ≤ λ ≤ 1, Xλ ≥ 0

Hence, the theorem is proved.

Theorem 3.3 Any local minimum solution is global for a linear programming
problem.

Proof: In the case of a function of one variable, the minimum (maximum) of a func-
tion f (x) is obtained at a value x at which the derivative is zero. This may be a point
like A(x = x1) in Figure 3.13, where f (x) is only a relative (local) minimum, or a point
like B(x = x2), where f (x) is a global minimum. Any solution that is a local minimum
solution is also a global minimum solution for the linear programming problem. To
see this, let A be the local minimum solution and assume that it is not a global mini-
mum solution so that there is another point B at which fB < fA. Let the coordinates of
A and B be given by {x1, x2, . . . , xn}T and {y1, y2, . . . , yn}T, respectively. Then any
point C = {z1, z2, . . . , zn}T that lies on the line segment joining the two points A and
B is a feasible solution and fC = 𝜆fA + (1− 𝜆)fB. In this case, the value of f decreases
uniformly from fA to fB, and thus all points on the line segment between A and B
(including those in the neighborhood of A) have f values less than fA and correspond
to feasible solutions. Hence, it is not possible to have a local minimum at A and at the
same time another point B such that fA > fB. This means that for all B, fA ≤ fB, so that
fA is the global minimum value.

x2

B

x
Global minimum

x1

A

Local
minimum

f(x)

Figure 3.13 Local and global minima.

�

� �

�

122 Linear Programming I: Simplex Method

The generalized version of this theorem is proved in Appendix A so that it can be
applied to nonlinear programming problems also.

Theorem 3.4 Every basic feasible solution is an extreme point of the convex set of
feasible solutions.

Theorem 3.5 Let S be a closed, bounded convex polyhedron with Xe
i , i = 1 to p, as

the set of its extreme points. Then any vector X ∈ S can be written as

X =
p∑

i=1

λiX
e
i

λi ≥ 0
p∑

i=1

λi = 1

Theorem 3.6 Let S be a closed convex polyhedron. Then the minimum of a linear
function over S is attained at an extreme point of S.

The proofs of Theorems 3.4–3.6 can be found in Ref. [3.1].

3.6 SOLUTION OF A SYSTEM OF LINEAR SIMULTANEOUS
EQUATIONS

Before studying the most general method of solving a linear programming problem,
it will be useful to review the methods of solving a system of linear equations. Hence,
in the present section we review some of the elementary concepts of linear equations.
Consider the following system of n equations in n unknowns:

a11x1 + a12x2 +⋯ + a1nxn = b1 (E1)

a21x1 + a22x2 +⋯ + a2nxn = b2 (E2)

a31x1 + a32x2 +⋯ + a3nxn = b3 (E3)

⋮ ⋮

an1x1 + an2x2 +⋯ + annxn = bn (En) (3.14)

Assuming that this set of equations possesses a unique solution, a method of solv-
ing the system consists of reducing the equations to a form known as canonical form.

It is well known from elementary algebra that the solution of Eq. (3.14) will not be
altered under the following elementary operations: (i) any equation Er is replaced by
the equation kEr, where k is a nonzero constant, and (ii) any equation Er is replaced by
the equation Er + kEs, where Es is any other equation of the system. By making use of
these elementary operations, the system of Eq. (3.14) can be reduced to a convenient
equivalent form as follows. Let us select some variable xi and try to eliminate it from
all the equations except the jth one (for which aji is nonzero). This can be accomplished
by dividing the jth equation by aji and subtracting aki times the result from each of the
other equations, k = 1, 2, . . . , j− 1, j+ 1, . . . , n. The resulting system of equations
can be written as

a′11x1 + a′12x2 +⋯ + a′1,i−1xi−1 + 0xi + a′1,i+1xi+1 +⋯ + a′1nxn = b′1

a′21x1 + a′22x2 +⋯ + a′2,i−1xi−1 + 0xi + a′2,i+1xi+1 +⋯ + a′2nxn = b′2

⋮

�

� �

�

3.7 Pivotal Reduction of a General System of Equations 123

a′j−1,1x1 + a′j−1,2x2 +⋯ + a′j−1,i−1 + 0xi + a′j−1,i+1xi+1 +⋯ + a′j−1,nxn = b′j−1

a′j1x1 + a′j2x2 +⋯ + a′j,i−1xi−1 + 1xi + a′j,i+1xi+1 +⋯ + a′jnxn = b′j

a′j+1,1x1 + a′j+1,2x2 +⋯ + a′j+1,i−1xi−1 + 0xi + a′j+1,i+1xi+1 +⋯ + a′j+1,nxn = b′j+1

⋮

a′n1x1 + a′n2x2 +⋯ + a′n,i−1xi−1 + 0xi + a′n,i+1xi+1 +⋯ + a′nnxn = b′n (3.15)

where the primes indicate that the a′ij and b′j are changed from the original system. This
procedure of eliminating a particular variable from all but one equation is called a pivot
operation. The system of Eq. (3.15) produced by the pivot operation have exactly the
same solution as the original set of Eq. (3.14). That is, the vector X that satisfies Eq.
(3.14) satisfies Eq. (3.15), and vice versa.

Next time, if we take the system of Eq. (3.15) and perform a new pivot operation
by eliminating xs, s≠ i, in all the equations except the tth equation, t≠ j, the zeros or
the 1 in the ith column will not be disturbed. The pivotal operations can be repeated
by using a different variable and equation each time until the system of Eq. (3.14) is
reduced to the form

1x1 + 0x2 + 0x3 +⋯ + 0xn = b′′1

0x1 + 1x2 + 0x3 +⋯ + 0xn = b′′2

0x1 + 0x2 + 1x3 +⋯ + 0xn = b′′3

⋮

0x1 + 0x2 + 0x3 +⋯ + 1xn = b′′n (3.16)

This system of Eq. (3.16) is said to be in canonical form and has been obtained
after carrying out n pivot operations. From the canonical form, the solution vector can
be directly obtained as

xi = b′′i , i = 1, 2, . . . , n (3.17)

Since the set of Eq. (3.16) has been obtained from Eq. (3.14) only through ele-
mentary operations, the system of Eq. (3.16) is equivalent to the system of Eq. (3.14).
Thus, the solution given by Eq. (3.17) is the desired solution of Eq. (3.14).

3.7 PIVOTAL REDUCTION OF A GENERAL SYSTEM OF
EQUATIONS

Instead of a square system, let us consider a system of m equations in n variables with
n≥m. This system of equations is assumed to be consistent so that it will have at least
one solution:

a11x1 + a12x2 +⋯ + a1nxn = b1

a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x2 +⋯ + amnxn = bm (3.18)

The solution vector(s) X that satisfy Eq. (3.18) are not evident from the equations.
However, it is possible to reduce this system to an equivalent canonical system from
which at least one solution can readily be deduced. If pivotal operations with respect

�

� �

�

124 Linear Programming I: Simplex Method

to any set of m variables, say, x1, x2, . . . , xm, are carried, the resulting set of equations
can be written as follows:

Canonical system with pivotal variables x1, x2, . . . , xm

1x1 + 0x2 +⋯ + 0xm + a′′1,m+1xm+1 +⋯ + a′′1nxn = b′′1
0x1 + 1x2 +⋯ + 0xm + a′′2,m+1xm+1 +⋯ + a′′2nxn = b′′2

⋮
0x1 + 0x2 +⋯ + 1xm + a′′m,m+1xm+1 +⋯ + a′′mnxn = b′′m

Pivotal Nonpivotal or Constants
variables independent

variables

(3.19)

One special solution that can always be deduced from the system of Eq. (3.19) is

xi =

{
b′′i , i = 1, 2, . . . ,m

0, i = m + 1,m + 2, . . . , n
(3.20)

This solution is called a basic solution since the solution vector contains no more
than m nonzero terms. The pivotal variables xi, i = 1, 2, . . . , m, are called the basic
variables and the other variables xi, i = m+ 1, m+ 2, . . . , n, are called the nonbasic
variables. Of course, this is not the only solution, but it is the one most readily deduced
from Eq. (3.19). If all b′′i , i = 1, 2, . . . , m, in the solution given by Eq. (3.20) are
nonnegative, it satisfies Eq. (3.3b) in addition to Eq. (3.2b), and hence it can be called
a basic feasible solution.

It is possible to obtain the other basic solutions from the canonical system of
Eq. (3.19). We can perform an additional pivotal operation on the system after it is
in canonical form, by choosing a′′pq (which is nonzero) as the pivot term, q>m, and
using any row p (among 1, 2, . . . , m). The new system will still be in canonical form
but with xq as the pivotal variable in place of xp. The variable xp, which was a basic
variable in the original canonical form, will no longer be a basic variable in the new
canonical form. This new canonical system yields a new basic solution (which may
or may not be feasible) similar to that of Eq. (3.20). It is to be noted that the values of
all the basic variables change, in general, as we go from one basic solution to another,
but only one zero variable (which is nonbasic in the original canonical form) becomes
nonzero (which is basic in the new canonical system), and vice versa.

Example 3.3 Find all the basic solutions corresponding to the system of equations

2x1 + 3x2 − 2x3 − 7x4 = 1 (I0)

x1 + x2 + x3 + 3x4 = 6 (II0)

x1 − x2 + x3 + 5x4 = 4 (III0)

SOLUTION First we reduce the system of equations into a canonical form with x1,
x2, and x3 as basic variables. For this, first we pivot on the element a11 = 2 to obtain

x1 +
3
2

x2 − x3 −
7
2

x4 = 1
2

I1 = 1
2

I0

0 − 1
2

x2 + 2x3 +
13
2

x4 = 11
2

II1 = II0 − I1

0 − 5
2

x2 + 2x3 +
17
2

x4 = 7
2

III1 = III0 − I1

�

� �

�

3.7 Pivotal Reduction of a General System of Equations 125

Then we pivot on a′22 = − 1
2
, to obtain

x1 + 0 + 5x3 + 16x4 = 17 I2 = I1 −
3
2

II2

0 + x2 − 4x3 − 13x4 = −11 II2 = −2II1

0 + 0 − 8x3 − 24x4 = −24 III2 = III1 +
5
2

II2

Finally, we pivot on a′33 to obtain the required canonical form as

x1 + x4 = 2 I3 = I2 − 5III3

x2 − x4 = 1 II3 = II2 + 4III3

x3 + 3x4 = 3 III3 = −1
8

III2

From this canonical form, we can readily write the solution of x1, x2, and x3 in
terms of the other variable x4 as

x1 = 2 − x4

x2 = 1 + x4

x3 = 3 − 3x4

If Eqs. (I0), (II0), and (III0) are the constraints of a linear programming problem,
the solution obtained by setting the independent variable equal to zero is called a basic
solution. In the present case, the basic solution is given by

x1 = 2, x2 = 1, x3 = 3 (basic variables)

and x4 = 0 (nonbasic or independent variable). Since this basic solution has all xj ≥ 0
(j = 1, 2, 3, 4), it is a basic feasible solution.

If we want to move to a neighboring basic solution, we can proceed from the
canonical form given by Eqs. (I3), (II3), and (III3). Thus, if a canonical form in terms
of the variables x1, x2, and x4 is required, we have to bring x4 into the basis in place
of the original basic variable x3. Hence, we pivot on a′′34 in Eq. (III3). This gives the
desired canonical form as

x1 − 1
3

x3 = 1 I4 = I3 − III4

x2 + 1
3

x3 = 2 II4 = II3 − III4

x4 +
1
3

x3 = 1 III4 = 1
3

III3

This canonical system gives the solution of x1, x2, and x4 in terms of x3 as

x1 = 1 + 1
3

x3

x2 = 2 − 1
3

x3

x4 = 1 − 1
3

x3

�

� �

�

126 Linear Programming I: Simplex Method

and the corresponding basic solution is given by
x1 = 1, x2 = 2, x4 = 1 (basic variables)

x3 = 0 (nonbasic variable)

This basic solution can also be seen to be a basic feasible solution. If we want to
move to the next basic solution with x1, x3, and x4 as basic variables, we have to bring
x3 into the current basis in place of x2. Thus, we have to pivot a′′23 in Eq. (II4). This
leads to the following canonical system:

x1 + x2 = 3 I5 = I4 +
1
3

II5

x3 + 3x2 = 6 II5 = 3II4

x4 − x2 = −1 III6 = III4 −
1
3

II5

The solution for x1, x3, and x4 is given by

x1 = 3 − x2

x3 = 6 − 3x2

x4 = −1 + x2

from which the basic solution can be obtained as

x1 = 3, x3 = 6, x4 = −1 (basic variables)

x2 = 0 (nonbasic variable)

Since all the xj are not nonnegative, this basic solution is not feasible.
Finally, to obtain the canonical form in terms of the basic variables x2, x3, and x4,

we pivot on a′′12 in Eq. (I5), thereby bringing x2 into the current basis in place of x1.
This gives

x2 + x1 = 3 I6 = I5

x3 − 3x1 = −3 II6 = II5 − 3I6

x4 + x1 = 2 III6 = III5 + I6

This canonical form gives the solution for x2, x3, and x4 in terms of x1 as

x2 = 3 − x1

x3 = −3 + 3x1

x4 = 2 − x1

and the corresponding basic solution is

x2 = 3, x3 = −3, x4 = 2 (basic variables)

x1 = 0 (nonbasic variable)

�

� �

�

3.8 Motivation of the Simplex Method 127

This basic solution can also be seen to be infeasible due to the negative value
for x3.

3.8 MOTIVATION OF THE SIMPLEX METHOD

Given a system in canonical form corresponding to a basic solution, we have seen
how to move to a neighboring basic solution by a pivot operation. Thus, one way to
find the optimal solution of the given linear programming problem is to generate all
the basic solutions and pick the one that is feasible and corresponds to the optimal
value of the objective function. This can be done because the optimal solution, if one
exists, always occurs at an extreme point or vertex of the feasible domain. If there are
m equality constraints in n variables with n≥m, a basic solution can be obtained by
setting any of the n−m variables equal to zero. The number of basic solutions to be
inspected is thus equal to the number of ways in which m variables can be selected
from a set of n variables, that is,(

n
m

)
= n!

(n − m)!m!

For example, if n = 10 and m = 5, we have 252 basic solutions, and if n = 20
and m = 10, we have 184 756 basic solutions. Usually, we do not have to inspect
all these basic solutions since many of them will be infeasible. However, for large
values of n and m, this is still a very large number to inspect one by one. Hence, what
we really need is a computational scheme that examines a sequence of basic feasible
solutions, each of which corresponds to a lower value of f until a minimum is reached.
The simplex method of Dantzig is a powerful scheme for obtaining a basic feasible
solution; if the solution is not optimal, the method provides for finding a neighboring
basic feasible solution that has a lower or equal value of f. The process is repeated
until, in a finite number of steps, an optimum is found.

The first step involved in the simplex method is to construct an auxiliary prob-
lem by introducing certain variables known as artificial variables into the standard
form of the linear programming problem. The primary aim of adding the artificial
variables is to bring the resulting auxiliary problem into a canonical form from which
its basic feasible solution can be obtained immediately. Starting from this canonical
form, the optimal solution of the original linear programming problem is sought in
two phases. The first phase is intended to find a basic feasible solution to the orig-
inal linear programming problem. It consists of a sequence of pivot operations that
produces a succession of different canonical forms from which the optimal solution
of the auxiliary problem can be found. This also enables us to find a basic feasible
solution, if one exists, to the original linear programming problem. The second phase
is intended to find the optimal solution to the original linear programming problem.
It consists of a second sequence of pivot operations that enables us to move from
one basic feasible solution to the next of the original linear programming problem.
In this process, the optimal solution to the problem, if one exists, will be identified.
The sequence of different canonical forms that is necessary in both the phases of
the simplex method is generated according to the simplex algorithm described in the
next section. That is, the simplex algorithm forms the main subroutine of the simplex
method.

�

� �

�

128 Linear Programming I: Simplex Method

3.9 SIMPLEX ALGORITHM

The starting point of the simplex algorithm is always a set of equations, which includes
the objective function along with the equality constraints of the problem in canoni-
cal form. Thus the objective of the simplex algorithm is to find the vector X≥ 0 that
minimizes the function f (X) and satisfies the equations:

1x1 + 0x2 +⋯ + 0xm + a′′1,m+1xm+1 +⋯ + a′′1nxn = b′′1

0x1 + 1x2 +⋯ + 0xm + a′′2,m+1xm+1 +⋯ + a′′2nxn = b′′2

⋮

0x1 + 0x2 +⋯ + 1xm + a′′m,m+1xm+1 +⋯ + a′′mnxn = b′′m

0x1 + 0x2 +⋯ + 0xm − f

+ c′′m+1xm+1 +⋯ + c′′mnxn = −f ′′0 (3.21)

where a′′ij , c
′′
j , b

′′
i , and f ′′0 are constants. Notice that (−f) is treated as a basic variable in

the canonical form of Eq. (3.21). The basic solution that can readily be deduced from
Eq. (3.21) is

xi = b′′i , i = 1, 2, . . . ,m

f = f ′′0

xi = 0, i = m + 1,m + 2, . . . , n (3.22)

If the basic solution is also feasible, the values of xi, i = 1, 2, . . . , n, are nonneg-
ative and hence

b′′i ≥ 0, i = 1, 2, . . . ,m (3.23)

In phase I of the simplex method, the basic solution corresponding to the canon-
ical form obtained after the introduction of the artificial variables will be feasible for
the auxiliary problem. As stated earlier, phase II of the simplex method starts with a
basic feasible solution of the original linear programming problem. Hence the initial
canonical form at the start of the simplex algorithm will always be a basic feasible
solution.

We know from Theorem 3.6 that the optimal solution of a linear programming
problem lies at one of the basic feasible solutions. Since the simplex algorithm is
intended to move from one basic feasible solution to the other through pivotal oper-
ations, before moving to the next basic feasible solution, we have to make sure that
the present basic feasible solution is not the optimal solution. By merely glancing at
the numbers c′′j , j = 1, 2, . . . , n, we can tell whether or not the present basic feasible
solution is optimal. Theorem 3.7 provides a means of identifying the optimal point.

3.9.1 Identifying an Optimal Point

Theorem 3.7 A basic feasible solution is an optimal solution with a minimum objec-
tive function value of f ′′0 if all the cost coefficients c′′j , j = m+ 1, m+ 2, . . . , n, in Eq.
(3.21) are nonnegative.

Proof: From the last row of Eq. (3.21), we can write that

f ′′0 +
n∑

i=m+1

c′′i xi = f (3.24)

�

� �

�

3.9 Simplex Algorithm 129

Since the variables xm+1, xm+2, . . . , xn are presently zero and are constrained to be
nonnegative, the only way any one of them can change is to become positive. But if
c′′i > 0 for i = m+ 1, m+ 2, . . . , n, then increasing any xi cannot decrease the value
of the objective function f. Since no change in the nonbasic variables can cause f
to decrease, the present solution must be optimal with the optimal value of f equal
to f ′′0 .

A glance over c′′i can also tell us if there are multiple optima. Let all c′′i > 0,
i = m+ 1, m+ 2, . . . , k− 1, k+ 1, . . . , n, and let c′′k = 0 for some nonbasic variable xk.
Then if the constraints allow that variable to be made positive (from its present value
of zero), no change in f results, and there are multiple optima. It is possible, however,
that the variable may not be allowed by the constraints to become positive; this may
occur in the case of degenerate solutions. Thus as a corollary to the discussion above,
we can state that a basic feasible solution is the unique optimal feasible solution if
c′′j > 0 for all nonbasic variables xj, j = m+ 1, m+ 2, . . . , n. If, after testing for opti-
mality, the current basic feasible solution is found to be nonoptimal, an improved basic
solution is obtained from the present canonical form as follows.

3.9.2 Improving a Nonoptimal Basic Feasible Solution

From the last row of Eq. (3.21), we can write the objective function as

f = f ′′0 +
m∑

i=1

c′′i xi +
n∑

j=m+1

c′′j xj

= f ′′0 for the solution given by Eqs. (3.22) (3.25)

If at least one c′′j is negative, the value of f can be reduced by making the corre-
sponding xj > 0. In other words, the nonbasic variable xj, for which the cost coefficient
cn

j is negative, is to be made a basic variable in order to reduce the value of the objective
function. At the same time, due to the pivotal operation, one of the current basic vari-
ables will become nonbasic and hence the values of the new basic variables are to be
adjusted in order to bring the value of f less than f ′′0 . If there are more than one c′′j < 0,
the index s of the nonbasic variable xs which is to be made basic is chosen such that

c′′s = minimum c′′j < 0 (3.26)

Although this may not lead to the greatest possible decrease in f (since it may not
be possible to increase xs very far), this is intuitively at least a good rule for choosing
the variable to become basic. It is the one generally used in practice, because it is
simple and it usually leads to fewer iterations than just choosing any c′′j < 0. If there
is a tie-in applying Eq. (3.26), (i.e. if more than one c′′j has the same minimum value),
we select one of them arbitrarily as c′′s .

Having decided on the variable xs to become basic, we increase it from zero,
holding all other nonbasic variables zero, and observe the effect on the current basic
variables. From Eq. (3.21), we can obtain

x1 = b′′1 − a′′1sxs, b′′1 ≥ 0

x2 = b′′2 − a′′2sxs, b′′2 ≥ 0

⋮ (3.27)
xm = b′′m − a′′msxs, b′′m ≥ 0

f = f ′′0 + c′′s xs, c′′s < 0 (3.28)

�

� �

�

130 Linear Programming I: Simplex Method

Since c′′s < 0 Eq. (3.28) suggests that the value of xs should be made as large as
possible in order to reduce the value of f as much as possible. However, in the process
of increasing the value of xs, some of the variables xi(i = 1, 2, . . . , m) in Eq. (3.27)
may become negative. It can be seen that if all the coefficients a′′is ≤ 0, i = 1, 2, . . . ,
m, then xs can be made infinitely large without making any xi < 0, i = 1, 2, . . . , m.
In such a case, the minimum value of f is minus infinity and the linear programming
problem is said to have an unbounded solution.

On the other hand, if at least one a′′is is positive, the maximum value that xs can
take without making xi negative is b′′i ∕a′′is. If there are more than one a′′is > 0, the largest
value xs

* that xs can take is given by the minimum of the ratios b′′is∕a′′is for which a′′is > 0.
Thus

x∗s =
b′′r
a′′rs

= minimum
a′′is>0

(
b′′i
a′′is

)
(3.29)

The choice of r in the case of a tie, assuming that all b′′i > 0, is arbitrary. If any b′′i
for which a′′is > 0 is zero in Eq. (3.27), xs cannot be increased by any amount. Such a
solution is called a degenerate solution.

In the case of a nondegenerate basic feasible solution, a new basic feasible solu-
tion can be constructed with a lower value of the objective function as follows. By
substituting the value of x∗s given by Eq. (3.29) into Eqs. (3.27) and (3.28), we obtain

xs = x∗s

xi = b′′i − a′′isx
∗
s ≥ 0, i = 1, 2, . . . ,m and i ≠ r

xr = 0 (3.30)

xj = 0, j = m + 1,m + 2, . . . , n and j ≠ s

f = f ′′0 + c′′s x∗s ≤ f ′′0 (3.31)

which can readily be seen to be a feasible solution different from the previous one.
Since a′′rs > 0 in Eq. (3.29), a single pivot operation on the element a′′rs in the system
of Eq. (3.21) will lead to a new canonical form from which the basic feasible solution
of Eq. (3.30) can easily be deduced. Also, Eq. (3.31) shows that this basic feasible
solution corresponds to a lower objective function value compared to that of Eq. (3.22).
This basic feasible solution can again be tested for optimality by seeing whether all
c′′i > 0 in the new canonical form. If the solution is not optimal, the entire procedure
of moving to another basic feasible solution from the present one has to be repeated.
In the simplex algorithm, this procedure is repeated in an iterative manner until the
algorithm finds either (i) a class of feasible solutions for which f→−∞ or (ii) an
optimal basic feasible solution with all c′′i ≥ 0, i = 1, 2, . . . , n. Since there are only
a finite number of ways to choose a set of m basic variables out of n variables, the
iterative process of the simplex algorithm will terminate in a finite number of cycles.
The iterative process of the simplex algorithm is shown as a flowchart in Figure 3.14.

Example 3.4
Maximize F = x1 + 2x2 + x3

subject to
2x1 + x2 − x3 ≤ 2

−2x1 + x2 − 5x3 ≥ −6

4x1 + x2 + x3 ≤ 6

xi ≥ 0, i = 1, 2, 3

�

� �

�

3.9 Simplex Algorithm 131

Start with a basic feasible solution

Find s such that
c″s = min (ci)

i

Is c″s < 0 ?
No

Yes

Solution is
optimal, stop

Are all a″is ≤ 0 ?
i = 1,2....,m

Yes

No

Solution is
unbounded, stop

Find the ratio (b″i /a″is)
for a″is > 0

Find r such that

=
min

a″is > 0
b″r

a″rs

b″i

a″is

Obtain new canonical form including the
objective function equation by pivoting on a″rs

Figure 3.14 Flowchart for finding the optimal solution by the simplex algorithm.

SOLUTION We first change the sign of the objective function to convert it to a
minimization problem and the signs of the inequalities (where necessary) so as to
obtain nonnegative values of bi (to see whether an initial basic feasible solution can
be obtained readily). The resulting problem can be stated as

Minimize f = −x1 − 2x2 − x3

subject to

2x1 + x2 − x3 ≤ 2

2x1 − x2 + 5x3 ≤ 6

4x1 + x2 + x3 ≤ 6

xi ≥ 0, i = 1 to 3

�

� �

�

132 Linear Programming I: Simplex Method

By introducing the slack variables x4 ≥ 0, x5 ≥ 0, and x6 ≥ 0, the system of
equations can be stated in canonical form as

2x1 + x2 − x3 + x4 = 2

2x1 − x2 − 5x3 + x5 = 6

4x1 + x2 + x3 + x6 = 6

− x1 − 2x2 − x3 −f = 0 (E1)

where x4, x5, x6, and −f can be treated as basic variables. The basic solution corre-
sponding to Eq. (E1) is given by

x4 = 2, x5 = 6, x6 = 6 (basic variables)

x1 = x2 = x3 = 0 (nonbasic variables)

f = 0 (E2)

which can be seen to be feasible.
Since the cost coefficients corresponding to nonbasic variables in Eq. (E1) are

negative (c′′1 = −1, c′′2 = −2, c′′3 = −1), the present solution given by Eq. (E2) is not
optimum. To improve the present basic feasible solution, we first decide the variable
(xs) to be brought into the basis as

c′′s = min(c′′j < 0) = c′′2 = −2

Thus x2 enters the next basic set. To obtain the new canonical form, we select the
pivot element a′′rs such that

b′′r
a′′rs

= min
a′′is>0

(
b′′i
a′′is

)
In the present case, s = 2 and a′′12 and a′′32 are ≥0. Since b′′1 ∕a′′12 = 2∕1 and

b′′3 ∕a′′32 = 6∕1, xr = x1. By pivoting an a′′12, the new system of equations can be
obtained as

2x1 + 1x2 − x3 + x4 = 2

4x1 + 0x2 + 4x3 + x4 + x5 = 8

2x1 + 0x2 + 2x3 − x4 + x6 = 4

3x1 + 0x2 − 3x3 + 2x4 −f = 4 (E3)

The basic feasible solution corresponding to this canonical form is

x2 = 2, x5 = 8, x6 = 4 (basic variables)

x1 = x3 = x4 = 0 (nonbasic variables)

f = −4 (E4)

Since c′′3 = −3, the present solution is not optimum. As c′′s = min(c′′i < 0) = c′′3 ,
xs = x3 enters the next basis.

To find the pivot element a′′rs, we find the ratios b′′i ∕a′′is for a′′is > 0. In Eq. (E3),
only a′′23 and a′′33 are >0, and hence

b′′2
a′′23

= 8
4

and
b′′3
a′′33

= 4
2

�

� �

�

3.9 Simplex Algorithm 133

Since both these ratios are same, we arbitrarily select a′′23 as the pivot element.
Pivoting on a′′23 gives the following canonical system of equations:

3x1 + 1x2 + 0x3 +
5
4

x4 +
1
4

x5 = 4

1x1 + 0x2 + 1x3 +
1
4

x4 +
1
4

x5 = 2

0x1 + 0x2 + 0x3 −
3
2

x4 −
1
2

x5 + x6 = 0

6x1 + 0x2 + 0x3 +
11
4

x4 +
3
4

x5 − f= 10 (E5)

The basic feasible solution corresponding to this canonical system is given by

x2 = 4, x3 = 2, x6 = 0 (basic variables)

x1 = x4 = x5 = 0 (nonbasic variables)

f = −10 (E6)

Since all c′′i are ≥0 in the present canonical form, the solution given in (E6) will
be optimum. Usually, starting with Eq. (E1), all the computations are done in a table
form as shown below:

VariablesBasic
variables x1 x2 x3 x4 x5 x6 −f b′′i b′′

i ∕a′′is for a′′is > 0

x4 2 1
Pivot
element

−1 1 0 0 0 2 2← Smaller one (x4
drops from next
basis)

x5 2 −1 5 0 1 0 0 6
x6 4 1 1 0 0 1 0 6 6

−f −1 −2 −1 0 0 0 1 0
↑

Most negative c′′i (x2 enters next basis)

Result of pivoting:

x2 2 1 −1 1 0 0 0 2

x5 4 0 4
Pivot
element

1 1 0 0 8 2 (Select this arbitrarily.
x5 drops from next
basis)

x6 2 0 2 −1 0 1 0 4 2

−f 3 0 −3 2 0 0 1 4
↑

Most negative c′′i (x3 enters the next basis)

Result of pivoting:

x2 3 1 0 5
4

1
4

0 0 4

x3 1 0 1 1
4

1
4

0 0 2

x6 0 0 0 − 3
2

− 1
2

1 0 0

−f 6 0 0 11
4

3
4

0 1 10

All c′′i are ≥0 and hence the present solution is optimum.

�

� �

�

134 Linear Programming I: Simplex Method

Example 3.5 Unbounded Solution

Minimize f = −3x1 − 2x2

subject to
x1 − x2 ≤ 1

3x1 − 2x2 ≤ 6

x1 ≥ 0, x2 ≥ 0

SOLUTION Introducing the slack variables x3 ≥ 0 and x4 ≥ 0, the given system of
equations can be written in canonical form as

x1 − x2 + x3 = 1

3x1 − 2x2 + x4 = 6

−3x1 − 2x2 − f = 0 (E1)

The basic feasible solution corresponding to this canonical form is given by

x3 = 1, x4 = 6 (basic variables)

x1 = x2 = 0 (nonbasic variables)

f = 0 (E2)

Since the cost coefficients corresponding to the nonbasic variables are negative,
the solution given by Eq. (E2) is not optimum. Hence the simplex procedure is applied
to the canonical system of Eq. (E1) starting from the solution, Eq. (E2). The compu-
tations are done in table form as shown below:

VariablesBasic
variables x1 x2 x3 x4 −f b′′i

b′′
i ∕a′′is

for a′′
is > 0

x3 1
Pivot
element

−1 1 0 0 1 1←Smaller value
(x3 leaves the
basis)

x4 3 −2 0 1 0 6 2

−f −3 −2 0 0 1 0

↑
Most negative c′′i (x1 enters the next basis)

Result of pivoting:

x1 1 −1 1 0 0 1

x4 0 1
Pivot
element

−3 1 0 3 3 (x4 leaves
the basis)

−f 0 −5 3 0 1 3

↑
Most negative c′′i (x2 enters the next basis)

�

� �

�

3.9 Simplex Algorithm 135

Result of pivoting:

x1 1 0 −2 1 0 4 Both a′′is are negative
(i.e. no variable
leaves the basis)

x2 0 1 −3 1 0 3

−f 0 0 −12 5 1 18

↑
Most negative c′′i (x3 enters the next basis)

At this stage we notice that x3 has the most negative cost coefficient and hence it
should be brought into the next basis. However, since all the coefficients a′′i3 are nega-
tive, the value of f can be decreased indefinitely without violating any of the constraints
if we bring x3 into the basis. Hence the problem has no bounded solution. In general,
if all the coefficients of the entering variable xs (a′′is) have negative or zero values at
any iteration, we can conclude that the problem has an unbounded solution.

Example 3.6 Infinite Number of Solutions To demonstrate how a problem having
infinite number of solutions can be solved, Example 3.2 is again considered with a
modified objective function:

Minimize f = −40x1 − 100x2

subject to
10x1 + 5x2 ≤ 2500

4x1 + 10x2 ≤ 2000

2x1 + 3x2 ≤ 900

x1 ≥ 0, x2 ≥ 0

SOLUTION By adding the slack variables x3 ≥ 0, x4 ≥ 0 and x5 ≥ 0, the equations
can be written in canonical form as follows:

10x1 + 5x2 + x3 = 2500

4x1 + 10x2 + x4 = 2000

2x1 + 3x2 + x5 = 900

− 40x1 − 100x2 − f = 0

The computations can be done in table form as shown below:

Variables −f b′′iBasic
variables x1 x2 x3 x4 x5

b′′
i ∕a′′is

for a′′is > 0

x3 10 5 1 0 0 0 2500 500

x4 4 10
Pivot ele-

ment

0 1 0 0 2000 200← Smaller value
(x4 leaves the basis)

x5 2 3 0 0 1 0 900 300

−f −40 −100 0 0 0 1 0

↑
Most negative c′′i (x2 enters the basis)

�

� �

�

136 Linear Programming I: Simplex Method

Result of pivoting:

x3 8 0 1 − 1
2

0 0 1500

x2
4
10

1 0 1
10

0 0 200

x5
8
10

0 0 − 3
10

1 0 300

−f 0 0 0 10 0 1 20 000

Since all c′′i ≥ 0, the present solution is optimum. The optimum values are
given by

x2 = 200, x3 = 1500, x5 = 300 (basic variables)

x1 = x4 = 0 (nonbasic variables)

fmin = −20,000

Important note: It can be observed from the last row of the preceding table that
the cost coefficient corresponding to the nonbasic variable x1(c′′1) is zero. This is an
indication that an alternative solution exists. Here x1 can be brought into the basis and
the resulting new solution will also be an optimal basic feasible solution. For example,
introducing x1 into the basis in place of x3 (i.e. by pivoting on a′′13), we obtain the new
canonical system of equations as shown in the following tableau:

VariablesBasic
variables x1 x2 x3 x4 x5 −f b′′i

b′′
i ∕a′′is

for a′′is > 0

x1 1 0 1
8

− 1
16

0 0 1500
8

x2 0 1 − 1
20

1
8

0 0 125

x5 0 0 − 1
10

− 1
4

1 0 150

−f 0 0 0 10 0 1 20 000

The solution corresponding to this canonical form is given by

x1 = 1500
8

, x2 = 125, x5 = 150 (basic variables)

x3 = x4 = 0 (nonbasic variables)

fmin = −20,000

Thus, the value of f has not changed compared to the preceding value since x1 has
a zero cost coefficient in the last row of the preceding table. Once two basic (optimal)
feasible solutions, namely,

X1 =

⎧⎪⎪⎨⎪⎪⎩

0
200

1500
0

300

⎫⎪⎪⎬⎪⎪⎭
and X2 =

⎧⎪⎪⎨⎪⎪⎩

1500
8

125
0
0

150

⎫⎪⎪⎬⎪⎪⎭

�

� �

�

3.10 Two Phases of the Simplex Method 137

are known, an infinite number of nonbasic (optimal) feasible solutions can be obtained
by taking any weighted average of the two solutions as

X∗ = λX1 + (1 − λ)X2

X∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x∗1
x∗2
x∗3
x∗4
x∗5

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − λ) 1500
8

200λ + (1 − λ)125

1500λ
0

300λ + (1 − λ)150

⎫⎪⎪⎪⎬⎪⎪⎪⎭
0≤λ≤1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1 − λ) 1500
8

125 + 75λ
1500λ

0

150 + 150λ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
It can be verified that the solution X* will always give the same value of −20 000

for f for all 0≤ 𝜆≤ 1.

3.10 TWO PHASES OF THE SIMPLEX METHOD

The problem is to find nonnegative values for the variables x1, x2, . . . , xn that satisfy
the equations

a11x1 + a12x2 +⋯ + a1nxn = b1

a21x1 + a22x2 +⋯ + a2nxn = b2

⋮

am1x1 + am2x1 +⋯ + amnxn = bm (3.32)

and minimize the objective function given by

c1x1 + c2x2 +⋯ + cnxn = f (3.33)

The general problems encountered in solving this problem are

1. An initial feasible canonical form may not be readily available. This is the case
when the linear programming problem does not have slack variables for some
of the equations or when the slack variables have negative coefficients.

2. The problem may have redundancies and/or inconsistencies, and may not be
solvable in nonnegative numbers.

The two-phase simplex method can be used to solve the problem.
Phase I of the simplex method uses the simplex algorithm itself to find whether

the linear programming problem has a feasible solution. If a feasible solution exists,
it provides a basic feasible solution in canonical form ready to initiate phase II of the
method. Phase II, in turn, uses the simplex algorithm to find whether the problem has
a bounded optimum. If a bounded optimum exists, it finds the basic feasible solution
that is optimal. The simplex method is described in the following steps.

1. Arrange the original system of Eq. (3.32) so that all constant terms bi are pos-
itive or zero by changing, where necessary, the signs on both sides of any of
the equations.

�

� �

�

138 Linear Programming I: Simplex Method

2. Introduce to this system a set of artificial variables y1, y2, . . . , ym (which serve
as basic variables in phase I), where each yi ≥ 0, so that it becomes

a11x1 + a12x2 +⋯ + a1nxn + y1 = b1

a21x1 + a22x2 +⋯ + a2nxn + y2 = b2

⋮

am1x1 + am2x2 +⋯ + amnxn + ym = bm

bi ≥ 0 (3.34)

Note that in Eq. (3.34), for a particular i, the aij’s and the bi may be the negative
of what they were in Eq. (3.32) because of step 1.
The objective function of Eq. (3.33) can be written as

c1x1 + c2x2 +⋯ + cnxn + (−f) = 0 (3.35)

3. Phase I of the method. Define a quantity w as the sum of the artificial variables

w = y1 + y2 +⋯ + ym (3.36)

and use the simplex algorithm to find xi ≥ 0 (i = 1, 2, . . . , n) and yi ≥ 0 (i = 1,
2, . . . , m) which minimize w and satisfy Eqs. (3.34) and (3.35). Consequently,
consider the array

a11x1 + a12x2 +⋯ + a1nxn + y1 = b1

a21x1 + a22x2 +⋯ + a2nxn + y2 = b2

⋮ ⋮

am1x1 + am2x2 +⋯ + amnxn + ym = bm

c1x1 + c2x2 +⋯ + cnxn + (−f) = 0

y1 + y2 +⋯ + ym + (−w) = 0 (3.37)

This array is not in canonical form; however, it can be rewritten as a canonical
system with basic variables y1, y2, . . . , ym, −f, and −w by subtracting the sum
of the first m equations from the last to obtain the new system

a11x1 + a12x2 +⋯ + a1nxn + y1 = b1

a21x1 + a22x2 +⋯ + a2nxn + y2 = b2

⋮ ⋮

am1x1 + am2x2 +⋯ + amnxn + ym = bm

c1x1 + c2x2 +⋯ + cnxn + (−f) = 0

d1x1 + d2x2 +⋯ + dnxn + (−w) = −w0 (3.38)

where
di = −(a1i + a2i +⋯ + ami), i = 1, 2, . . . , n (3.39)

−w0 = −(b1 + b2 +⋯ + bm) (3.40)

Equation (3.38) provide the initial basic feasible solution that is necessary for
starting phase I.

�

� �

�

3.10 Two Phases of the Simplex Method 139

4. In Eq. (3.37), the expression of w, in terms of the artificial variables y1, y2, . . . ,
ym is known as the infeasibility form. w has the property that if as a result of
phase I, with a minimum of w> 0, no feasible solution exists for the original
linear programming problem stated in Eqs. (3.32) and (3.33), and thus the pro-
cedure is terminated. On the other hand, if the minimum of w = 0, the resulting
array will be in canonical form and hence initiate phase II by eliminating the w
equation as well as the columns corresponding to each of the artificial variables
y1, y2, . . . , ym from the array.

5. Phase II of the method. Apply the simplex algorithm to the adjusted canonical
system at the end of phase I to obtain a solution, if a finite one exists, which
optimizes the value of f.

The flowchart for the two-phase simplex method is given in Figure 3.15.

Example 3.7
Minimize f = 2x1 + 3x2 + 2x3 − x4 + x5

subject to the constraints

3x1 − 3x2 + 4x3 + 2x4 − x5 = 0

x1 + x2 + x3 + 3x4 + x5 = 2

xi ≥ 0, i = 1 to 5

SOLUTION
Step 1. As the constants on the right-hand side of the constraints are already nonneg-

ative, the application of step 1 is unnecessary.
Step 2. Introducing the artificial variables y1 ≥ 0 and y2 ≥ 0, the equations can be

written as follows:

3x1 − 3x2 + 4x3 + 2x4 − x5 + y1 = 0

x1 + x2 + x3 + 3x4 + x5 + y2 = 2

2x1 + 3x2 + 2x3 − x4 + x5 − f = 0 (E1)

Step 3. By defining the infeasibility form w as

w = y1 + y2

the complete array of equations can be written as

3x1 − 3x2 + 4x3 + 2x4 − x5 + y1 = 0

x1 + x2 + x3 + 3x4 + x5 + y2 = 2

2x1 + 3x2 + 2x3 − x4 + x5 − f = 0

y1 + y2 − w = 0 (E2)

This array can be rewritten as a canonical system with basic variables as y1,
y2, −f, and −w by subtracting the sum of the first two equations of (E2) from
the last equation of (E2). Thus the last equation of (E2) becomes

−4x1 + 2x2 − 5x3 − 5x4 + 0x5 − w = −2 (E3)

�

� �

�

140 Linear Programming I: Simplex Method

Since this canonical system [first three equations of (E2), and (E3)] provides
an initial basic feasible solution, phase I of the simplex method can be started.
The phase I computations are shown below in table form.

Start with the linear
programming problem

in standard form

Make right-hand-side constants
non-negative

Is the system of equations
in canonical form already?

Yes, Go to phase II
(block B)

A

No

Add artificial variables yi
and formulate the

infeasibility form w = Σyii

Bring the resulting equations
including –f and –w into

canonical form with respect
to the artificial variables

No feasible
solution
exists for

the original
linear

programming
problem,

Stop

Drop all xj such
that d″j ≥ 0; Also

drop w –row Replace r–th basic
variable by xs by

pivoting on the element a″rsGo to
Phase II

(Block B)

C

Find s such that
d″s = min (d″j)

j

is d″s ≥ 0 ?
Yes Yes

is wo > 0 ?
No

No

Choose r such that

and use a random choice
in the case of a tie

=
min
a″is > 0

b″r

a″rs

b″i

a″is

Figure 3.15 Flowchart for the two-phase simplex method.

�

� �

�

3.10 Two Phases of the Simplex Method 141

Replace r–th basic variable by xs by
pivoting on the element a″rs

Find s such that
c″s = min (c″i)

i

From block C

From block A
B

No

No

is c″s ≥ 0 ?
YesPresent basic

feasible solution
is optimal, Stop

Solution is
unbounded,

Stop

=
min
a″is > 0

b″r

a″rs

b″i

a″is
Choose r such that

Use a random choice in the case of a tie

All a″is ≤ 0 ?
Yes

Figure 3.15 (Continued)

Admissible
variables

Artificial
variablesBasic

variables x1 x2 x3 x4 x5 y1 y2 b′′
i Value of b′′i ∕a′′is for a′′is > 0

y1 3 −3 4 2
Pivot
element

−1 1 0 0 0 ← Smaller value (y1
drops from next basis)

y2 1 1 1 3 1 0 1 2 2
3

−f 2 3 2 −1 1 0 0 0
−w −4 2 −5 −5 0 0 0 −2

↑ ↑
Most negative

Since there is a tie between d′′
3 and d′′

4 , d′′
4 is selected arbitrarily as the most neg-

ative d′′
i for pivoting (x4 enters the next basis). Result of pivoting:

�

� �

�

142 Linear Programming I: Simplex Method

x4
3
2

− 3
2

2 1 − 1
2

1
2

0 0

y2 − 7
2

11
2

Pivot
element

−5 0 5
2

− 3
2

1 2 1
11
← y2 drops from
next basis

−f 7
2

3
2

4 0 1
2

1
2

0 0

−w 7
2

− 11
2

5 0 − 5
2

5
2

0 −2

↑

Most negative d′′
i (x2 enters next basis)

Result of pivoting (since y1 and y2 are dropped from basis, the columns corre-
sponding to them need not be filled):

x4
6

11
0 7

11
1 2

11
Dropped 6

11
6
2

x2 − 7
11

1 − 10
11

0 5
11

4
11

4
5

−f 98
22

0 118
22

0 − 4
22

− − 6
11

−w 0 0 0 0 0 0

Step 4. At this stage we notice that the present basic feasible solution does not contain
any of the artificial variables y1 and y2, and also the value of w is reduced to
0. This indicates that phase I is completed.

Step 5. Now we start phase II computations by dropping the w row from further con-
sideration. The results of phase II are again shown in table form:

Original variablesBasic
variables x1 x2 x3 x4 x5 Constant b′′i

Value of b′′i ∕a′′is for
a′′

is > 0

x4
6
11

0 7
11

1 2
11

6
11

6
2

x2 − 7
11

1 − 10
11

0
5

11
Pivot
element

4
11

4
5
← Smaller value (x2
drops from next basis)

−f 98
22

0 118
22

0 − 4
22

− 6
11

↑
Most negative c′′i (x5 enters next basis)

Result of pivoting:

x4
4
5

− 2
5

1 1 0 2
5

x5 − 7
5

11
5

−2 0 1 4
5

−f 21
5

2
5

5 0 0 − 2
5

Now, since all c′′i are nonnegative, phase II is completed. The (unique) optimal
solution is given by

x1 = x2 = x3 = 0 (nonbasic variables)

x4 = 2
5
, x5 = 4

5
(basic variables)

fmin = 2
5

�

� �

�

Review Questions 143

3.11 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of a linear programming problem
is given in Example 17.3.

REFERENCES AND BIBLIOGRAPHY

3.1 Dantzig, G.B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton
University Press.

3.2 Adams, W.J., Gewirtz, A., and Quintas, L.V. (1969). Elements of Linear Programming.
New York: Van Nostrand Reinhold.

3.3 Garvin, W.W. (1960). Introduction to Linear Programming. New York: McGraw-Hill.

3.4 Gass, S.I. (1985). Linear Programming: Methods and Applications, 5e. New York:
McGraw-Hill.

3.5 Hadley, G. (1962). Linear Programming. Reading, MA: Addison-Wesley.

3.6 Vajda, S. (1960). An Introduction to Linear Programming and the Theory of Games.
New York: Wiley.

3.7 Orchard-Hays, W. (1968). Advanced Linear Programming Computing Techniques. New
York: McGraw-Hill.

3.8 Gass, S.I. (1970). An Illustrated Guide to Linear Programming. New York:
McGraw-Hill.

3.9 Winston, W.L. (1991). Operations Research: Applications and Algorithms, 2e. Boston:
PWS-Kent.

3.10 Taha, H.A. (1992). Operations Research: An Introduction, 5e. New York: Macmillan.

3.11 Murty, K.G. (1983). Linear Programming. New York: Wiley.

3.12 Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Com-
binatorica 4 (4): 373–395.

3.13 Rubinstein, M.F. and Karagozian, J. (1966). Building design using linear programming.
Journal of the Structural Division, Proceedings of ASCE 92 (ST6): 223–245.

3.14 Au, T. (1969). Introduction to Systems Engineering: Deterministic Models. Reading,
MA: Addison-Wesley.

3.15 Stoecker, W.F. (1989). Design of Thermal Systems, 3e. New York: McGraw-Hill.

3.16 Stark, R.M. and Nicholls, R.L. (1972). Mathematical Foundations for Design: Civil
Engineering Systems. New York: McGraw-Hill.

3.17 Maass, A., Hufschmidt, M.A., Dorfman, R. et al. (1962). Design of Water Resources
Systems. Cambridge, MA: Harvard University Press.

REVIEW QUESTIONS

3.1 Define a line segment in n-dimensional space.

3.2 What happens when m = n in a (standard) LP problem?

3.3 How many basic solutions can an LP problem have?

3.4 State an LP problem in standard form.

3.5 State four applications of linear programming.

3.6 Why is linear programming important in several types of industries?

3.7 Define the following terms: point, hyperplane, convex set, extreme point.

3.8 What is a basis?

3.9 What is a pivot operation?

3.10 What is the difference between a convex polyhedron and a convex polytope?

�

� �

�

144 Linear Programming I: Simplex Method

3.11 What is a basic degenerate solution?

3.12 What is the difference between the simplex algorithm and the simplex method?

3.13 How do you identify the optimum solution in the simplex method?

3.14 Define the infeasibility form.

3.15 What is the difference between a slack and a surplus variable?

3.16 Can a slack variable be part of the basis at the optimum solution of an LP problem?

3.17 Can an artificial variable be in the basis at the optimum point of an LP problem?

3.18 How do you detect an unbounded solution in the simplex procedure?

3.19 How do you identify the presence of multiple optima in the simplex method?

3.20 What is a canonical form?

3.21 Answer true or false:

(a) The feasible region of an LP problem is always bounded.

(b) An LP problem will have infinite solutions whenever a constraint is redundant.

(c) The optimum solution of an LP problem always lies at a vertex.

(d) A linear function is always convex.

(e) The feasible space of some LP problems can be nonconvex.

(f) The variables must be nonnegative in a standard LP problem.

(g) The optimal solution of an LP problem can be called the optimal basic solution.

(h) Every basic solution represents an extreme point of the convex set of feasible solu-
tions.

(i) We can generate all the basic solutions of an LP problem using pivot operations.

(j) The simplex algorithm permits us to move from one basic solution to another basic
solution.

(k) The slack and surplus variables can be unrestricted in sign.

(l) An LP problem will have an infinite number of feasible solutions.

(m) An LP problem will have an infinite number of basic feasible solutions.

(n) The right-hand-side constants can assume negative values during the simplex pro-
cedure.

(o) All the right-hand-side constants can be zero in an LP problem.

(p) The cost coefficient corresponding to a nonbasic variable can be positive in a basic
feasible solution.

(q) If all elements in the pivot column are negative, the LP problem will not have a
feasible solution.

(r) A basic degenerate solution can have negative values for some of the variables.

(s) If a greater-than or equal-to type of constraint is active at the optimum point, the
corresponding surplus variable must have a positive value.

(t) A pivot operation brings a nonbasic variable into the basis.

(u) The optimum solution of an LP problem cannot contain slack variables in the basis.

(v) If the infeasibility form has a nonzero value at the end of phase I, it indicates an
unbounded solution to the LP problem.

(w) The solution of an LP problem can be a local optimum.

(x) In a standard LP problem, all the cost coefficients will be positive.

(y) In a standard LP problem, all the right-hand-side constants will be positive.

(z) In a LP problem, the number of inequality constraints cannot exceed the number
of variables.

(aa) A basic feasible solution cannot have zero value for any of the variables.

�

� �

�

Problems 145

PROBLEMS

3.1 State the following LP problem in standard form:

Maximize f = −2x1 − x2 + 5x3

subject to
x1 − 2x2 + x3 ≤ 8

3x1 − 2x2 ≥ −18

2x1 + x2 − 2x3 ≤ −4

3.2 State the following LP problem in standard form:

Maximize f = x1 − 8x2

subject to
3x1 + 2x2 ≥ 6

9x1 + 7x2 ≤ 108

2x1 − 5x2 ≥ −35

x1, x2 unrestricted in sign

3.3 Solve the following system of equations using pivot operations:

6x1 − 2x2 + 3x3 = 11

4x1 + 7x2 + x3 = 21

5x1 + 8x2 + 9x3 = 48

3.4 It is proposed to build a reservoir of capacity x1 to better control the supply of water to
an irrigation district [3.16, 3.17]. The inflow to the reservoir is expected to be 4.5× 106

acre–ft during the wet (rainy) season and 1.1× 106 acre–ft during the dry (summer) sea-
son. Between the reservoir and the irrigation district, one stream (A) adds water to and
another stream (B) carries water away from the main stream, as shown in Figure 3.16.
Stream A adds 1.2× 106 and 0.3× 106 acre–ft of water during the wet and dry seasons,
respectively. Stream B takes away 0.5× 106 and 0.2× 106 acre–ft of water during the
wet and dry seasons, respectively. Of the total amount of water released to the irrigation
district per year (x2), 30% is to be released during the wet season and 70% during the
dry season. The yearly cost of diverting the required amount of water from the main
stream to the irrigation district is given by 18(0.3x2)+ 12(0.7x2). The cost of building
and maintaining the reservoir, reduced to a yearly basis, is given by 25x1. Determine
the values of x1 and x2 to minimize the total yearly cost.

3.5 Solve the following system of equations using pivot operations:

4x1 − 7x2 + 2x3 = −8

3x1 + 4x2 − 5x3 = −8

5x1 + x2 − 8x3 = −34

3.6 What elementary operations can be used to transform

2x1 + x2 + x3 = 9

x1 + x2 + x3 = 6

2x1 + 3x3 + x3 = 13

�

� �

�

146 Linear Programming I: Simplex Method

Inflow to reservoir

Proposed reservoir

Capacity, x1

Stream A

Stream B
Main stream

Irrigation district
(Water received: x2)

Figure 3.16 Reservoir in an irrigation district.

into
x1 = 3

x2 = 2

x1 + 3x2 + x3 = 10

Find the solution of this system by reducing into canonical form.

3.7 Find the solution of the following LP problem graphically:

Maximize f = 2x1 + 6x2

subject to
−x1 + x2 ≤ 1

2x1 + x2 ≤ 2

x1 ≥ 0, x2 ≥ 0

3.8 Find the solution of the following LP problem graphically:

Minimize f = −3x1 + 2x2

�

� �

�

Problems 147

subject to
0 ≤ x1 ≤ 4

1 ≤ x2 ≤ 6

x1 + x2 ≤ 5

3.9 Find the solution of the following LP problem graphically:

Minimize f = 3x1 + 2x2

subject to
8x1 + x2 ≥ 8

2x1 + x2 ≥ 6

x1 + 3x2 ≥ 6

x1 + 6x2 ≥ 8

x1 ≥ 0, x2 ≥ 0

3.10 Find the solution of the following problem by the graphical method:

Minimize f = x2
1x2

2

subject to
x3

1x2
2 ≥ e3

x1x4
2 ≤ e4

x2
1x3

2 ≤ e

x1 ≥ 0, x2 ≥ 0

where e is the base of natural logarithms.

3.11 Prove Theorem 3.6.
For Problems 3.12–3.42, use a graphical procedure to identify (a) the feasible region, (b)
the region where the slack (or surplus) variables are zero, and (c) the optimum solution.

3.12
Maximize f = 6x+7y

subject to
7x + 6y ≤ 42

5x + 9y ≤ 45

x − y ≤ 4

x ≥ 0, y ≥ 0

3.13 Rework Problem 3.12 when x and y are unrestricted in sign.

3.14
Maximize f = 19x + 7y

subject to
7x + 6y ≤ 42

5x + 9y ≤ 45

�

� �

�

148 Linear Programming I: Simplex Method

x − y ≤ 4

x ≥ 0, y ≥ 0

3.15 Rework Problem 3.14 when x and y are unrestricted in sign.

3.16 . Maximize f = x + 2y

subject to
x − y ≥ −8

5x − y ≥ 0

x + y ≥ 8

−x + 6y ≥ 12

5x + 2y ≤ 68

x ≤ 10

x ≥ 0, y ≥ 0

3.17 Rework Problem 3.16 by changing the objective to Minimize f = x− y.

3.18 . Maximize f = x + 2y

subject to
x − y ≥ −8

5x − y ≥ 0

x + y ≥ 8

−x + 6y ≥ 12

5x + 2y ≤ 68

x ≤ 10

x ≥ 0, y ≥ 0

3.19 Rework Problem 3.18 by changing the objective to Minimize f = x− y.

3.20 . Maximize f = x + 3y

subject to
−4x + 3y ≤ 12

x + y ≤ 7

x − 4y ≤ 2

x ≥ 0, y ≥ 0

3.21 . Maximize f = x + 3y

subject to
−4x + 3y ≤ 12

x + y ≤ 7

x − 4y ≤ 2

x and y are unrestricted in sign

�

� �

�

Problems 149

3.22 Rework Problem 3.20 by changing the objective to Maximize f = x+ y.

3.23
Maximize f = x + 3y

subject to
−4x + 3y ≤ 12

x + y ≤ 7

x − 4y ≥ 2

x ≥ 0, y ≥ 0

3.24
Minimize f = x − 8y

subject to
3x + 2y ≥ 6

x − y ≤ 6

9x + 7y ≤ 108

3x + 7y ≤ 70

2x − 5y ≥ −35

x ≥ 0, y ≥ 0

3.25 Rework Problem 3.24 by changing the objective to Maximize f = x− 8y.

3.26
Maximize f = x − 8y

subject to
3x + 2y ≥ 6

x − y ≤ 6

9x + 7y ≤ 108

3x + 7y ≤ 70

2x − 5y ≥ −35

x≥ 0, y is unrestricted in sign

3.27
Maximize f = 5x − 2y

subject to
3x + 2y ≥ 6

x − y ≤ 6

9x + 7y ≤ 108

3x + 7y ≤ 70

2x − 5y ≥ −35

x ≥ 0, y ≥ 0

3.28
Minimize f = x − 4y

�

� �

�

150 Linear Programming I: Simplex Method

subject to
x − y ≥ −4

4x + 5y ≤ 45

5x − 2y ≤ 20

5x + 2y ≤ 10

x ≥ 0, y ≥ 0

3.29 . Maximize f = x − 4y

subject to
x − y ≥ −4

4x + 5y ≤ 45

5x − 2y ≤ 20

5x + 2y ≤ 10

x≥ 0, y is unrestricted in sign

3.30 . Minimize f = x − 4y

subject to
x − y ≥ −4

4x + 5y ≤ 45

5x − 2y ≤ 20

5x + 2y ≥ 10

x ≥ 0, y ≥ 0

3.31 Rework Problem 3.30 by changing the objective to Maximize f = x− 4y.

3.32 . Minimize f = 4x + 5y

subject to
10x + y ≥ 10

5x + 4y ≥ 20

3x + 7y ≥ 21

x + 12y ≥ 12

x ≥ 0, y ≥ 0

3.33 Rework Problem 3.32 by changing the objective to Maximize f = 4x+ 5y.

3.34 Rework Problem 3.32 by changing the objective to Minimize f = 6x+ 2y.

3.35 . Minimize f = 6x + 2y

subject to
10x + y ≥ 10

5x + 4y ≥ 20

3x + 7y ≥ 21

x + 12y ≥ 12

x and y are unrestricted in sign

�

� �

�

Problems 151

3.36 . Minimize f = 5x + 2y

subject to
3x + 4y ≥ 24

x − y ≤ 3

x + 4y ≥ 4

3x + y ≥ 3

x ≥ 0, y ≥ 0

3.37 Rework Problem 3.36 by changing the objective to Maximize f = 5x+ 2y.

3.38 Rework Problem 3.36 when x is unrestricted in sign and y≥ 0.

3.39 . Maximize f = 5x + 2y

subject to
3x + 4y ≤ 24

x − y ≤ 3

x + 4y ≤ 4

3x + y ≥ 3

x ≥ 0, y ≥ 0

3.40 . Maximize f = 3x + 2y

subject to
9x + 10y ≤ 330

21x − 4y ≥ −36

x + 2y ≥ 6

6x − y ≤ 72

3x + y ≤ 54

x ≥ 0, y ≥ 0

3.41 Rework Problem 3.40 by changing the constraint x+ 2y≥ 6 to x+ 2y≤ 6.

3.42 . Maximize f = 3x + 2y

subject to
9x + 10y ≤ 330

21x − 4y ≥ −36

x + 2y ≥ 6

6x − y ≤ 72

3x + y ≤ 54

x ≥ 0, y ≥ 0

3.43 . Maximize f = 3x + 2y

�

� �

�

152 Linear Programming I: Simplex Method

subject to
21x − 4y ≥ −36

x + 2y ≥ 6

6x − y ≤ 72

x ≥ 0, y ≥ 0

3.44 Reduce the system of equations

2x1 + 3x2 − 2x3 − 7x4 = 2

x1 + x2 − x3 + 3x4 = 12

x1 − x2 + x3 + 5x4 = 8

into a canonical system with x1, x2, and x3 as basic variables. From this derive all other
canonical forms.

3.45
Maximize f = 240x1 + 104x2 + 60x3 + 19x4

subject to
20x1 + 9x2 + 6x3 + x4 ≤ 20

10x1 + 4x2 + 2x3 + x4 ≤ 10

xi ≥ 0, i = 1 to 4

Find all the basic feasible solutions of the problem and identify the optimal solution.

3.46 A progressive university has decided to keep its library open round the clock and gath-
ered that the following number of attendants are required to reshelve the books:

Time of day (h)
Minimum number of
attendants required

0–4 4
4–8 7
8–12 8

12–16 9
16–20 14
20–24 3

If each attendant works eight consecutive hours per day, formulate the problem of find-
ing the minimum number of attendants necessary to satisfy the requirements above as
a LP problem.

3.47 A paper mill received an order for the supply of paper rolls of widths and lengths as
indicated below:

Number of
rolls
ordered

Width of
roll (m)

Length
(m)

1 6 100
1 8 300
1 9 200

The mill produces rolls only in two standard widths, 10 and 20 m. The mill cuts the
standard rolls to size to meet the specifications of the orders. Assuming that there is no

�

� �

�

Problems 153

limit on the lengths of the standard rolls, find the cutting pattern that minimizes the trim
losses while satisfying the order above.

3.48 Solve the LP problem stated in Example 1.6 for the following data: l = 2 m,
W1 = 3000 N, W2 = 2000 N, W3 = 1000 N, and w1 = w2 = w3 = 200 N.

3.49 Find the solution of Problem 1.1 using the simplex method.

3.50 Find the solution of Problem 1.15 using the simplex method.

3.51 Find the solution of Example 3.1 using (a) the graphical method and (b) the simplex
method.

3.52 In the scaffolding system shown in Figure 3.17, loads x1 and x2 are applied on beams
2 and 3, respectively. Ropes A and B can carry a load of W1 = 300 lb. each; the middle
ropes, C andD, can withstand a load of W2 = 200 lb. each, and ropes E and F are capable
of supporting a load W3 = 100 lb. each. Formulate the problem of finding the loads x1
and x2 and their location parameters x3 and x4 to maximize the total load carried by the
system, x1 + x2, by assuming that the beams and ropes are weightless.

Beam 1

Beam 2

Beam 3

F

D

BA

C

E

12 ft

2 ft

2 ft

x1

x2
x3

x410 – x4

8 – x3

Figure 3.17 Scaffolding system with three beams.

3.53 A manufacturer produces three machine parts, A, B, and C. The raw material costs
of parts A, B, and C are $5, $10, and $15 per unit, and the corresponding prices of
the finished parts are $50, $75, and $100 per unit. Part A requires turning and drilling
operations, while part B needs milling and drilling operations. Part C requires turning
and milling operations. The number of parts that can be produced on various machines
per day and the daily costs of running the machines are given below:

Machine part
Number of parts that can

be produced on

Turning
lathes

Drilling
machines

Milling
machines

A 15 15
B 20 30
C 25 10
Cost of running the

machines per day
$250 $200 $300

Formulate the problem of maximizing the profit.

Solve Problems 3.54–3.90 by the simplex method.

3.54 Problem 1.22

�

� �

�

154 Linear Programming I: Simplex Method

3.55 Problem 1.23

3.56 Problem 1.24

3.57 Problem 1.25

3.58 Problem 3.7

3.59 Problem 3.12

3.60 Problem 3.13

3.61 Problem 3.14

3.62 Problem 3.15

3.63 Problem 3.16

3.64 Problem 3.17

3.65 Problem 3.18

3.66 Problem 3.19

3.67 Problem 3.20

3.68 Problem 3.21

3.69 Problem 3.22

3.70 Problem 3.23

3.71 Problem 3.24

3.72 Problem 3.25

3.73 Problem 3.26

3.74 Problem 3.27

3.75 Problem 3.28

3.76 Problem 3.29

3.77 Problem 3.30

3.78 Problem 3.31

3.79 Problem 3.32

3.80 Problem 3.33

3.81 Problem 3.34

3.82 Problem 3.35

3.83 Problem 3.36

3.84 Problem 3.37

3.85 Problem 3.38

3.86 Problem 3.39

3.87 Problem 3.40

3.88 Problem 3.41

3.89 Problem 3.42

3.90 Problem 3.43

3.91 The temperatures measured at various points inside a heated wall are given below:

�

� �

�

Problems 155

Distance from the heated
surface as a percentage of
wall thickness, xi

0 20 40 60 80 100

Temperature, ti (∘C) 400 350 250 175 100 50

It is decided to use a linear model to approximate the measured values as

t = a + bx (3.41)

where t is the temperature, x the percentage of wall thickness, and a and b the coef-
ficients that are to be estimated. Obtain the best estimates of a and b using linear
programming with the following objectives.

(a) Minimize the sum of absolute deviations between the measured values and those
given by Eq. (3.41):

∑
i|a + bxi − ti|.

(b) Minimize the maximum absolute deviation between the measured values and those
given by Eq. (3.41):

Max
i

∣ a + bxi − ti ∣

3.92 A snack food manufacturer markets two kinds of mixed nuts, labeled A and B. Mixed
nuts A contain 20% almonds, 10% cashew nuts, 15% walnuts, and 55% peanuts. Mixed
nuts B contain 10% almonds, 20% cashew nuts, 25% walnuts, and 45% peanuts. A
customer wants to use mixed nuts A and B to prepare a new mix that contains at least
4 lb. of almonds, 5 lb. of cashew nuts, and 6 lb. of walnuts, for a party. If mixed nuts A
and B cost $2.50 and $3.00 per pound, respectively, determine the amounts of mixed
nuts A and B to be used to prepare the new mix at a minimum cost.

3.93 A company produces three types of bearings, B1, B2, and B3, on two machines, A1
and A2. The processing times of the bearings on the two machines are indicated in the
following table:

Machine
Processing time (min)

for bearing:

B1 B2 B3

A1 10 6 12
A2 8 4 4

The times available on machines A1 and A2 per day are 1200 and 1000 minutes, respec-
tively. The profits per unit of B1, B2, and B3 are $4, $2, and $3, respectively. The
maximum number of units the company can sell are 500, 400, and 600 for B1, B2, and
B3, respectively. Formulate and solve the problem for maximizing the profit.

3.94 Two types of printed circuit boards A and B are produced in a computer manufacturing
company. The component placement time, soldering time, and inspection time required
in producing each unit of A and B are given below:

Circuit board Time required per unit (min) for:

Component
placement Soldering Inspection

A 16 10 4
B 10 12 8

If the amounts of time available per day for component placement, soldering, and
inspection are 1500, 1000, and 500 person–minutes, respectively, determine the

�

� �

�

156 Linear Programming I: Simplex Method

number of units of A and B to be produced for maximizing the production. If each unit
of A and B contributes a profit of $10 and $15, respectively, determine the number of
units of A and B to be produced for maximizing the profit.

3.95 A paper mill produces paper rolls in two standard widths; one with width 20 in. and
the other with width 50 in. It is desired to produce new rolls with different widths as
indicated below:

Width (in.)
Number of rolls

required

40 150
30 200
15 50
6 100

The new rolls are to be produced by cutting the rolls of standard widths to minimize the
trim loss. Formulate the problem as an LP problem.

3.96 A manufacturer produces two types of machine parts, P1 and P2, using lathes and
milling machines. The machining times required by each part on the lathe and the
milling machine and the profit per unit of each part are given below:

Machine part
Machine time (h) required
by each unit on: Cost per unit

Lathe Milling machine

P1 5 2 $200
P2 4 4 $300

If the total machining times available in a week are 500 hours on lathes and 400 hours
on milling machines, determine the number of units of P1 and P2 to be produced per
week to maximize the profit.

3.97 A bank offers four different types of certificates of deposits (CDs) as indicated below:

CD type Duration (yr)
Total interest at
maturity (%)

1 0.5 5
2 1.0 7
3 2.0 10
4 4.0 15

If a customer wants to invest $50 000 in various types of CDs, determine the plan that
yields the maximum return at the end of the fourth year.

3.98 The production of two machine parts A and B requires operations on a lathe (L), a shaper
(S), a drilling machine (D), a milling machine (M), and a grinding machine (G). The
machining times required by A and B on various machines are given below.

Machine part
Machine time required

(hours per unit) on:

L S D M G

A 0.6 0.4 0.1 0.5 0.2
B 0.9 0.1 0.2 0.3 0.3

The number of machines of different types available is given by L : 10, S : 3,D : 4, M : 6,
and G : 5. Each machine can be used for eight hours a day for 30 days in a month.

�

� �

�

Problems 157

(a) Determine the production plan for maximizing the output in a month

(b) If the number of units of A is to be equal to the number of units of B, find the
optimum production plan.

3.99 A salesman sells two types of vacuum cleaners, A and B. He receives a commission of
20% on all sales, provided that at least 10 units each of A and B are sold per month.
The salesman needs to make telephone calls to make appointments with customers and
demonstrate the products in order to sell the products. The selling price of the products,
the average money to be spent on telephone calls, the time to be spent on demonstrations,
and the probability of a potential customer buying the product are given below:

Vacuum
cleaner

Selling price
per unit

Money to be spent
on telephone
calls to find a
potential customer

Time to be spent
in demonstrations

to a potential
customer (h)

Probability of a
potential customer
buying the product

A $250 $3 3 0.4
B $100 $1 1 0.8

In a particular month, the salesman expects to sell at most 25 units of A and 45 units of
B. If he plans to spend a maximum of 200 hours in the month, formulate the problem
of determining the number of units of A and B to be sold to maximize his income.

3.100 An electric utility company operates two thermal power plants, A and B, using three
different grades of coal, C1, C2, and C3. The minimum power to be generated at plants A
and B is 30 and 80 MWh, respectively. The quantities of various grades of coal required
to generate 1 MWh of power at each power plant, the pollution caused by the various
grades of coal at each power plant, and the costs of coal are given in the following table:

Coal type

Quantity of coal
required to generate
1 MWh at the power

plant (tons)
Pollution caused at

power plant
Cost of coal

at power plant

A B A B A B

C1 2.5 1.5 1.0 1.5 20 18
C2 1.0 2.0 1.5 2.0 25 28
C3 3.0 2.5 2.0 2.5 18 12

Formulate the problem of determining the amounts of different grades of coal to be used
at each power plant to minimize (a) the total pollution level, and (b) the total cost of
operation.

3.101 A grocery store wants to buy five different types of vegetables from four farms in a
month. The prices of the vegetables at different farms, the capacities of the farms, and
the minimum requirements of the grocery store are indicated in the following table:

Price ($/ton) of vegetable type

Farm
1

(Potato)
2

(Tomato)
3

(Okra)
4

(Eggplant)
5

(Spinach)

Maximum (of all
types combined)
they can supply

1 200 600 1600 800 1200 180
2 300 550 1400 850 1100 200
3 250 650 1500 700 1000 100
4 150 500 1700 900 1300 120
Minimum amount

required (tons)
100 60 20 80 40

�

� �

�

158 Linear Programming I: Simplex Method

Formulate the problem of determining the buying scheme that corresponds to a mini-
mum cost.

3.102 A steel plant produces steel using four different types of processes. The iron ore, coal,
and labor required, the amounts of steel and side products produced, the cost informa-
tion, and the physical limitations on the system are given below:

Process
type

Iron ore
required
(tons/day)

Coal
required
(tons/day)

Labor
required
(person-days)

Steel
produced
(tons/day)

Side
products
produced
(tons/day)

1 5 3 6 4 1
2 8 5 12 6 2
3 3 2 5 2 1
4 10 7 12 6 4
Cost $50/ton $10/ton $150/

person-day
$350/ton $100/ton

Limitations 600 tons
available
per month

250 tons
available
per month

No limitations
on availability
of labor

All steel
produced
can be sold

Only 200 tons
can be sold
per month

Assuming that a particular process can be employed for any number of days in a 30-day
month, determine the operating schedule of the plant for maximizing the profit.

3.103 Solve 3.7 using MATLAB (simplex method).

3.104 Solve Problem 3.12 using MATLAB (simplex method).

3.105 Solve Problem 3.24 using MATLAB (simplex method).

3.106 Find the optimal solution of the LP problem stated in Problem 3.45 using MATLAB
(simplex method).

3.107 Find the optimal solution of the LP problem described in Problem 3.101 using MAT-
LAB.

�

� �

�

4

Linear Programming II:
Additional Topics and Extensions

4.1 INTRODUCTION

If a Linear Programming (LP) problem involving several variables and constraints is
to be solved by using the simplex method described in Chapter 3, it requires a large
amount of computer storage and time. Some techniques, which require less compu-
tational time and storage space compared to the original simplex method, have been
developed. Among these techniques, the revised simplex method is very popular. The
principal difference between the original simplex method and the revised one is that
in the former we transform all the elements of the simplex table, while in the latter
we need to transform only the elements of an inverse matrix. Associated with every
LP problem, another LP problem, called the dual, can be formulated. The solution of
a given LP problem, in many cases, can be obtained by solving its dual in a much
simpler manner.

As stated above, one of the difficulties in certain practical LP problems is that the
number of variables and/or the number of constraints is so large that it exceeds the stor-
age capacity of the available computer. If the LP problem has a special structure,
a principle known as the decomposition principle can be used to solve the problem
more efficiently. In many practical problems, one will be interested not only in finding
the optimum solution to a LP problem, but also in finding how the optimum solu-
tion changes when some parameters of the problem, such as cost coefficients change.
Hence, the sensitivity or postoptimality analysis becomes very important.

An important special class of LP problems, known as transportation problems,
occurs often in practice. These problems can be solved by algorithms that are more
efficient (for this class of problems) than the simplex method. Karmarkar’s method is
an interior method and has been shown to be superior to the simplex method of Dantzig
for large problems. The quadratic programming problem is the best-behaved nonlinear
programming problem. It has a quadratic objective function and linear constraints and
is convex (for minimization problems). Hence the quadratic programming problem
can be solved by suitably modifying the linear programming techniques. All these
topics are discussed in this chapter.

4.2 REVISED SIMPLEX METHOD

We notice that the simplex method requires the computing and recording of an entirely
new tableau at each iteration. But much of the information contained in the table is
not used; only the following items are needed.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

159

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

160 Linear Programming II: Additional Topics and Extensions

1. The relative cost coefficients cj to compute1

cs = min(cj) (4.1)

cs determines the variable xs that has to be brought into the basis in the next
iteration.

2. By assuming that cs < 0, the elements of the updated column

As =

⎧⎪⎪⎨⎪⎪⎩

a1s

a2s

⋮

ams

⎫⎪⎪⎬⎪⎪⎭
and the values of the basic variables

XB =

⎧⎪⎪⎨⎪⎪⎩

b1

b2

⋮

bm

⎫⎪⎪⎬⎪⎪⎭
have to be calculated. With this information, the variable xr that has to be
removed from the basis is found by computing the quantity

br

ars

= min
ais>0

{
bi

ais

}
(4.2)

and a pivot operation is performed on ars. Thus, only one nonbasic column As
of the current tableau is useful in finding xr. Since most of the linear program-
ming problems involve many more variables (columns) than constraints (rows),
considerable effort and storage is wasted in dealing with the Aj for j≠ s. Hence,
it would be more efficient if we can generate the modified cost coefficients cj

and the column As, from the original problem data itself. The revised simplex
method is used for this purpose; it makes use of the inverse of the current basis
matrix in generating the required quantities.

Theoretical Development. Although the revised simplex method is applicable for
both phase I and phase II computations, the method is initially developed by consid-
ering linear programming in phase II for simplicity. Later, a step-by-step procedure is
given to solve the general linear programming problem involving both phases I and II.

Let the given linear programming problem (phase II) be written in column form as

Minimize

f (X) = c1x1 + c2x2 +⋯ + cnxn (4.3)

subject to

AX = A1x1 + A2x2 +⋯ + Anxn = b (4.4)

X
n×1

≥ 𝟎
n×1

(4.5)

1The modified values of bi, aij, and cj are denoted by overbars in this chapter (they were denoted by primes
in Chapter 3).

�

� �

�

4.2 Revised Simplex Method 161

where the jth column of the coefficient matrix A is given by

Aj
m×1

=

⎧⎪⎪⎨⎪⎪⎩

a1j

a2j

⋮

amj

⎫⎪⎪⎬⎪⎪⎭
Assuming that the linear programming problem has a solution, let

B = [Aj1 Aj2 ⋯Ajm]

be a basis matrix with

XB
m×1

=

⎧⎪⎪⎨⎪⎪⎩

xj1

xj2

⋮

xjm

⎫⎪⎪⎬⎪⎪⎭
and cB

m×1
=

⎧⎪⎪⎨⎪⎪⎩

cj1

cj2

⋮

cjm

⎫⎪⎪⎬⎪⎪⎭
representing the corresponding vectors of basic variables and cost coefficients, respec-
tively. If XB is feasible, we have

XB = B−1b = b ≥ 𝟎

As in the regular simplex method, the objective function is included as the
(m+ 1)th equation and −f is treated as a permanent basic variable. The augmented
system can be written as

n∑
j=1

Pjxj + Pn+1(−f) = q (4.6)

where

Pj =

⎧⎪⎪⎨⎪⎪⎩

a1j

a2j

⋮
amj

cj

⎫⎪⎪⎬⎪⎪⎭
, j = 1 to n, Pn+1 =

⎧⎪⎪⎨⎪⎪⎩

0
0
⋮
0
1

⎫⎪⎪⎬⎪⎪⎭
and q =

⎧⎪⎪⎨⎪⎪⎩

b1

b2

⋮
bm

0

⎫⎪⎪⎬⎪⎪⎭
Since B is a feasible basis for the system of Eq (4.4), the matrix D defined by

D
m+1×m+1

= [Pj1 Pj2 ⋯ Pjm Pn+1] =
[

B 𝟎
cT

B 1

]
will be a feasible basis for the augmented system of Eq (4.6). The inverse of D can be
found to be

D−1 =
[

B−1 𝟎
−cT

BB−1 1

]
Definition. The row vector

cT
BB−1 = πT =

⎧⎪⎪⎨⎪⎪⎩

𝜋1

𝜋2

⋮

𝜋m

⎫⎪⎪⎬⎪⎪⎭

T

(4.7)

�

� �

�

162 Linear Programming II: Additional Topics and Extensions

is called the vector of simplex multipliers relative to the f equation. If the computations
correspond to phase I, two vectors of simplex multipliers, one relative to the f equation,
and the other relative to the w equation are to be defined as

πT = cT
BB−1 =

⎧⎪⎪⎨⎪⎪⎩

𝜋1

𝜋2

⋮

𝜋m

⎫⎪⎪⎬⎪⎪⎭

T

𝜎
T = dT

BB−1 =

⎧⎪⎪⎨⎪⎪⎩

𝜎1

𝜎2

⋮

𝜎m

⎫⎪⎪⎬⎪⎪⎭

T

By premultiplying each column of Eq. (4.6) by D−1, we obtain the following
canonical system of equations2:

xj1 b1

xj2 b2

⋮ +
∑

jnonbasic

Ajxj = ⋮

xjm bm

− f +
∑

jnonbasic

cjxj = −f0

where {
Aj

cj

}
= D−1Pj =

[
B−1 𝟎
−πT 1

]{
Aj

cj

}
(4.8)

From Eq. (4.8), the updated column Aj can be identified as

Aj = B−1Aj (4.9)

and the modified cost coefficient cj as

cj = cj − 𝝅
TAj (4.10)

2Premultiplication of Pjxj by D−1 gives

D−1Pjxj =
[

B−1 𝟎
−𝛑T 1

]{
Aj

cj

}
xj

=

{
B−1Aj

−𝛑TAj + cj

}
xj =

{
xj if xj is a basic variable

D−1Pjxj if xj is not a basic variable.

�

� �

�

4.2 Revised Simplex Method 163

Equations (4.9) and (4.10) can be used to perform a simplex iteration by generat-
ing Aj and cj from the original problem data, Aj and cj.

Once Aj and cj are computed, the pivot element ars can be identified by using Eqs.
(4.1) and (4.2). In the next step, Ps is introduced into the basis and Pjr is removed.
This amounts to generating the inverse of the new basis matrix. The computational
procedure can be seen by considering the matrix:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ps
⏟⏟⏟

a1s

Pj1Pj2 . . .PjmPn+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

D

e1 e2 ⋯ em+1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

I

a2s

⋮
m + 1 × m + 1 m + 1 × m + 1 ams

cs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.11)

where ei is a (m+ 1)-dimensional unit vector with a one in the ith row. Premultiplica-
tion of the above matrix by D−1 yields

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1 e2 ⋯ er ⋯ em+1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

D−1

m + 1 × m + 1

a1s

a2s

m + 1 × m + 1 ⋮
ars

Pivot
element

⋮
ams

cs

m + 1 × 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.12)

By carrying out a pivot operation on ars, this matrix transforms to

[[e1 e2 ⋯ er−1 𝛽 er+1 ⋯ em+1] D−1
new er] (4.13)

where all the elements of the vector 𝛽 are, in general, nonzero and the second
partition gives the desired matrix D−1

new.3 It can be seen that the first partition
(matrix I) is included only to illustrate the transformation, and it can be dropped in

3This can be verified by comparing the matrix of Eq. (4.13) with the one given in Eq. (4.11). The columns
corresponding to the new basis matrix are given by

Dnew = [Pj1Pj2 ⋯Pjr−1
PsPjr+1

⋯PjmPn+1]
brought in

place of Pr

These columns are modified and can be seen to form a unit matrix in Eq. (4.13). The sequence of pivot
operations that did this must be equivalent to multiplying the original matrix, Eq. (4.11), by D−1

new. Thus,
the second partition of the matrix in Eq. (4.13) gives the desired D−1

new.

�

� �

�

164 Linear Programming II: Additional Topics and Extensions

actual computations. Thus, in practice, we write the m+ 1×m+ 2 matrix

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1s

a2s

⋮

D−1 ars

⋮
ams

cs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and carry out a pivot operation on ars. The first m+ 1 columns of the resulting matrix
will give us the desired matrix D−1

new.

Procedure. The detailed iterative procedure of the revised simplex method to solve
a general linear programming problem is given by the following steps.

1. Write the given system of equations in canonical form, by adding the artificial
variables xn+1, xn+2, . . . , xn+m, and the infeasibility form for phase I as shown
below:

a11x1 + a12x2 +⋯ + a1nxn + xn+1 = b1

a21x1 + a22x2 +⋯ + a2nxn +xn+2 = b2

⋮
am1x1 + am2x2 +⋯ + amnxn +xn+m = bm

c1x1 + c2x2 +⋯ + cnxn −f = 0
d1x1 + d2x2 +⋯ + dnxn −w = −w0

(4.14)

Here the constants bi, i= 1 to m, are made nonnegative by changing, if nec-
essary, the signs of all terms in the original equations before the addition of
the artificial variables xn+i, i= 1 to m. Since the original infeasibility form is
given by

w = xn+1 + xn+2 +⋯ + xn+m (4.15)

the artificial variables can be eliminated from Eq. (4.15) by adding the first m
equations of Eq. (4.14) and subtracting the result from Eq. (4.15). The resulting
equation is shown as the last equation in Eq. (4.14) with

dj = −
m∑

i=1

aij and w0 =
m∑

i=1

bi (4.16)

Equations (4.14) are written in tableau form as shown in Table 4.1.
2. The iterative procedure (cycle 0) is started with xn+1, xn+2, . . . , xn+m, −f, and

−w as the basic variables. A table is opened by entering the coefficients of
the basic variables and the constant terms as shown in Table 4.2. The starting
basis matrix is, from Table 4.1, B= I, and its inverse B−1 = [𝛽 ij] can also be
seen to be an identity matrix in Table 4.2. The rows corresponding to −f and
−w in Table 4.2 give the negative of simplex multipliers 𝜋i and 𝜎i (i= 1 to m),
respectively. These are also zero since cB =dB = 0 and hence

𝝅
T = cT

BB−1 = 𝟎

𝝈
T = dT

BB−1 = 𝟎

�

�
�

�

Table 4.1 Original System of Equations.

Admissible (original) variable Artificial variable Objective variable

x1 x2 ⋯xj ⋯xn xn+1 xn+2 ⋯ xn+m −f −w Constant

←−−−−−−− Initial basis −−−−−−−→
1 b1

1 b2

a11

a21

⋮

am1

⎫⎪⎪⎬⎪⎪⎭
A1

a12

a22

⋮

am2

⎫⎪⎪⎬⎪⎪⎭
A2

a1j

a2j

⋮

amj

⎫⎪⎪⎬⎪⎪⎭
Aj

a1n

a2n

⋮

amn

⎫⎪⎪⎬⎪⎪⎭
An

1 bm

c1 c2 cj cn 0 0 0 1 0 0
d1 d2 dj dn 0 0 0 0 1 −w0

165

�

� �

�

166 Linear Programming II: Additional Topics and Extensions

Table 4.2 Table at the Beginning of Cycle 0.

Columns of the canonical form
Basic variables xn+1 xn+2 ⋯ xn+r ⋯ xn+m −f −w

Value of the
basic variable xs

a

xn+1 1 b1
xn+2 1 b2
⋮ ⋮

xn+r 1 br
⋮ ⋮

xn+m 1 bm
←−−−−−−− Inverse of the basis ←−−−−−−−

−f 0 0 ⋯ 0 ⋯ 0 1 0

−w 0 0 ⋯ 0 ⋯ 0 1 −w0 = −
m∑

i=1
bi

aThis column is blank at the beginning of cycle 0 and filled up only at the end of cycle 0.

In general, at the start of some cycle k (k= 0 to start with) we open a table
similar to Table 4.2, as shown in Table 4.4. This can also be interpreted as
composed of the inverse of the current basis, B−1 = [𝛽 ij], two rows for the sim-
plex multipliers 𝜋i and 𝜎i, a column for the values of the basic variables in the
basic solution, and a column for the variable xs. At the start of any cycle, all
entries in the table, except the last column, are known.

3. The values of the relative cost factors dj (for phase I) or cj (for phase II) are
computed as

dj = dj − 𝝈
TAj

cj = cj − 𝝅
TAj

and entered in a table form as shown in Table 4.3. For cycle 0, 𝜎T = 0 and hence
dj ≡ dj.

4. If the current cycle corresponds to phase I, find whether all dj ≥ 0. If all dj ≥ 0
and w0 > 0, there is no feasible solution to the linear programming problem, so
the process is terminated. If all dj ≥ 0 and w0 = 0, the current basic solution is

Table 4.3 Relative Cost Factor dj or cj.

Variable xj

Cycle number x1 x2 ⋯ xn xn+1 xn+2 ⋯ xn+m

Phase I

⎧⎪⎪⎨⎪⎪⎩
0

1

⋮
l

d1 d2 ⋯ dn 0 0 ⋯ 0

Use the values of 𝜎i (if phase I) or 𝜋i (if phase II) of the
current cycle and compute

dj = dj − (𝜎1a1j + 𝜎2a2j +⋯ + 𝜎mamj)
or

Phase II

⎧⎪⎨⎪⎩
l + 1

l + 2

⋮

cj = cj − (𝜋1a1j + 𝜋2a2j +⋯ + 𝜋mamj)
Enter dj or cj in the row corresponding to the current cycle and

choose the pivot column s such that ds = min dj (if phase I) or
cs = min cj (if phase II)

�

� �

�

4.2 Revised Simplex Method 167

a basic feasible solution to the linear programming problem and hence phase II
is started by (i) dropping all variables xj with dj > 0, (ii) dropping the w row
of the tableau, and (iii) restarting the cycle (step 3) using phase II rules.

If some dj < 0, choose xs as the variable to enter the basis in the next cycle
in place of the present rth basic variable (r will be determined later) such that

ds = min(dj < 0)

On the other hand, if the current cycle corresponds to phase II, find whether
all cj ≥ 0. If all cj ≥ 0, the current basic feasible solution is also an optimal
solution and hence terminate the process. If some cj < 0, choose xs to enter the
basic set in the next cycle in place of the rth basic variable (r to be found later),
such that

cs = min(cj < 0)

5. Compute the elements of the xs column from Eq. (4.9) as

As = B−1As = 𝛽 ijAs

that is,

a1s = 𝛽11a1s + 𝛽12a2s +⋯ + 𝛽1mams

a2s = 𝛽21a1s + 𝛽22a2s +⋯ + 𝛽2mams

⋮

ams = 𝛽m1a1s + 𝛽m2a2s +⋯ + 𝛽mmams

and enter in the last column of Table 4.2 (if cycle 0) or Table 4.4 (if cycle k).

Table 4.4 Table at the Beginning of Cycle k.

Columns of the original canonical form
Basic variable xn+1 ⋯ xn+m −f −w

Value of the
basic variable xs

a

[𝛽 ij]= [ai,n+j]
← Inverse of the basis →

xj1 𝛽11 ⋯ 𝛽1m b1 a1s =
m∑

i=1
𝛽1iais

⋮ ⋮ ⋮ ⋮

xjr 𝛽r1 ⋯ 𝛽rm br ars =
m∑

i=1
𝛽riais

⋮ ⋮ ⋮ ⋮

xjm 𝛽m1 ⋯ 𝛽mm bm ams =
m∑

i=1
𝛽miais

−f −𝜋1 ⋯ −𝜋m 1 −f 0 cs = cs −
m∑

i=1
𝜋iais

(−𝜋j =+cn+j)

−w −𝜎1 ⋯ −𝜎m 1 −w0 ds = ds −
m∑

i=1
𝜎iais

(−𝜎j =+dn+j)

aThis column is blank at the start of cycle k and is filled up only at the end of cycle k.

�

� �

�

168 Linear Programming II: Additional Topics and Extensions

Table 4.5 Table at the Beginning of Cycle k+ 1.

Columns of the canonical form
Basic variables xn+1 ⋯ xn+m −f −w

Value of the
basic variable xs

a

xj1 𝛽11 − a1s𝛽
∗
r1 ⋯ 𝛽1m − a1s𝛽

∗
rm b1 − a1sb

∗
r

⋮
xs 𝛽

∗
r1 ⋯ 𝛽

∗
rm b

∗
r

⋮
xjm 𝛽m1 − ams𝛽

∗
r1 ⋯ 𝛽mm − ams𝛽

∗
rm bm − amsb

∗
r

−f −𝜋1 − cs𝛽
∗
r1 ⋯ −𝜋m − cs𝛽

∗
rm 1 −f 0 − csb

∗
r

−w −𝜎1 − ds𝛽
∗
r1 ⋯ −𝜎m − ds𝛽

∗
rm 1 −w0 − dsb

∗
r

𝛽
∗
ri =

𝛽ri

ars
(i = 1 to m) and b

∗
r = br

ars

aThis column is blank at the start of the cycle.

6. Inspect the signs of all entries ais, i= 1 to m. If all ais ≤ 0, the class of solutions

xs ≥ 0 arbitrary

xji = bi − ais
. xs if xji is a basic variable, and xj = 0 if xj is a nonbasic variable

(j≠ s), satisfies the original system and has the property

f = f 0 + csxs → −∞ as xs → +∞

Hence terminate the process. On the other hand, if some ais > 0, select the
variable xr that can be dropped in the next cycle as

br

ars

= min
ais>0

(bi∕ais)

In the case of a tie, choose r at random.
7. To bring xs into the basis in place of xr, carry out a pivot operation on the

element ars in Table 4.4 and enter the result as shown in Table 4.5. As usual,
the last column of Table 4.5 will be left blank at the beginning of the current
cycle k+ 1. Also, retain the list of basic variables in the first column of Table 4.5
the same as in Table 4.4, except that jr is changed to the value of s determined
in step 4.

8. Go to step 3 to initiate the next cycle, k+ 1.

Example 4.1
Maximize F = x1 + 2x2 + x3

subject to

2x1 + x2 − x3 ≤ 2

−2x1 + x2 − 5x3 ≥ −6

4x1 + x2 + x3 ≤ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

�

� �

�

4.2 Revised Simplex Method 169

SOLUTION This problem can be stated in standard form as (making all the constants
bi positive and then adding the slack variables):

Minimize

f = −x1 − 2x2 − x3 (E1)

subject to
2x1 + x2 − x3 + x4 = 2

2x1 − x2 + 5x3 +x5 = 6

4x1 + x2 + x3 +x6 = 6

xi ≥ 0, i = 1 to 6

(E2)

where x4, x5, and x6 are slack variables. Since the set of equations (E2) are in canonical
form with respect to x4, x5, and x6, xi = 0 (i= 1, 2, 3) and x4 = 2, x5 = 6, and x6 = 6 can
be taken as an initial basic feasible solution and hence there is no need for phase I.

Step 1 All the equations (including the objective function) can be written in canonical
form as

2x1 + x2 − x3 + x4 = 2

2x1 − x2 + 5x3 +x5 = 6

4x1 + x2 + x3 +x6 = 6

−x1 − 2x2 − x3 −f = 0

(E3)

These equations are written in tableau form in Table 4.6.
Step 2 The iterative procedure (cycle 0) starts with x4, x5, x6, and− f as basic vari-

ables. A tableau is opened by entering the coefficients of the basic variables
and the constant terms as shown in Table 4.7. Since the basis matrix is B= I,
its inverse B−1 = [𝛽 ij]= I. The row corresponding to −f in Table 4.7 gives the
negative of simplex multipliers 𝜋i, i= 1, 2, 3. These are all zero in cycle 0.
The entries of the last column of the table are, of course, not yet known.

Step 3 The relative cost factors cj are computed as

cj = cj − 𝜋TAj = cj, j = 1 to 6

since all 𝜋i are zero. Thus

c1 = c1 = −1

c2 = c2 = −2

c3 = c3 = −1

c4 = c4 = 0

c5 = c5 = 0

c6 = c6 = 0

These cost coefficients are entered as the first row of a table (Table 4.8).

�

� �

�

170 Linear Programming II: Additional Topics and Extensions

Table 4.6 Detached Coefficients of the Original System.

Admissible variables

x1 x2 x3 x4 x5 x6 −f Constants

2 1 −1 1 0 0 2
2 −1 5 0 1 0 6
4 1 1 0 0 1 6

−1 −2 −1 0 0 0 1 0

Table 4.7 Table at the Beginning of Cycle 0.

Columns of the canonical form
Basic variables x4 x5 x6 −f

Value of the basic
variable (constant) x2

a

x4 1 0 0 0 2 a42 = 1

Pivot element
x5 0 1 0 0 6 a52 = −1

x6 0 0 1 0 6 a62 = 1
Inverse of the basis= [𝛽 ij]

−f 0 0 0 1 0 c2 = −2

aThis column is entered at the end of step 5.

Table 4.8 Relative Cost Factors cj.

Variable xj

Cycle number x1 x2 x3 x4 x5 x6

Phase II

Cycle 0 −1 −2 −1 0 0 0

Cycle 1 3 0 −3 2 0 0

Cycle 2 6 0 0 11
4

3
4

0

Step 4 Find whether all cj ≥ 0 for optimality. The present basic feasible solution is
not optimal since some cj are negative. Hence select a variable xs to enter
the basic set in the next cycle such that cs = min(cj < 0) = c2 in this case.
Therefore, x2 enters the basic set.

Step 5 Compute the elements of the xs column as

As = [𝛽ij]As

where [𝛽 ij] is available in Table 4.7 and As in Table 4.6.

A2 = IA2 =
⎧⎪⎨⎪⎩

1
−1

1

⎫⎪⎬⎪⎭
These elements, along with the value of c2, are entered in the last column of
Table 4.7.

�

� �

�

4.2 Revised Simplex Method 171

Step 6 Select a variable (xr) to be dropped from the current basic set as

br

ars

= min
ais>0

(
bi

ais

)
In this case,

b4

a42

= 2
1
= 2

b6

a62

= 6
1
= 6

Therefore, xr = x4.

Step 7 To bring x2 into the basic set in place of x4, pivot on ars = a42 in Table 4.7.
Enter the result as shown in Table 4.9, keeping its last column blank. Since a
new cycle must be started, we go to step 3.

Step 3 The relative cost factors are calculated as

cj = cj − (𝜋1a1j + 𝜋2a2j + 𝜋3a3j)

where the negative values of 𝜋1, 𝜋2, and 𝜋3 are given by the row of −f in
Table 4.9, and aij and ci are given in Table 4.6. Here 𝜋1 =−2, 𝜋2 = 0, and
𝜋3 = 0.

c1 = c1 − 𝜋1a11 = −1 − (−2) (2) = 3

c2 = c2 − 𝜋1a12 = −2 − (−2) (1) = 0

c3 = c3 − 𝜋1a13 = −1 − (−2) (−1) = −3

c4 = c4 − 𝜋1a14 = 0 − (−2) (1) = 2

c5 = c5 − 𝜋1a15 = 0 − (−2) (0) = 0

c6 = c6 − 𝜋1a16 = 0 − (−2) (0) = 0

Enter these values in the second row of Table 4.8.
Step 4 Since all cj are not ≥0, the current solution is not optimum. Hence, select

a variable (xs) to enter the basic set in the next cycle such that cs = min
(cj < 0) = c3 in this case. Therefore, xs = x3.

Table 4.9 Table at the Beginning of Cycle 1.

Columns of the original canonical form
Basic variables x4 x5 x6 −f

Value of the
basic variable x3

a

x2 1 0 0 0 2 a23 = −1

x5 1 1 0 0 8 a53 = 4

Pivot element
x6 −1 0 1 1 4 a63 = 2

←Inverse of the basis= [𝛽 ij] →

−f 2=−𝜋1 0=−𝜋2 0=−𝜋3 1 4 c3 = −3

aThis column is entered at the end of step 5.

�

� �

�

172 Linear Programming II: Additional Topics and Extensions

Step 5 Compute the elements of the xs column as

As = [𝛽ij]As

where [𝛽 ij] is available in Table 4.9 and As in Table 4.6:

A3 =
⎧⎪⎨⎪⎩

a23

a53

a63

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎣

1 0 0
1 1 0
−1 0 1

⎤⎥⎥⎦
⎧⎪⎨⎪⎩
−1

5
1

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
−1
4
2

⎫⎪⎬⎪⎭
Enter these elements and the value of cs = c3 = −3 in the last column of
Table 4.9.

Step 6 Find the variable (xr) to be dropped from the basic set in the next cycle as

br

ars

= min
ais>0

(
bi

ais

)
Here

b5

a53

= 8
4
= 2

b6

a63

= 4
2
= 2

Since there is a tie between x5 and x6, we select xr = x5 arbitrarily.
Step 7 To bring x3 into the basic set in place of x5, pivot on ars = a53 in Table 4.9.

Enter the result as shown in Table 4.10, keeping its last column blank. Since
a new cycle must be started, we go to step 3.

Step 3 The simplex multipliers are given by the negative values of the numbers
appearing in the row of −f in Table 4.10. Therefore, 𝜋1 = − 11

4
, 𝜋2 =

− 3
4
, and 𝜋3 = 0. The relative cost factors are given by

cj = cj = −𝜋TAj

Then

c1 = c1 − 𝜋1a11 − 𝜋2a21 = −1 −
(
− 11

4

)
(2) −

(
− 3

4

)
(2) = 6

c2 = c2 − 𝜋1a12 − 𝜋2a22 = −2 −
(
− 11

4

)
(1) −

(
− 3

4

)
(−1) = 0

c3 = c3 − 𝜋1a13 − 𝜋2a23 = −1 −
(
− 11

4

)
(−1) −

(
− 3

4

)
(5) = 0

c4 = c4 − 𝜋1a14 − 𝜋2a24 = 0 −
(
− 11

4

)
(1) −

(
− 3

4

)
(0) = 11

4

c5 = c5 − 𝜋1a15 − 𝜋2a25 = 0 −
(
− 11

4

)
(0) −

(
− 3

4

)
(1) = 3

4

c6 = c6 − 𝜋1a16 − 𝜋2a26 = 0 −
(
− 11

4

)
(0) −

(
− 3

4

)
(0) = 0

These values are entered as third row in Table 4.8.

�

� �

�

4.3 Duality in Linear Programming 173

Table 4.10 Table at the Beginning of Cycle 2.

Columns of the original canonical form
Basic variables x4 x5 x6 −f

Value of the
basic variable xs

a

x2
5
4

1
4

0 0 4

x3
1
4

1
4

0 0 2

x6 − 6
4

− 2
4

1 1 0

−f 11
4

3
4

0 1 10

aThis column is blank at the beginning of cycle 2.

Step 4 Since all cj are ≥0, the present solution will be optimum. Hence the optimum
solution is given by

x2 = 4, x3 = 2, x6 = 0 (basic variables)

x1 = x4 = x5 = 0 (nonbasic variables)

fmin = −10

4.3 DUALITY IN LINEAR PROGRAMMING

Associated with every linear programming problem, called the primal, there is another
linear programming problem called its dual. These two problems possess very inter-
esting and closely related properties. If the optimal solution to any one is known, the
optimal solution to the other can readily be obtained. In fact, it is immaterial which
problem is designated the primal since the dual of a dual is the primal. Because of
these properties, the solution of a linear programming problem can be obtained by
solving either the primal or the dual, whichever is easier. This section deals with
the primal–dual relations and their application in solving a given linear programming
problem.

4.3.1 Symmetric Primal–Dual Relations

A nearly symmetric relation between a primal problem and its dual problem can be
seen by considering the following system of linear inequalities (rather than equations).

Primal Problem

a11x1 + a12x2 +⋯ + a1nxn ≥ b1

a21x1 + a22x2 +⋯ + a2nxn ≥ b2

⋮

am1x1 + am2x2 +⋯ + amnxn ≥ bm

c1x1 + c2x2 +⋯ + cnxn = f

(xi ≥ 0, i = 1 to n, and f is to be minimized)

(4.17)

Dual Problem. As a definition, the dual problem can be formulated by transposing
the rows and columns of Eq. (4.17) including the right-hand side and the objective

�

� �

�

174 Linear Programming II: Additional Topics and Extensions

function, reversing the inequalities and maximizing instead of minimizing. Thus, by
denoting the dual variables as y1, y2, . . . , ym, the dual problem becomes

a11y1 + a21y2 +⋯ + am1ym ≤ c1

a12y1 + a22y2 +⋯ + am2xm ≤ c2

⋮

a1ny1 + a2ny2 +⋯ + amnym ≤ cn

b1y1 + b2y2 +⋯ + bmym = υ

(yi ≥ 0, i = 1 to m, and υ is to be minimized)

(4.18)

Equations (4.17) and (4.18) are called symmetric primal–dual pairs and it is easy
to see from these relations that the dual of the dual is the primal.

4.3.2 General Primal–Dual Relations

Although the primal–dual relations of Section 4.3.1 are derived by considering a
system of inequalities in nonnegative variables, it is always possible to obtain the
primal–dual relations for a general system consisting of a mixture of equations,
less than or greater than type of inequalities, nonnegative variables or variables
unrestricted in sign by reducing the system to an equivalent inequality system of
Eq. (4.17). The correspondence rules that are to be applied in deriving the general
primal–dual relations are given in Table 4.11 and the primal–dual relations are shown
in Table 4.12.

Table 4.11 Correspondence Rules for Primal–Dual Relations.

Primal quantity Corresponding dual quantity

Objective function: Minimize cTX Maximize YTb
Variable xi ≥ 0 ith constraint YTAi ≤ ci (inequality)
Variable xi unrestricted in sign ith constraint YTAi = ci (equality)
jth constraint, Aj X= bj (equality) jth variable yj unrestricted in sign
jth constraint, Aj X≥ bj (inequality) jth variable yj ≥ 0
Coefficient matrix A≡ [A1 . . . Am] Coefficient matrix AT ≡ [A1, . . . , Am]T

Right-hand-side vector b Right-hand-side vector c
Cost coefficients c Cost coefficients b

Table 4.12 Primal–Dual Relations.

Primal problem Corresponding dual problem

Minimize f =
n∑

i=1
cixi subject to Maximize υ =

m∑
i=1

yibi subject to

n∑
j=1

aijxj = bi, i = 1, 2, . . . ,m∗

n∑
j=1

aijxj ≥ bi, i = m∗ + 1,m∗ + 2, . . . ,m

m∑
i=1

yiaij = cj, j = n∗ + 1, n∗ + 2, . . . , n

m∑
i=1

yiaij ≤ cj, j = 1, 2, . . . , n∗

where where
xi ≥ 0, i= 1, 2, . . . , n*; yi ≥ 0, i=m* + 1, m* + 2, . . . , m;

and and
xi unrestricted in sign, i= n* + 1, n* + 2, . . . , n yi unrestricted in sign, i= 1, 2, . . . , m*

�

� �

�

4.3 Duality in Linear Programming 175

Table 4.13 Primal–Dual Relations Where m* =m and n* = n.

Primal problem Corresponding dual problem

Minimize f =
n∑

i=1
cixi Maximize 𝜈 =

m∑
i=1

biyi

subject to subject to
n∑

j=1
aijxj = bi, i = 1, 2, . . . ,m

m∑
i=1

yiaij ≤ cj, j = 1, 2, . . . , n

where where
xi ≥ 0, i= 1, 2, . . . , n yi is unrestricted in sign, i= 1, 2,⋯, m

In matrix form In matrix form
Minimize f= cTX Maximize 𝜈 =YTb

subject to subject to
AX=b ATY≤ c

where where
X≥ 0 Y is unrestricted in sign

4.3.3 Primal–Dual Relations when the Primal Is in Standard Form

If m* =m and n* = n, primal problem shown in Table 4.12 reduces to the standard form
and the general primal–dual relations take the special form shown in Table 4.13. It is
to be noted that the symmetric primal–dual relations, discussed in Section 4.3.1, can
also be obtained as a special case of the general relations by setting m* = 0 and n* = n
in the relations of Table 4.12.

Example 4.2 Write the dual of the following linear programming problem:

Maximize f = 50x1 + 100x2

subject to
2x1 + x2 ≤ 1250

2x1 + 5x2 ≤ 1000

2x1 + 3x2 ≤ 900

x2 ≤ 150

⎫⎪⎪⎬⎪⎪⎭
n = 2,m = 4

where

x1 ≥ 0 and x2 ≥ 0

SOLUTION Let y1, y2, y3, and y4 be the dual variables. Then the dual problem can
be stated as

Minimize 𝜈 = 1250y1 + 1000y2 + 900y3 + 150y4

subject to

2y1 + 2y2 + 2y3 ≥ 50

y1 + 5y2 + 3y3 + y4 ≥ 100

where y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, and y4 ≥ 0.

Notice that the dual problem has a lesser number of constraints compared to the
primal problem in this case. Since, in general, an additional constraint requires more

�

� �

�

176 Linear Programming II: Additional Topics and Extensions

computational effort than an additional variable in a linear programming problem, it
is evident that it is computationally more efficient to solve the dual problem in the
present case. This is one of the advantages of the dual problem.

4.3.4 Duality Theorems

The following theorems are useful in developing a method for solving LP problems
using dual relationships. The proofs of these theorems can be found in Ref. [4.10].

Theorem 4.1 The dual of the dual is the primal.

Theorem 4.2 Any feasible solution of the primal gives an f value greater than or at
least equal to the 𝜈 value obtained by any feasible solution of the dual.

Theorem 4.3 If both primal and dual problems have feasible solutions, both have
optimal solutions and minimum f=maximum 𝜈.

Theorem 4.4 If either the primal or the dual problem has an unbounded solution, the
other problem is infeasible.

4.3.5 Dual Simplex Method

There exist a number of situations in which it is required to find the solution of a
linear programming problem for a number of different right-hand-side vectors b(i).
Similarly, in some cases, we may be interested in adding some more constraints to a
linear programming problem for which the optimal solution is already known. When
the problem has to be solved for different vectors b(i), one can always find the desired
solution by applying the two phases of the simplex method separately for each vector
b(i). However, this procedure will be inefficient since the vectors b(i) often do not differ
greatly from one another. Hence the solution for one vector, say, b(1) may be close
to the solution for some other vector, say, b(2). Thus a better strategy is to solve the
linear programming problem for b(1) and obtain an optimal basis matrix B. If this basis
happens to be feasible for all the right-hand-side vectors, that is, if

B−1b(i) ≥ 𝟎 for all i (4.19)

then it will be optimal for all cases. On the other hand, if the basis B is not feasible for
some of the right-hand-side vectors, that is, if

B−1b(r)
< 0 for some r (4.20)

then the vector of simplex multipliers

𝝅
T = cT

BB−1 (4.21)

will form a dual feasible solution since the quantities

cj = cj − 𝝅
TAj ≥ 0

are independent of the right-hand-side vector b(r). A similar situation exists when the
problem has to be solved with additional constraints.

�

� �

�

4.3 Duality in Linear Programming 177

In both the situations discussed above, we have an infeasible basic (primal) solu-
tion whose associated dual solution is feasible. Several methods have been proposed,
as variants of the regular simplex method, to solve a linear programming problem
by starting from an infeasible solution to the primal. All these methods work in an
iterative manner such that they force the solution to become feasible as well as opti-
mal simultaneously at some stage. Among all the methods, the dual simplex method
developed by Lemke [4.2] and the primal–dual method developed by Dantzig et al.
[4.3] have been most widely used. Both these methods have the following important
characteristics:

1. They do not require the phase I computations of the simplex method. This is a
desirable feature since the starting point found by phase I may be nowhere near
optimal, since the objective of phase I ignores the optimality of the problem
completely.

2. Since they work toward feasibility and optimality simultaneously, we can
expect to obtain the solution in a smaller total number of iterations.

We shall consider only the dual simplex algorithm in this section.

Algorithm. As stated earlier, the dual simplex method requires the availability of
a dual feasible solution that is not primal feasible to start with. It is the same as the
simplex method applied to the dual problem but is developed such that it can make use
of the same tableau as the primal method. Computationally, the dual simplex algorithm
also involves a sequence of pivot operations, but with different rules (compared to the
regular simplex method) for choosing the pivot element.

Let the problem to be solved be initially in canonical form with some of the bi < 0,
the relative cost coefficients corresponding to the basic variables cj = 0, and all other
cj ≥ 0. Since some of the bi are negative, the primal solution will be infeasible, and
since all cj ≥ 0, the corresponding dual solution will be feasible. Then the simplex
method works according to the following iterative steps.

1. Select row r as the pivot row such that

br = min bi < 0 (4.22)

2. Select column s as the pivot column such that

cs

−ars

= min
arj<0

(
cj

−arj

)
(4.23)

If all arj ≥ 0, the primal will not have any feasible (optimal) solution.
3. Carry out a pivot operation on ars

4. Test for optimality: If all bi ≥ 0, the current solution is optimal and hence stop
the iterative procedure. Otherwise, go to step 1.

Remarks:
1. Since we are applying the simplex method to the dual, the dual solution will

always be maintained feasible, and hence all the relative cost factors of the

�

� �

�

178 Linear Programming II: Additional Topics and Extensions

primal (cj) will be nonnegative. Thus, the optimality test in step 4 is valid
because it guarantees that all bi are also nonnegative, thereby ensuring a feasi-
ble solution to the primal.

2. We can see that the primal will not have a feasible solution when all arj are
nonnegative from the following reasoning. Let (x1, x2, . . . , xm) be the set of
basic variables. Then the rth basic variable, xr, can be expressed as

xr = br −
n∑

j=m+1

arjxj

It can be seen that if br < 0 and arj ≥ 0 for all j, xr cannot be made nonnegative
for any nonnegative value of xj. Thus, the primal problem contains an equation
(the rth one) that cannot be satisfied by any set of nonnegative variables and
hence will not have any feasible solution.

The following example is considered to illustrate the dual simplex method.

Example 4.3
Minimize f = 20x1 + 16x2

subject to

x1 ≥ 2.5

x2 ≥ 6

2x1 + x2 ≥ 17

x1 + x2 ≥ 12

x1 ≥ 0, x2 ≥ 0

SOLUTION By introducing the surplus variables x3, x4, x5, and x6, the problem can
be stated in canonical form as
Minimize f
with

−x1 + x3 = −2.5

−x2 + x4 = −6

−2x1 − x2 + x5 = −17

−x1 − x2 + x6 = −12

20x1 + 16x2 − f = 0

xi ≥ 0, i = 1 to 6

(E1)

The basic solution corresponding to (E1) is infeasible since x3 =−2.5, x4 =−6,
x5 =−17, and x6 =−12. However, the objective equation shows optimality since the
cost coefficients corresponding to the nonbasic variables are nonnegative (c1 = 20,
c2 = 16). This shows that the solution is infeasible to the primal but feasible to the
dual. Hence the dual simplex method can be applied to solve this problem as follows.

�

� �

�

4.3 Duality in Linear Programming 179

Step 1 Write the system of equations (E1) in tableau form:

Basic Variables

variables x1 x2 x3 x4 x5 x6 −f bi

x3 −1 0 1 0 0 0 0 −2.5
x4 0 −1 0 1 0 0 0 −6

x5 −2 −1 0 0 1 0 0 −17←Minimum,
pivot row

Pivot element
x6 −1 −1 0 0 0 1 0 −12

−f 20 16 0 0 0 0 1 0

Select the pivotal row r such that

br = min(bi < 0) = b3 = −17

in this case. Hence r= 3.
Step 2 Select the pivotal column s as

cs

−ars

= min
arj<0

(
cj

−arj

)
Since

c1

−a31

= 20
2

= 10,
c2

−a32

= 16
1

= 16, and s = 1

Step 3 The pivot operation is carried on a31 in the preceding table, and the result is
as follows:

Basic Variables

variables x1 x2 x3 x4 x5 x6 −f bi

x3 0 1
2

1 0 − 1
2

0 0 6

x4 0 −1 0 1 0 0 0 −6←Minimum,
pivot row

Pivot element

x1 1 1
2

0 0 − 1
2

0 0 17
2

x6 0 − 1
2

0 0 − 1
2

1 0 − 7
2

−f 0 6 0 0 10 0 1 −170

Step 4 Since some of the bi are <0, the present solution is not optimum. Hence, we
proceed to the next iteration.

Step 1 The pivot row corresponding to minimum (bi < 0) can be seen to be 2 in the
preceding table.

�

� �

�

180 Linear Programming II: Additional Topics and Extensions

Step 2 Since a22 is the only negative coefficient, it is taken as the pivot element.
Step 3 The result of pivot operation on a22 in the preceding table is as follows:

Basic Variables

variables x1 x2 x3 x4 x5 x6 −f bi

x3 0 0 1 1
2

− 1
2

0 0 3

x2 0 1 0 −1 0 0 0 6

x1 1 0 0 1
2

− 1
2

0 0 11
2

x6 0 0 0 −1
2

− 1
2

1 0 − 1
2
←Minimum,

pivot row

Pivot element

−f 0 0 0 6 10 0 1 −206

Step 4 Since all bi are not ≥0, the present solution is not optimum. Hence, we go to
the next iteration.

Step 1 The pivot row (corresponding to minimum bi ≤ 0) can be seen to be the fourth
row.

Step 2 Since
c4

−a44

= 12 and
c5

−a45

= 20

the pivot column is selected as s= 4.
Step 3 The pivot operation is carried on a44 in the preceding table, and the result is

as follows:

Basic Variables

variables x1 x2 x3 x4 x5 x6 −f bi

x3 0 0 1 0 −1 1 0 5
2

x2 0 1 0 0 1 −2 0 7
x1 1 0 0 0 −1 1 0 5
x4 0 0 0 1 1 −2 0 1

−f 0 0 0 0 4 12 1 −212

Step 4 Since all bi are ≥0, the present solution is dual optimal and primal feasible.
The solution is

x1 = 5, x2 = 7, x3 = 5
2
, x4 = 1 (dual basic variables)

x5 = x6 = 0 (dual nonbasic variables)

fmin = 212

4.4 DECOMPOSITION PRINCIPLE

Some of the linear programming problems encountered in practice may be very large
in terms of the number of variables and/or constraints. If the problem has some special

�

� �

�

4.4 Decomposition Principle 181

structure, it is possible to obtain the solution by applying the decomposition principle
developed by Dantzing and Wolfe [4.4]. In the decomposition method, the original
problem is decomposed into small subproblems and then these subproblems are solved
almost independently. The procedure, when applicable, has the advantage of making
it possible to solve large-scale problems that may otherwise be computationally very
difficult or infeasible. As an example of a problem for which the decomposition prin-
ciple can be applied, consider a company having two factories, producing three and
two products, respectively. Each factory has its own internal resources for production,
namely, workers and machines. The two factories are coupled by the fact that there
is a shared resource that both use, for example, a raw material whose availability is
limited. Let b2 and b3 be the maximum available internal resources for factory 1, and
let b4 and b5 be the similar availabilities for factory 2. If the limitation on the common
resource is b1, the problem can be stated as follows:

Minimize f (x1, x2, x3, y1, y2) = c1x1 + c2x2 + c3x3 + c4y1 + c5y2

subject to

a11x1 + a12x2 + a13x3 + a14y1 + a15y2 ≤ b1

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x2

≤ b2≤ b3
(4.24)

a41y1 + a42y2

a51y1 + a52y2

≤ b4≤ b5

where xi and yj are the quantities of the various products produced by the two factories
(design variables) and the aij are the quantities of resource i required to produce 1 unit
of product j.

xi ≥ 0,
(i=1,2,3)

yj ≥ 0
(j=1,2)

An important characteristic of the problem stated in Eq. (4.24) is that its con-
straints consist of two independent sets of inequalities. The first set consists of a
coupling constraint involving all the design variables, and the second set consists of
two groups of constraints, each group containing the design variables of that group
only. This problem can be generalized as follows:

Minimize f (X) = cT
1 X1 + cT

2 X2 +⋯ + cT
p Xp (4.25a)

subject to
A1X1 + A2X2 +⋯ + ApXp = b0 (4.25b)

B1X1 = b1

B2X2 = b2

⋮

BpXp = bp

⎫⎪⎪⎬⎪⎪⎭
(4.25c)

X1 ≥ 0,X2 ≥ 0,⋯ ,Xp ≥ 𝟎

�

� �

�

182 Linear Programming II: Additional Topics and Extensions

where

X1 =

⎧⎪⎪⎨⎪⎪⎩

x1

x2

⋮

xm1

⎫⎪⎪⎬⎪⎪⎭
, X2 =

⎧⎪⎪⎨⎪⎪⎩

xm1+1

xm1+2

⋮

xm1+m2

⎫⎪⎪⎬⎪⎪⎭
, . . . ,

Xp =
⎧⎪⎨⎪⎩

xm1+m2+⋯+mp−1+1

xm1+m2+⋯+mp−1+2

xm1+m2+⋯+mp−1+mp

⎫⎪⎬⎪⎭
X =

⎧⎪⎪⎨⎪⎪⎩

X1

X2

⋮

Xp

⎫⎪⎪⎬⎪⎪⎭
It can be noted that if the size of the matrix Ak is (r0 ×mk) and that of Bk is (rk ×mk),
the problem has

∑p
k=0 rk constraints and

∑p
k=1 mk variables.

Since there are a large number of constraints in the problem stated in Eq. (4.25), it
may not be computationally efficient to solve it by using the regular simplex method.
However, the decomposition principle can be used to solve it in an efficient man-
ner. The basic solution procedure using the decomposition principle is given by the
following steps.

1. Define p subsidiary constraint sets using Eq. (4.25) as

B1X1 = b1

B2X2 = b2

⋮

BkXk = bk (4.26)

⋮

BpXp = bp

The subsidiary constraint set

BkXk = bk, k = 1, 2, . . . , p (4.27)

represents rk equality constraints. These constraints along with the requirement
Xk ≥ 0 define the set of feasible solutions of Eq. (4.27). Assuming that this set
of feasible solutions is a bounded convex set, let sk be the number of vertices
of this set. By using the definition of convex combination of a set of points,4

4If X(1) and X(2) are any two points in an n-dimensional space, any point lying on the line segment joining
X(1) and X(2) is given by a convex combination of X(1) and X(2) as

X(𝜇) = 𝜇X(1) + (1 − 𝜇)X(2)
, 0 ≤ 𝜇 ≤ 1

This idea can be generalized to define the convex combination of r points X(1), X(2), . . . , X(r) as

X(𝜇1, 𝜇2,⋯ , 𝜇r) = 𝜇1X(1) + 𝜇2X(2) +⋯ + 𝜇rX
(r)

where 𝜇1 +𝜇2 + ⋅⋯+𝜇r = 1 and 0≤𝜇i ≤ 1, i= 1, 2, ⋯, r.

�

� �

�

4.4 Decomposition Principle 183

any point Xk satisfying Eq. (4.27) can be represented as

Xk = 𝜇k,1X(k)
1 + 𝜇k,2X(k)

2 +⋯ + 𝜇k,sk
X(k)

sk
(4.28)

𝜇k,1 + 𝜇k,2 +⋯ + 𝜇k,sk
= 1 (4.29)

0 ≤ 𝜇k,i ≤ 1, i = 1, 2, . . . , sk, k = 1, 2, . . . , p (4.30)

where X(k)
1 ,X

(k)
2 , . . . ,X

(k)
sk

are the extreme points of the feasible set defined by
Eq. (4.27). These extreme points X(k)

1 ,X
(k)
2 , . . . ,X

(k)
sk
; k = 1, 2, . . . , p, can be

found by solving the Eq. (4.27).
2. These new Eq. (4.28) imply the complete solution space enclosed by the con-

straints
BkXk = bk

Xk ≥ 𝟎, k = 1, 2, . . . , p (4.31)

By substituting Eq. (4.28) into Eq. (4.25), it is possible to eliminate the
subsidiary constraint sets from the original problem and obtain the following
equivalent form:

Minimize f (X) = cT
1

(
s1∑

i=1

𝜇1,iX
(1)
i

)
+ cT

2

(
s2∑

i=1

𝜇2,iX
(2)
i

)

+⋯ + cT
p

(
sp∑

i=1

𝜇p,iX
(p)
i

)
subject to

A1

(
s1∑

i=1

𝜇1,iX
(1)
i

)
+ A2

(
s2∑

i=1

𝜇2,iX
(2)
i

)
+⋯ + Ap

(sp∑
i=1

𝜇p,iX
(p)
i

)
= b0

s1∑
i=1

𝜇1,i = 1

s2∑
i=1

𝜇2,i = 1

sp∑
i=1

𝜇p,i = 1

𝜇j,i ≥ 0, i = 1, 2, . . . , sj, j = 1, 2, . . . , p (4.32)

Since the extreme points X(k)
1 ,X

(k)
2 , . . . ,X

(k)
sk

are known from the solution of the
set Bk Xk =bk, Xk ≥ 0, k= 1, 2, . . . , p, and since ck and Ak, k= 1, 2, . . . , p, are
known as problem data, the unknowns in Eq. (4.32) are 𝜇j,i, i= 1, 2, . . . , sj;
j= 1, 2, . . . , p. Hence 𝜇j,i will be the new decision variables of the modified
problem stated in Eq. (4.32).

3. Solve the linear programming problem stated in Eq. (4.32) by any of the known
techniques and find the optimal values of 𝜇j,i. Once the optimal values 𝜇∗

j,i are

determined, the optimal solution of the original problem can be obtained as

X∗ =

⎧⎪⎪⎨⎪⎪⎩

X∗
1

X∗
2

⋮

X∗
p

⎫⎪⎪⎬⎪⎪⎭

�

� �

�

184 Linear Programming II: Additional Topics and Extensions

where

X∗
k =

sk∑
i=1

𝜇
∗
k,iX

(k)
i , k = 1, 2, . . . , p

Remarks:
1. It is to be noted that the new problem in Eq. (4.32) has (r0 + p) equality con-

straints only as against r0 +
∑p

k=1 rk in the original problem of Eq. (4.25). Thus,
there is a substantial reduction in the number of constraints due to the applica-
tion of the decomposition principle. At the same time, the number of variables
might increase from

∑p
k=1 mk to

∑p
k=1 sk, depending on the number of extreme

points of the different subsidiary problems defined by Eq. (4.31). The modified
problem, however, is computationally more attractive since the computational
effort required for solving any linear programming problem depends primarily
on the number of constraints rather than on the number of variables.

2. The procedure outlined above requires the determination of all the extreme
points of every subsidiary constraint set defined by Eq. (4.31) before the opti-
mal values 𝜇∗

j,i are found. However, this is not necessary when the revised
simplex method is used to implement the decomposition algorithm [4.5].

3. If the size of the problem is small, it will be convenient to enumerate all the
extreme points of the subproblems and use the simplex method to solve the
problem. This procedure is illustrated in the following example.

Example 4.4 A fertilizer mixing plant produces two fertilizers, A and B, by mix-
ing two chemicals, C1 and C2, in different proportions. The contents and costs of the
chemicals C1 and C2 are as follows:

Contents

Chemical Ammonia Phosphates Cost ($/lb)

C1 0.70 0.30 5
C2 0.40 0.60 4

Fertilizer A should not contain more than 60% of ammonia and B should contain
at least 50% of ammonia. On the average, the plant can sell up to 1000 lb/h and due
to limitations on the production facilities, not more than 600 lb. of fertilizer A can be
produced per hour. The availability of chemical C1 is restricted to 500 lb/h. Assuming
that the production costs are same for both A and B, determine the quantities of A and
B to be produced per hour for maximum return if the plant sells A and B at the rates
of $6 and $7 per pound, respectively.

SOLUTION Let x1 and x2 indicate the amounts of chemicals C1 and C2 used in fer-
tilizer A, and y1 and y2 in fertilizer B per hour. Thus, the total amounts of A and B
produced per hour are given by x1 + x2 and y1 + y2, respectively. The objective function
to be maximized is given by

f = selling price − cost of chemical C1 and C2

= 6(x1 + x2) + 7(y1 + y2) − 5(x1 + y1) − 4(x2 + y2)

The constraints are given by

(x1 + x2) + (y1 + y2) ≤ 1000 (amount that can be sold)
x1 + y1 ≤ 500 (availability of C1)

�

� �

�

4.4 Decomposition Principle 185

x1 + x2 ≤ 600 (production limitations on A)
7
10

x1 +
4

10
x2 ≤ 6

10
(x1 + x2) (A should not contain more

than 60% of ammonia)
7
10

y1 +
4

10
y2 ≤ 5

10
(y1 + y2) (B should contain at least

50%of ammonia)

Thus, the problem can be restated as

Maximize f = x1 + 2x2 + 2y1 + 3y2 (E1)

subject to
x1 + x2 + y1 + y2

x1 + y1

≤ 1000
≤ 500

(E2)

x1 + x2

x1 − 2x2

≤ 600
≤ 0

(E3)

−2y1 + y2 ≤ 0 (E4)

xi ≥ 0, yi ≥ 0, i = 1, 2

This problem can also be stated in matrix notation as follows:

Maximize f (X) = cT
1 X1 + cT

2 X2

subject to
A1X1 + A2X2 ≤ b0

B1X1 ≤ b1

B2X2 ≤ b2

X1 ≥ 0, X2 ≥ 𝟎

(E5)

where

X1 =
{

x1

x2

}
, X2 =

{
y1

y2

}
, c1 =

{
1
2

}
, c2 =

{
2
3

}
,

A1 =
[

1 1
1 0

]
, A2 =

[
1 1
1 0

]
, b0 =

{
1000
500

}
,

B1 =
[

1 1
1 −2

]
, b1 =

{
600

0

}
, B2 = {−2 1}, b2 = {0},

X =
{

X1

X2

}

Step 1 We first consider the subsidiary constraint sets

B1X1 ≤ b1, X1 ≥ 0 (E6)

B2X2 ≤ b2, X2 ≥ 0 (E7)

�

� �

�

186 Linear Programming II: Additional Topics and Extensions

2000R (400, 200)

(600, 0)

P(0, 0)

Q (0, 600)
T (1000, 2000)

U (1000, 0)

(a) (b)

x2

x1 – 2x2 = 0

x1 + x2 = 600
x1 y1

y2

1000

S(0, 0)

Figure 4.1 Vertices of feasible regions. To make the feasible region bounded, the constraint
y1 ≤ 1000 is added in view of Eq. (E2).

The convex feasible regions represented by (E6) and (E7) are shown in
Figure 4.1a and b, respectively. The vertices of the two feasible regions are
given by

X(1)
1 = point P =

{
0
0

}
X(1)

2 = point Q =
{

0
600

}
X(1)

3 = point R =
{

400
200

}
X(2)

1 = point S =
{

0
0

}
X(2)

2 = point T =
{

1000
2000

}
X(2)

3 = point U =
{

1000
0

}
Thus, any point in the convex feasible sets defined by Eqs. (E6) and (E7) can
be represented, respectively, as

X1 = 𝜇11

{
0
0

}
+ 𝜇12

{
0
600

}
+ 𝜇13

{
400
200

}
=
{

400𝜇13

600𝜇12 + 200𝜇13

}
with

𝜇11 + 𝜇12 + 𝜇13 = 1, 0 ≤ 𝜇1i ≤ 1, i = 1, 2, 3

⎫⎪⎪⎬⎪⎪⎭
(E8)

and

X2 = 𝜇21

{
0
0

}
+ 𝜇22

{
1000
2000

}
+ 𝜇23

{
1000

0

}
=
{

1000𝜇22 + 1000𝜇23

2000𝜇22

}
with

𝜇21 + 𝜇22 + 𝜇23 = 1, 0 ≤ 𝜇2i ≤ 1, i = 1, 2, 3

⎫⎪⎪⎬⎪⎪⎭
(E9)

�

� �

�

4.5 Sensitivity or Postoptimality Analysis 187

Step 2 By substituting the relations of (E8) and (E9), the problem stated in Eqs. (E5)
can be rewritten as

Maximize f (𝜇11, 𝜇12, . . . , 𝜇23) = (1 2)
{

400𝜇13

600𝜇12 + 200𝜇13

}
+ (2 3)

{
1000𝜇22 + 1000𝜇23

2000𝜇22

}
= 800𝜇13 + 1200𝜇12 + 8000𝜇22 + 2000𝜇23

subject to [
1 1
1 0

]{
400𝜇13

600𝜇12 + 200𝜇13

}
+
[

1 1
1 0

]{
1000𝜇22 + 1000𝜇23

2000𝜇22

}
≤
{

1000
500

}
that is,

600𝜇12 + 600𝜇13 + 3000𝜇22 + 1000𝜇23 ≤ 1000

400𝜇13 + 1000𝜇22 + 1000𝜇23 ≤ 500

𝜇11 + 𝜇12 + 𝜇13 = 1

𝜇21 + 𝜇22 + 𝜇23 = 1

with
𝜇11 ≥ 0, 𝜇12 ≥ 0, 𝜇13 ≥ 0, 𝜇21 ≥ 0, 𝜇22 ≥ 0, 𝜇23 ≥ 0

The optimization problem can be stated in standard form (after adding the
slack variables 𝛼 and 𝛽) as

Minimize f = −1200𝜇12 − 800𝜇13 − 8000𝜇22 − 2000𝜇23

subject to

600𝜇12 + 600𝜇13 + 3000𝜇22 + 1000𝜇23 + 𝛼 = 1000

400𝜇13 + 1000𝜇22 + 1000𝜇23 + 𝛽 = 500

𝜇11 + 𝜇12 + 𝜇13 = 1

𝜇21 + 𝜇22 + 𝜇23 = 1

𝜇ij ≥ 0 (i = 1, 2; j = 1, 2, 3), 𝛼 ≥ 0, 𝛽 ≥ 0 (E10)

Step 3 The problem (E10) can now be solved by using the simplex method.

4.5 SENSITIVITY OR POSTOPTIMALITY ANALYSIS

In most practical problems, we are interested not only in optimal solution of the LP
problem, but also in how the solution changes when the parameters of the problem
change. The change in the parameters may be discrete or continuous. The study of the
effect of discrete parameter changes on the optimal solution is called sensitivity analy-
sis and that of the continuous changes is termed parametric programming. One way to

�

� �

�

188 Linear Programming II: Additional Topics and Extensions

determine the effects of changes in the parameters is to solve a series of new problems
once for each of the changes made. This is, however, very inefficient from a compu-
tational point of view. Some techniques that take advantage of the properties of the
simplex solution are developed to make a sensitivity analysis. We study some of these
techniques in this section. There are five basic types of parameter changes that affect
the optimal solution:

1. Changes in the right-hand-side constants bi

2. Changes in the cost coefficients cj

3. Changes in the coefficients of the constraints aij

4. Addition of new variables
5. Addition of new constraints

In general, when a parameter is changed, it results in one of three cases:

1. The optimal solution remains unchanged; that is, the basic variables and their
values remain unchanged.

2. The basic variables remain the same, but their values are changed.
3. The basic variables as well as their values are changed.

4.5.1 Changes in the Right-Hand-Side Constants bi

Suppose that we have found the optimal solution to a LP problem. Let us now change
the bi to bi +Δbi so that the new problem differs from the original only on the
right-hand side. Our interest is to investigate the effect of changing bi to bi +Δbi on
the original optimum. We know that a basis is optimal if the relative cost coefficients
corresponding to the nonbasic variables cj are nonnegative. By considering the
procedure according to which cj are obtained, we can see that the values of cj are not
related to the bi. The values of cj depend only on the basis, on the coefficients of the
constraint matrix, and the original coefficients of the objective function. The relation
is given in Eq. (4.10):

cj = cj − 𝝅
TAj = cj − cT

BB−1Aj (4.33)

Thus, changes in bi will affect the values of basic variables in the optimal solution
and the optimality of the basis will not be affected provided that the changes made in
bi do not make the basic solution infeasible. Thus, if the new basic solution remains
feasible for the new right-hand side, that is, if

X′
B = B−1(b + Δb) ≥ 𝟎 (4.34)

then the original optimal basis, B, also remains optimal for the new problem. Since
the original solution, say5

XB =

⎧⎪⎪⎨⎪⎪⎩
x1

x2

⋮
xm

⎫⎪⎪⎬⎪⎪⎭
5It is assumed that the variables are renumbered such that the first m variables represent the basic variables
and the remaining n−m the nonbasic variables.

�

� �

�

4.5 Sensitivity or Postoptimality Analysis 189

is given by
XB = B−1b (4.35)

Equation (4.34) can also be expressed as

x′i = xi +
m∑

j=1

𝛽ijΔbj ≥ 0, i = 1, 2, . . . ,m (4.36)

where
B−1 = [𝛽ij] (4.37)

Hence the original optimal basis B remains optimal provided that the changes
made in bi, Δbi, satisfy the inequalities (4.36). The change in the value of the ith
optimal basic variable, Δxi, due to the change in bi is given by

X′
B − XB = ΔXB = B−1Δb

that is,

Δxi =
m∑

j=1

𝛽ijΔbj, i = 1, 2, . . . ,m (4.38)

Finally, the change in the optimal value of the objective function (Δf) due to the
change Δbi can be obtained as

Δf = cT
BΔXB = cT

BB−1Δb = 𝝅
TΔb =

m∑
j=1

𝜋jΔbj (4.39)

Suppose that the changes made in bi (Δbi) are such that the inequality (4.34)
is violated for some variables so that these variables become infeasible for the new
right-hand-side vector. Our interest in this case will be to determine the new opti-
mal solution. This can be done without reworking the problem from the beginning by
proceeding according to the following steps:

1. Replace the bi of the original optimal tableau by the new values, b
′
= B−1(b +

Δb) and change the signs of all the numbers that are lying in the rows in which
the infeasible variables appear, that is, in rows for which b

′
i < 0.

2. Add artificial variables to these rows, thereby replacing the infeasible variables
in the basis by the artificial variables.

3. Go through the phase I calculations to find a basic feasible solution for the
problem with the new right-hand side.

4. If the solution found at the end of phase I is not optimal, we go through the
phase II calculations to find the new optimal solution.

The procedure outlined above saves considerable time and effort compared to the
reworking of the problem from the beginning if only a few variables become infea-
sible with the new right-hand side. However, if the number of variables that become
infeasible are not few, the procedure above might also require as much effort as the
one involved in reworking of the problem from the beginning.

Example 4.5 A manufacturer produces four products, A, B, C, and D, by using
two types of machines (lathes and milling machines). The times required on the two

�

� �

�

190 Linear Programming II: Additional Topics and Extensions

machines to manufacture 1 unit of each of the four products, the profit per unit of the
product, and the total time available on the two types of machines per day are given
below:

Time required per unit (min) for product:
Machine A B C D

Total time available
per day (min)

Lathe machine 7 10 4 9 1200
Milling machine 3 40 1 1 800
Profit per unit ($) 45 100 30 50

Find the number of units to be manufactured of each product per day for maxi-
mizing the profit.

Note: This is an ordinary LP problem and is given to serve as a reference problem
for illustrating the sensitivity analysis.

SOLUTION Let x1, x2, x3, and x4 denote the number of units of products A, B, C,
and D produced per day. Then the problem can be stated in standard form as follows:

Minimize f = −45x1 − 100x2 − 30x3 − 50x4

subject to

7x1 + 10x2 + 4x3 + 9x4 ≤ 1200

3x1 + 40x2 + x3 + x4 ≤ 800

xi ≥ 0, i = 1 to 4

By introducing the slack variables x5 ≥ 0 and x6 ≥ 0, the problem can be stated in
canonical form and the simplex method can be applied. The computations are shown
in table form below:

Variables Ratio bi∕aisBasic
variables x1 x2 x3 x4 x5 x6 −f bi for ais > 0

x5 7 10 4 9 1 0 0 1200 120

x6 3 40 1 1 0 1 0 800 20← Smaller one, x6
leaves the basis

Pivot element

−f −45 −100 −30 −50 0 0 1 0

↑
Minimum cj < 0; x2 enters the next basis

Result of pivot operation:

x5
25
4

0 15
4

35
4

1 − 1
4

0 1000 4000
35

← Smaller one,
x5 leaves the basis

Pivot element
x2

3
40

1 1
40

1
40

0 1
40

0 20 800

−f − 75
2

0 − 55
2

− 95
2

0 − 5
2

1 2000

↑
Minimum cj < 0, x4 enters the basis

�

� �

�

4.5 Sensitivity or Postoptimality Analysis 191

Result of pivot operation:

x4
5
7

0 3
7

1 4
35

− 1
35

0 4,000
35

800
3
← Smaller one,

x4 leaves the basis
Pivot element

x2
2
35

1 1
70

0 − 1
350

9
350

0 120
7

1200

−f − 25
7

0 − 50
7

0 38
7

8
7

1 52,000
7

↑
Minimum cj < 0, x3 enters the basis

Result of pivot operation:

x3
5
3

0 1 7
3

4
15

− 1
15

0 800
3

x2
1
30

1 0 − 1
30

− 1
150

2
75

0 40
3

−f 25
3

0 0 50
3

22
3

2
3

1 28,000
3

The optimum solution is given by

x2 = 40
3
, x3 = 800

3
(basic variables)

x1 = x4 = x5 = x6 = 0 (nonbasic variables)

fmin = −28,000
3

or maximum profit = $28,000
3

From the final tableau, one can find that

XB =
{

x3

x2

}
=

{ 800
3
40
3

}
= the optimum solution

vector of basic variables in (E1)

cB =
{

c3

c2

}
=
{

−30
−100

}
=

coefficients corresponding
to the basic variables
vector of original cost

(E2)

B =
[

4 10
1 40

]
= corresponding to the basic variables

matrix of original coefficients (E3)

B−1 =
[
𝛽33 𝛽32

𝛽23 𝛽22

]
=

[4
15

− 1
15

− 1
150

2
75

]
=

inverse of the coefficient
matrix B,which appears
in the final tableau also

(E4)

𝝅 = cT
BB−1 = (−30 − 100)

[4
15

− 1
15

− 1
150

2
75

]

=

{
− 22

3

− 2
3

}
=

negatives of which appear
in the final tableau also
simplex multipliers, the

(E5)

Example 4.6 Find the effect of changing the total time available per day on the two
machines from 1200 and 800 minutes to 1500 and 1000 minutes in Example 4.5.

�

� �

�

192 Linear Programming II: Additional Topics and Extensions

SOLUTION Equation (4.36) gives

xi +
m∑

j=1

𝛽ijΔbj ≥ 0, i = 1, 2, . . . ,m (4.36)

where xi is the optimum value of the ith basic variable. (This equation assumes that
the variables are renumbered such that x1 to xm represent the basic variables.)

If the variables are not renumbered, Eq. (4.36) will be applicable for i= 3 and
2 in the present problem with Δb3 = 300 and Δb2 = 200. From Eqs. (E1) to (E5) of
Example 4.5, the left-hand sides of Eq. (4.36) become

x3 + 𝛽33Δb3 + 𝛽32Δb2 = 800
3

+ 4
15

(300) − 1
15

(200) = 5000
15

x2 + 𝛽23Δb3 + 𝛽22Δb2 = 40
3

− 1
150

(300) + 2
75

(200) = 2500
150

Since both these values are ≥0, the original optimal basis B remains optimal even
with the new values of bi. The new values of the (optimal) basic variables are given
by Eq. (4.38) as

X′
B =

{
x′3
x′2

}
= XB + ΔXB = XB + B−1Δb

=

{ 800
3
40
3

}
+

[4
15

− 1
15

− 1
150

2
75

]{
300
200

}
=

{ 1000
3
50
3

}
and the optimum value of the objective function by Eq. (4.39) as

f ′min = fmin + Δf = fmin + cT
BΔXB = −28,000

3
+ (−30 − 100)

{ 200
3
10
3

}

= −35,000
3

Thus, the new profit will be $35 000/3.

4.5.2 Changes in the Cost Coefficients cj

The problem here is to find the effect of changing the cost coefficients from cj to
cj +Δcj on the optimal solution obtained with cj. The relative cost coefficients corre-
sponding to the nonbasic variables, xm+1, xm+2, . . . , xn are given by Eq. (4.10):

cj = cj − 𝝅
TAj = cj −

m∑
i=1

𝜋iaij, j = m + 1,m + 2, . . . , n (4.40)

where the simplex multipliers 𝜋i are related to the cost coefficients of the basic vari-
ables by the relation

𝝅
T = cT

BB−1

that is,

𝝅
T =

m∑
k=1

ck𝛽ki, i = 1, 2, . . . ,m (4.41)

�

� �

�

4.5 Sensitivity or Postoptimality Analysis 193

From Eqs. (4.40) and (4.41), we obtain

cj = cj −
m∑

i=1

aij

(
m∑

k=1

ck𝛽ki

)
= cj −

m∑
k=1

ck

(
m∑

i=1

aij𝛽ki

)
,

i = m + 1,m + 2, . . . , n (4.42)

If the cj are changed to cj +Δcj, the original optimal solution remains optimal,
provided that the new values of cj, c′j satisfy the relation

c′j = cj + Δcj −
m∑

k=1

(ck + Δck)

(
m∑

i=1

aij𝛽ki

)
≥ 0

= cj + Δcj −
m∑

k=1

Δck

(
m∑

i=1

aij𝛽ki

)
≥ 0,

j = m + 1,m + 2,⋯, n (4.43)

where cj indicate the values of the relative cost coefficients corresponding to the orig-
inal optimal solution.

In particular, if changes are made only in the cost coefficients of the nonbasic
variables, Eq. (4.43) reduces to

cj + Δcj ≥ 0, j = m + 1,m + 2, . . . , n (4.44)

If Eq. (4.43) is satisfied, the changes made in cj, Δcj, will not affect the optimal
basis and the values of the basic variables. The only change that occurs is in the optimal
value of the objective function according to

Δf =
m∑

j=1

xjΔcj (4.45)

and this change will be zero if only the cj of nonbasic variables are changed.
Suppose that Eq. (4.43) is violated for some of the nonbasic variables. Then it is

possible to improve the value of the objective function by bringing any nonbasic vari-
able that violates Eq. (4.43) into the basis provided that it can be assigned a nonzero
value. This can be done easily with the help of the previous optimal table. Since some
of the c′j are negative, we start the optimization procedure again by using the old opti-
mum as an initial feasible solution. We continue the iterative process until the new
optimum is found. As in the case of changing the right-hand-side bi, the effectiveness
of this procedure depends on the number of violations made in Eq. (4.43) by the new
values cj +Δcj.

In some of the practical problems, it may become necessary to solve the optimiza-
tion problem with a series of objective functions. This can be accomplished without
reworking the entire problem for each new objective function. Assume that the opti-
mum solution for the first objective function is found by the regular procedure. Then
consider the second objective function as obtained by changing the first one and eval-
uate Eq. (4.43). If the resulting c′j ≥ 0, the old optimum still remains as optimum and
one can proceed to the next objective function in the same manner. On the other hand,
if one or more of the resulting c′j < 0, we can adopt the procedure outlined above and
continue the iterative process using the old optimum as the starting feasible solution.
After the optimum is found, we switch to the next objective function.

�

� �

�

194 Linear Programming II: Additional Topics and Extensions

Example 4.7 Find the effect of changing c3 from −30 to −24 in Example 4.5.

SOLUTION Here Δc3 = 6 and Eq. (4.43) gives that

c′1 = c1 + Δc1 − Δc3[a21𝛽32 + a31𝛽33] =
25
3
+ 0 − 6

[
3
(
− 1

15

)
+ 7

(
4

15

)]
= − 5

3

c′4 = c4 + Δc4 − Δc3[a24𝛽32 + a34𝛽33] =
50
3
+ 0 − 6

[
1
(
− 1

15

)
+ 9

(
4

15

)]
= 8

3

c′5 = c5 + Δc5 − Δc3[a25𝛽32 + a35𝛽33] =
22
3
+ 0 − 6

[
0
(
− 1

15

)
+ 1

(
4

15

)]
= 86

15

c′6 = c6 + Δc6 − Δc3[a26𝛽32 + a36𝛽33] =
2
3
+ 0 − 6

[
1
(
− 1

15

)
+ 0

(
4

15

)]
= 16

15

The change in the value of the objective function is given by Eq. (4.45) as

Δf = Δc3x3 = 4800
3

so that f = −28,000
3

+ 4800
3

= −23,200
3

Since c′j is negative, we can bring x1 into the basis. Thus, we start with the opti-

mal table of the original problem with the new values of relative cost coefficients and
improve the solution according to the regular procedure.

VariablesBasic
variables x1 x2 x3 x4 x5 x6 −f bi

Ratio bi/aij

for aij > 0

x3
5
3

0 1 7
3

4
15

− 1
15

0 800
3

160 ←

Pivot element
x2

1
30

1 0 − 1
30

− 1
150

2
75

0 40
3

400

−f − 5
3
↑

0 0 8
3

86
15

16
15

1 23,200
3

x1 1 0 3
5

7
5

4
25

− 1
25

0 160

x2 0 1 − 1
50

− 2
25

− 3
250

7
250

0 8

−f 0 0 1 5 6 1 1 8000

Since all the relative cost coefficients are nonnegative, the present solution is opti-
mum with

x1 = 160, x2 = 8 (basic variables)

x3 = x4 = x5 = x6 = 0 (nonbasic variables)

fmin = −8000 and maximum profit = $8000

4.5.3 Addition of New Variables

Suppose that the optimum solution of a LP problem with n variables x1, x2, . . . , xn has
been found and we want to examine the effect of adding some more variables xn+k,
k= 1, 2, . . . , on the optimum solution. Let the constraint coefficients and the cost
coefficients corresponding to the new variables xn+k be denoted by ai, n+k, i= 1 to m

�

� �

�

4.5 Sensitivity or Postoptimality Analysis 195

and cn+k, respectively. If the new variables are treated as additional nonbasic variables
in the old optimum solution, the corresponding relative cost coefficients are given by

cn+k = cn+k −
m∑

i=1

𝜋iai,n+k (4.46)

where 𝜋1, 𝜋2, . . . , 𝜋m are the simplex multipliers corresponding to the original opti-
mum solution. The original optimum remains optimum for the new problem also
provided that cn+k ≥ 0 for all k. However, if one or more cn+k < 0, it pays to bring
some of the new variables into the basis, provided that they can be assigned a nonzero
value. For bringing a new variable into the basis, we first have to transform the coef-
ficients ai,n+k into ai,n+k so that the columns of the new variables correspond to the
canonical form of the old optimal basis. This can be done by using Eq. (4.9) as

An+k
m×1

= B−1

m×m
An+k
m×1

that is,

ai,n+k =
m∑

j=1

𝛽ijaj,n+k, i = 1 to m (4.47)

where B−1 = [𝛽 ij] is the inverse of the old optimal basis. The rules for bringing a new
variable into the basis, finding a new basic feasible solution, testing this solution for
optimality, and the subsequent procedure is same as the one outlined in the regular
simplex method.

Example 4.8 In Example 4.5, if a new product, E, which requires 15 minutes of
work on the lathe and 10 minutes on the milling machine per unit, is available, will it
be worthwhile to manufacture it if the profit per unit is $40?

SOLUTION Let xk be the number of units of product E manufactured per day. Then
ck =−40, a1k = 15, and a2k = 10; therefore,

ck = ck − 𝜋1a1k − 𝜋2a2k = −40 +
(

22
3

)
(15) +

(
2
3

)
(10) = 230

3
≥ 0

Since the relative cost coefficient ck is nonnegative, the original optimum solu-
tion remains optimum for the new problem also and the variable xk will remain as a
nonbasic variable. This means that it is not worth manufacturing product E.

4.5.4 Changes in the Constraint Coefficients aij

Here the problem is to investigate the effect of changing the coefficient aij to aij +Δaij
after finding the optimum solution with aij. There are two possibilities in this case.
The first possibility occurs when all the coefficients aij, in which changes are made,
belong to the columns of those variables that are nonbasic in the old optimal solution.
In this case, the effect of changing aij on the optimal solution can be investigated
by adopting the procedure outlined in the preceding section. The second possibility
occurs when the coefficients changed aij correspond to a basic variable, say, xj0 of
the old optimal solution. ddd The following procedure can be adopted to examine the
effect of changing ai, j0 to ai, j0 +Δai, j0.

1. Introduce a new variable xn+1 to the original system with constraint coefficients

ai,n+1 = ai, j0 + Δai, j0 (4.48)

�

� �

�

196 Linear Programming II: Additional Topics and Extensions

and cost coefficient

cn+1 = cj0 (original value itself) (4.49)

2. Transform the coefficients ai, n+1 to ai,n+1 by using the inverse of the old optimal
basis, B−1 = [𝛽 ij], as

ai,n+1 =
m∑

j=1

𝛽ijaj,n+1, i = 1 to m (4.50)

3. Replace the original cost coefficient (cj0) of xj0 by a large positive number N,
but keep cn+1 equal to the old value cj0.

4. Compute the modified cost coefficients using Eq. (4.43):

c′j = cj + Δcj −
m∑

k=1

Δck

(
m∑

i=1

aij𝛽ki

)
,

j = m + 1,m + 2,⋯ , n, n + 1 (4.51)

where Δck = 0 for k= 1, 2, . . . , j0 − 1, j0 + 1, . . . , m and Δcj0 =N− cj0.
5. Carry the regular iterative procedure of simplex method with the new objective

function and the augmented matrix found in Eqs. (4.50) and (4.51) until the new
optimum is found.

Remarks:

1. The number N has to be taken sufficiently large to ensure that xj0 cannot be
contained in the new optimal basis that is ultimately going to be found.

2. The procedure above can easily be extended to cases where changes in coeffi-
cients aij of more than one column are made.

3. The present procedure will be computationally efficient (compared to rework-
ing of the problem from the beginning) only for cases where there are not too
many basic columns in which the aij are changed.

Example 4.9 Find the effect of changing A1 from
{7

3

}
to

{ 6
10

}
in Example 4.5

(i.e. changes are made in the coefficients aij of nonbasic variables only).

SOLUTION The relative cost coefficients of the nonbasic variables (of the original
optimum solution) corresponding to the new aij are given by

cj = cj − 𝝅
TAj, j = nonbasic (1, 4, 5, 6)

Since A1 is changed, we have

c1 = c1 − 𝝅
TA1 = −45 −

(
− 22

3
− 2

3

){ 6
10

}
= 17

3

As c1 is positive, the original optimum solution remains optimum for the new
problem also.

Example 4.10 Find the effect of changing A1 from
{7

3

}
to
{5

6

}
in Example 4.5.

�

� �

�

4.5 Sensitivity or Postoptimality Analysis 197

SOLUTION The relative cost coefficient of the nonbasic variable x1 for the new A1
is given by

c1 = c1 − 𝝅
TA1 = −45 −

(
− 22

3
− 2

3

){5
6

}
= − 13

3

Since c1 is negative, x1 can be brought into the basis to reduce the objective func-
tion further. For this we start with the original optimum tableau with the new values
of A1 given by

A1 = B−1A1 =
⎡⎢⎢⎣

4
15

− 1
15

− 1
150

2
75

⎤⎥⎥⎦
{

5
6

}
=
⎡⎢⎢⎣

20
15

− 6
15

− 1
30

+ 4
25

⎤⎥⎥⎦ =
{ 14

15
19

150

}

VariablesBasic
variables x1 x2 x3 x4 x5 x6 −f bi (bi∕ais)

x3
14
15

0 1 7
3

4
15

− 1
15

0 800
3

4000
14

x2
19
150

1 0 − 1
30

− 1
150

2
75

0 40
3

2000
19

←

Pivot element

−f − 13
3

0 0 50
3

22
3

2
3

1 28,000
3

↑

x3 0 − 140
19

1 49
19

6
19

− 5
19

0 3,200
19

x1 1 150
19

0 − 5
19

− 1
19

4
19

0 2,000
19

−f 0 650
19

0 295
19

135
19

30
19

1 186,000
19

Since all cj are nonnegative, the present tableau gives the new optimum solution as

x1 = 2000∕19, x3 = 3200∕19 (basic variables)

x2 = x4 = x5 = x6 = 0 (nonbasic variables)

fmin = −186,000
19

and maximum profit = $186,000
19

4.5.5 Addition of Constraints

Suppose that we have solved a LP problem with m constraints and obtained the optimal
solution. We want to examine the effect of adding some more inequality constraints
on the original optimum solution. For this we evaluate the new constraints by substi-
tuting the old optimal solution and see whether they are satisfied. If they are satisfied,
it means that the inclusion of the new constraints in the old problem would not have
affected the old optimum solution, and hence the old optimal solution remains optimal
for the new problem also. On the other hand, if one or more of the new constraints are
not satisfied by the old optimal solution, we can solve the problem without reworking
the entire problem by proceeding as follows.

1. The simplex tableau corresponding to the old optimum solution expresses all
the basic variables in terms of the nonbasic ones. With this information, elim-
inate the basic variables from the new constraints.

�

� �

�

198 Linear Programming II: Additional Topics and Extensions

2. Transform the constraints thus obtained by multiplying throughout by −1.
3. Add the resulting constraints to the old optimal tableau and introduce one arti-

ficial variable for each new constraint added. Thus, the enlarged system of
equations will be in canonical form since the old basic variables were elim-
inated from the new constraints in step 1. Hence a new basis, consisting of the
old optimal basis plus the artificial variables in the new constraint equations,
will be readily available from this canonical form.

4. Go through phase I computations to eliminate the artificial variables.
5. Go through phase II computations to find the new optimal solution.

Example 4.11 If each of the products A, B, C, and D require, respectively, 2, 5, 3, and
4 minutes of time per unit on grinding machine in addition to the operations specified
in Example 4.5, find the new optimum solution. Assume that the total time available
on grinding machine per day is 600 minutes and all this time has to be utilized fully.

SOLUTION The present data correspond to the addition of a constraint that can be
stated as

2x1 + 5x2 + 3x3 + 4x4 = 600 (E1)

By substituting the original optimum solution,

x2 = 40
3
, x3 = 800

3
, x1 = x4 = x5 = x6 = 0

the left-hand side of Eq. (E1) gives

2(0) + 5
(

40
3

)
+ 3

(
800
3

)
+ 4(0) = 2600

3
≠ 600

Thus, the new constraint is not satisfied by the original optimum solution. Hence,
we proceed as follows.

Step 1 From the original optimum table, we can express the basic variables as

x3 = 800
3

− 5
3
x1 −

7
3
x4 −

4
15

x5 +
1

15
x6

x2 = 40
3
− 1

30
x1 +

1
30

x4 +
1

150
x5 −

1
75

x6

Thus Eq. (E1) can be expressed as

2x1 + 5
(

40
3
− 1

30
x1 +

1
30

x4 +
1

150
x5 −

2
75

x6

)
+ 3

(
800
3

− 5
3
x1 −

7
3
x4 −

4
15

x5 +
1

15
x6

)
+ 4x4 = 600

that is,
− 19

6
x1 −

17
6

x4 −
23
30

x5 +
1

15
x6 = − 800

3
(E2)

Step 2 Transform this constraint such that the right-hand side becomes positive,
that is,

19
6

x1 +
17
6

x4 +
23
30

x5 −
1

15
x6 = 800

3
(E3)

�

� �

�

4.6 Transportation Problem 199

Step 3 Add an artificial variable, say, xk, the new constraint given by Eq. (E3) and
the infeasibility form w= xk into the original optimum tableau to obtain the
new canonical system as follows:

VariablesBasic
variables x1 x2 x3 x4 x5 x6 xk −f −w bi (bi∕ais)

x3
5
3

0 1 7
3

4
5

− 1
15

0 0 0 800
3

160

x2
1
30

1 0 − 1
30

− 1
150

2
75

0 0 0 40
3

400

xk
19
6

0 0 17
6

23
30

− 1
15

1 0 0 800
3

1600
19

Pivot element

−f 25
3

0 0 50
3

22
3

2
3

0 1 0 28,00
3

−w − 19
6

0 0 − 17
6

− 23
30

1
15

0 0 1 − 800
3

↑

Step 4 Eliminate the artificial variable by applying the phase I procedure:

VariablesBasic
variables x1 x2 x3 x4 x5 x6 xk −f −w bi

x3 0 0 1 16
19

113
285

− 3
95

− 10
19

0 0 2,400
19

x2 0 1 0 − 6
95

− 7
475

13
475

− 1
95

0 0 200
19

x1 1 0 0 17
19

23
95

− 2
95

6
19

0 0 1,600
19

−f 0 0 0 175
19

101
19

16
19

− 50
19

1 0 164,000
19

−w 0 0 0 0 0 0 0 0 1 0

Thus, the new optimum solution is given by

x1 = 1600
19

, x2 = 200
19

, x3 = 2400
19

(basic variables)

x4 = x5 = x6 = 0 (nonbasic variables)

fmin = −164,000
19

and maximum profit = $164,000
19

4.6 TRANSPORTATION PROBLEM

This section deals with an important class of LP problems called the transportation
problem. As the name indicates, a transportation problem is one in which the objec-
tive for minimization is the cost of transporting a certain commodity from a number
of origins to a number of destinations. Although the transportation problem can be
solved using the regular simplex method, its special structure offers a more convenient
procedure for solving this type of problems. This procedure is based on the same the-
ory of the simplex method, but it makes use of some shortcuts that yield a simpler
computational scheme.

Suppose that there are m origins R1, R2, ⋅⋅⋅ , Rm (e.g. warehouses) and n destina-
tions, D1, D2, ⋅⋅⋅ , Dn (e.g. factories). Let ai be the amount of a commodity available at

�

� �

�

200 Linear Programming II: Additional Topics and Extensions

origin i (i= 1, 2, . . . , m) and bj be the amount required at destination j (j= 1, 2, . . . , n).
Let cij be the cost per unit of transporting the commodity from origin i to destination
j. The objective is to determine the amount of commodity (xij) transported from origin
i to destination j such that the total transportation costs are minimized. This problem
can be formulated mathematically as

Minimize f =
m∑

i=1

n∑
j=1

cij (4.52)

subject to
n∑

j=1

xij = ai, i = 1, 2, . . . ,m (4.53)

m∑
i=1

xij = bj, j = 1, 2, . . . , n (4.54)

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (4.55)

Clearly, this is a LP problem in mn variables and m+ n equality constraints.
Equation (4.53) state that the total amount of the commodity transported from the

origin i to the various destinations must be equal to the amount available at origin
i (i= 1, 2, . . . , m), while Eq. (4.54) state that the total amount of the commodity
received by destination j from all the sources must be equal to the amount required at
the destination j (j= 1, 2, . . . , n). The nonnegativity conditions Eq. (4.55) are added
since negative values for any xij have no physical meaning. It is assumed that the total
demand equals the total supply, that is,

m∑
i=1

ai =
n∑

j=1

bj (4.56)

Equation (4.56), called the consistency condition, must be satisfied if a solution
is to exist. This can be seen easily since

m∑
i=1

ai =
m∑

i=1

(
n∑

j=1

xij

)
=

n∑
j=1

(
m∑

i=1

xij

)
=

n∑
j=1

bj (4.57)

The problem stated in Eqs. (4.52)–(4.56) was originally formulated and solved
by Hitchcock in 1941 [4.6]. This was also considered independently by Koopmans in
1947 [4.7]. Because of these early investigations the problem is sometimes called the
Hitchcock–Koopmans transportation problem. The special structure of the transporta-
tion matrix can be seen by writing the equations in standard form:

x11 + x12 +⋯ + x1n = a1

x21 + x22 +⋯ + x2n = a2

⋮ ⋮

xm1 + xm2 +⋯ + xmn = am

(58a)

x11 + x21 + xm1 = b1

x12 + x22 + xm2 = b2

⋮ ⋮ ⋮

x1n + x2n + xmn = bn

(58b)

�

� �

�

4.6 Transportation Problem 201

c11x11 + c12x12 +⋯ + c1nx1n + c21x21 +⋯ + c2nx2n +⋯

+ cm1xm1 +⋯ + cmnxmn = f (58c)

We notice the following properties from Eq. (4.58):

1. All the nonzero coefficients of the constraints are equal to 1.
2. The constraint coefficients appear in a triangular form.
3. Any variable appears only once in the first m equations and once in the next n

equations.

These are the special properties of the transportation problem that allow devel-
opment of the transportation technique. To facilitate the identification of a starting
solution, the system of equations (4.58) is represented in the form of an array, called
the transportation array, as shown in Figure 4.2. In all the techniques developed for
solving the transportation problem, the calculations are made directly on the trans-
portation array.

Computational Procedure. The solution of a LP problem, in general, requires a
calculator or, if the problem is large, a high-speed digital computer. On the other hand,
the solution of a transportation problem can often be obtained with the use of a pencil
and paper since additions and subtractions are the only calculations required. The basic
steps involved in the solution of a transportation problem are

1. Determine a starting basic feasible solution.
2. Test the current basic feasible solution for optimality. If the current solution is

optimal, stop the iterative process; otherwise, go to step 3.

c11 c12 c13 c1n

c2nc21

x11

1

1

2

a1

a2

3

m

2

To

From

Amount
available

ai
3 ...

...

...

...

...

...

...

n

x12

Destination j

x13 x1n

x21 x2n

c22

x22

c23

c3nc31 a3c32 c33

x23

x31

xm1

b1

Amount
required

bj

b2 b3 bn

cm1 cm2 cm3 cmn am

xm2 xm3 xmn

Origin
i x32 x33 x3n

Figure 4.2 Transportation array.

�

� �

�

202 Linear Programming II: Additional Topics and Extensions

3. Select a variable to enter the basis from among the current nonbasic variables.
4. Select a variable to leave from the basis from among the current basic variables

(using the feasibility condition).
5. Find a new basic feasible solution and return to step 2.

The details of these steps are given in Ref. [4.10].

4.7 KARMARKAR’S INTERIOR METHOD

Karmarkar proposed a new method in 1984 for solving large-scale linear program-
ming problems very efficiently. The method is known as an interior method since it
finds improved search directions strictly in the interior of the feasible space. This is in
contrast with the simplex method, which searches along the boundary of the feasible
space by moving from one feasible vertex to an adjacent one until the optimum point
is found. For large LP problems, the number of vertices will be quite large and hence
the simplex method would become very expensive in terms of computer time. Along
with many other applications, Karmarkar’s method has been applied to aircraft route
scheduling problems. It was reported [4.19] that Karmarkar’s method solved problems
involving 150 000 design variables and 12 000 constraints in one hour while the sim-
plex method required four hours for solving a smaller problem involving only 36 000
design variables and 10 000 constraints. In fact, it was found that Karmarkar’s method
is as much as 50 times faster than the simplex method for large problems.

Karmarkar’s method is based on the following two observations:

1. If the current solution is near the center of the polytope, we can move along the
steepest descent direction to reduce the value of f by a maximum amount. From
Figure 4.3, we can see that the current solution can be improved substantially
by moving along the steepest descent direction if it is near the center (point 2)
but not near the boundary point (points 1 and 3).

2. The solution space can always be transformed without changing the nature of
the problem so that the current solution lies near the center of the polytope.

1

2

x1

x2

3

Minimum value of f

Figure 4.3 Improvement of objective function from different points of a polytope.

�

� �

�

4.7 Karmarkar’s Interior Method 203

It is well known that in many numerical problems, by changing the units of data
or rescaling (e.g. using feet instead of inches), we may be able to reduce the numerical
instability. In a similar manner, Karmarkar observed that the variables can be trans-
formed (in a more general manner than ordinary rescaling) so that straight lines remain
straight lines while angles and distances change for the feasible space.

4.7.1 Statement of the Problem

Karmarkar’s method requires the LP problem in the following form:

Minimize f = cTX

subject to

[a]X = 𝟎

x1 + x2 +⋯ + xn = 1

X ≥ 𝟎 (4.59)

where X= {x1, x2, . . . , xn}T, c= {c1,c2, . . . ,cn}T, and [a] is an m× n matrix. In addi-
tion, an interior feasible starting solution to Eq. (4.59) must be known. Usually,

X =
{1

n
,

1
n
,⋯

1
n

}T

is chosen as the starting point. In addition, the optimum value of f must be zero for the
problem. Thus

X(1) =
{1

n
1
n
⋯

1
n

}T

= interior feasible

fmin = 0 (4.60)

Although most LP problems may not be available in the form of Eq. (4.59) while
satisfying the conditions of Eq. (4.60), it is possible to put any LP problem in a form
that satisfies Eqs. (4.59) and (4.60) as indicated below.

4.7.2 Conversion of an LP Problem into the Required Form

Let the given LP problem be of the form

Minimize dTX

subject to

[𝛼]X = b

X ≥ 𝟎 (4.61)

To convert this problem into the form of Eq. (4.59), we use the procedure
suggested in Ref. [4.20] and define integers m and n such that X will be an
(n− 3)-component vector and [𝛼] will be a matrix of order m− 1× n− 3. We now
define the vector z = {z1, z2,⋅⋅⋅, zn−3}T as

z = X
𝛽

(4.62)

�

� �

�

204 Linear Programming II: Additional Topics and Extensions

where 𝛽 is a constant chosen to have a sufficiently large value such that

𝛽 >

n−3∑
i=1

xi (4.63)

for any feasible solution X (assuming that the solution is bounded). By using
Eq. (4.62), the problem of Eq. (4.61) can be stated as follows:

Minimize 𝛽dTz

subject to

[𝛼]z = 1
𝛽

b

z ≥ 𝟎 (4.64)

We now define a new vector z as

z =
⎧⎪⎨⎪⎩

z
zn−2

zn−1

zn

⎫⎪⎬⎪⎭
and solve the following related problem instead of the problem in Eq. (4.64):

Minimize {𝛽dT 0 0 M}z

subject to [
[𝛼] 𝟎 − n

𝛽
b

(
n
𝛽

b − [𝛼]e
)

0 0 n 0

]
z =

{
𝟎
1

}
eTz + zn−2 + zn−1 + zn = 1 (4.65)

z ≥ 𝟎

where e is an (m− 1)-component vector whose elements are all equal to 1, zn−2 is a
slack variable that absorbs the difference between 1 and the sum of other variables,
zn−1 is constrained to have a value of 1/n, and M is given a large value (corresponding
to the artificial variable zn) to force zn to zero when the problem stated in Eq. (4.61)
has a feasible solution. Eq. (4.65) are developed such that if z is a solution to these
equations, X= 𝛽z will be a solution to Eq. (4.61) if Eq. (4.61) have a feasible solu-
tion. Also, it can be verified that the interior point z= (1/n)e is a feasible solution to
Eq. (4.65). Equation (4.65) can be seen to be the desired form of Eq. (4.61) except for
a 1 on the right-hand side. This can be eliminated by subtracting the last constraint
from the next-to-last constraint, to obtain the required form:

Minimize {𝛽dT 0 0 M}z

subject to [
[𝛼] 𝟎 − n

𝛽
b

(
n
𝛽

b − [𝛼]e
)

−eT −1 (n − 1) −1

]
z =

{
𝟎
0

}
eTz + zn−2 + zn−1 + zn = 1 (4.66)

z ≥ 𝟎

�

� �

�

4.7 Karmarkar’s Interior Method 205

Note: When Eq. (4.66) are solved, if the value of the artificial variable zn > 0, the
original problem in Eq. (4.61) is infeasible. On the other hand, if the value of the slack
variable zn−2 = 0, the solution of the problem given by Eq. (4.61) is unbounded.

Example 4.12 Transform the following LP problem into a form required by
Karmarkar’s method:

Minimize 2x1 + 3x2

subject to

3x1 + x2 − 2x3 = 3

5x1 − 2x2 = 2

xi ≥ 0, i = 1, 2, 3

SOLUTION It can be seen that

d = {2 3 0}T
, [𝛼] =

[
3 1 −2
5 −2 0

]
, b =

{
3
2

}
, and X =

⎧⎪⎨⎪⎩
x1

x2

x3

⎫⎪⎬⎪⎭
We define the integers m and n as n= 6 and m= 3 and choose 𝛽 = 10 so that

z = 1
10

⎧⎪⎨⎪⎩
z1

z2

z3

⎫⎪⎬⎪⎭
Noting that e= {1, 1, 1}T, Eq. (4.66) can be expressed as

Minimize
{

20 30 0 0 0 M
}

z

subject to [[
3 1 −2
5 −2 0

] {
0
0

}
− 6

10

{
3
2

}

×
⎛⎜⎜⎜⎝

6
10

{
3
2

}
−
[

3 1 −2
5 −2 0

]⎧⎪⎨⎪⎩
1
1
1

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ z = 𝟎

{
−
{

1 1 1
}

−1 5 −1
}

z = 0

z1 + z2 + z3 + z4 + z5 + z6 = 1

z =
{

z1 z2 z3 z4 z5 z6

}T ≥ 𝟎

where M is a very large number. These equations can be seen to be in the desired form.

4.7.3 Algorithm

Starting from an interior feasible point X(1), Karmarkar’s method finds a sequence of
points X(2), X(3), ⋅⋅⋅ using the following iterative procedure:

�

� �

�

206 Linear Programming II: Additional Topics and Extensions

1. Initialize the iterative process. Begin with the center point of the simplex as the
initial feasible point

X(1) =
{1

n
1
n
⋯

1
n

}T

.

Set the iteration number as k= 1.
2. Test for optimality. Since f= 0 at the optimum point, we stop the procedure if

the following convergence criterion is satisfied:

‖cTX(k)‖ ≤ 𝜀 (4.67)

where 𝜀 is a small number. If Eq. (4.67) is not satisfied, go to step 3.
3. Compute the next point, X(k+1). For this, we first find a point Y(k+1) in the trans-

formed unit simplex as

Y(k+1) =
{1

n
1
n
⋯

1
n

}T

− 𝛼([I] − [P]T([P][P]T)−1[P])[D(X(k))]c‖c‖√n(n − 1)
(4.68)

where ||c|| is the length of the vector c, [I] the identity matrix of order n,
[D(X(k))] an n× n matrix with all off-diagonal entries equal to 0, and diagonal
entries equal to the components of the vector X(k) as

[D(X(k))]ii = x(k)i , i = 1, 2, . . . , n (4.69)

[P] is an (m+ 1)× n matrix whose first m rows are given by [a] [D(X(k))] and
the last row is composed of 1’s:

[P] =
[

[a][D(X(k))]
1 1 ⋯ 1

]
(4.70)

and the value of the parameter 𝛼 is usually chosen as 𝛼 = 1
4

to ensure con-
vergence. Once Y(k+1) is found, the components of the new point X(k+1) are
determined as

x(k+1)
i =

x(k)i y(k+1)
i∑n

r=1 x(k)r y(k+1)
r

, i = 1, 2, . . . , n (4.71)

Set the new iteration number as k= k+ 1 and go to step 2.

Example 4.13 Find the solution of the following problem using Karmarkar’s
method:

Minimize f = 2x1 + x2 − x3

subject to

x2 − x3 = 0

x1 + x2 + x3 = 1

xi ≥ 0, i = 1, 2, 3 (E.1)

Use the value of 𝜀= 0.05 for testing the convergence of the procedure.

�

� �

�

4.7 Karmarkar’s Interior Method 207

SOLUTION The problem is already in the required form of Eq. (4.59), and hence
the following iterative procedure can be used to find the solution of the problem.

Step 1 We choose the initial feasible point as

X(1) =

⎧⎪⎪⎨⎪⎪⎩

1
3
1
3
1
3

⎫⎪⎪⎬⎪⎪⎭
and set k= 1.

Step 2 Since |f (X(1))|= | 2
3
|> 0.05, we go to step 3.

Step 3 Since [a]= {0, 1, −1}, c= {2, 1, −1}T, ||c||=
√
(2)2 + (1)2 + (−1)2 =

√
6,we

find that

[D(X(1))] =

⎡⎢⎢⎢⎢⎣
1
3

0 0

0 1
3

0

0 0 1
3

⎤⎥⎥⎥⎥⎦
[a][D(X(1))] =

{
0 1

3
− 1

3

}
[P] =

[
[a][D(X(1))]

1 1 1

]
=

[
0 1

3
− 1

3

1 1 1

]

([P][P]T)−1 =

[
2
9

0

0 3

]−1

=

[9
2

0

0 1
3

]

[D(X(1))]c =

⎡⎢⎢⎢⎢⎣
1
3

0 0

0 1
3

0

0 0 1
3

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩

2

1

−1

⎫⎪⎬⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩

2
3
1
3

− 1
3

⎫⎪⎪⎬⎪⎪⎭
([I] − [P]T([P][P]T)−1[P])[D(X(1))]c

=
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣

0 1
1
3

1

− 1
3

1

⎤⎥⎥⎥⎦
[9

2
0

0 1
3

][
0 1

3
− 1

3

1 1 1

]⎞⎟⎟⎟⎠
⎧⎪⎪⎨⎪⎪⎩

2
3
1
3

− 1
3

⎫⎪⎪⎬⎪⎪⎭
=

⎡⎢⎢⎢⎢⎣
2
3

− 1
3

− 1
3

− 1
3

1
6

1
6

− 1
3

1
6

1
6

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

2
3

1
3

− 1
3

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

4
9

− 2
9

− 2
9

⎫⎪⎪⎬⎪⎪⎭

�

� �

�

208 Linear Programming II: Additional Topics and Extensions

Using 𝛼 = 1
4
, Eq. (4.68) gives

Y(2) =

⎧⎪⎪⎨⎪⎪⎩

1
3

1
3

1
3

⎫⎪⎪⎬⎪⎪⎭
− 1

4

⎧⎪⎪⎨⎪⎪⎩

4
9

− 2
9

− 2
9

⎫⎪⎪⎬⎪⎪⎭
1√

3(2)
√

6
=

⎧⎪⎪⎨⎪⎪⎩

34
108

37
108

37
108

⎫⎪⎪⎬⎪⎪⎭
Noting that

n∑
r=1

x(1)r y(2)r = 1
3

(
34

108

)
+ 1

3

(
37
108

)
+ 1

3

(
37
108

)
= 1

3

Equation (4.71) can be used to find

{x(2)i } =

⎧⎪⎪⎨⎪⎪⎩
x(1)i y(2)i

3∑
r=1

x(1)r y(2)r

⎫⎪⎪⎬⎪⎪⎭
= 3

⎧⎪⎪⎨⎪⎪⎩

34
324

37
324

37
324

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

34
108

37
108

37
108

⎫⎪⎪⎬⎪⎪⎭
Set the new iteration number as k= k+ 1= 2 and go to step 2. The procedure
is to be continued until convergence is achieved.

Notes
1. Although X(2) =Y(2) in this example, they need not be, in general, equal to one

another.
2. The value of f at X(2) is

f (X(2)) = 2
(

34
108

)
+ 37

108
− 37

108
= 17

27
< f (X(1)) = 18

27

4.8 QUADRATIC PROGRAMMING

A quadratic programming problem can be stated as

Minimize f (X) = CTX + 1
2

XTDX (4.72)

subject to
AX ≤ B (4.73)

X ≥ 𝟎 (4.74)

where

X =

⎧⎪⎪⎨⎪⎪⎩

x1

x2

⋮

xn

⎫⎪⎪⎬⎪⎪⎭
, C =

⎧⎪⎪⎨⎪⎪⎩

c1

c2

⋮

cn

⎫⎪⎪⎬⎪⎪⎭
, B =

⎧⎪⎪⎨⎪⎪⎩

b1

b2

⋮

bm

⎫⎪⎪⎬⎪⎪⎭
,

�

� �

�

4.8 Quadratic Programming 209

D =

⎡⎢⎢⎢⎢⎣
d11 d12 ⋯ d1n

d21 d22 ⋯ d2n

⋮
dn1 dn2 ⋯ dnn

⎤⎥⎥⎥⎥⎦
, and A =

⎡⎢⎢⎢⎢⎣
a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮
am1 am2 ⋯ amn

⎤⎥⎥⎥⎥⎦
In Eq. (4.72) the term XTDX/2 represents the quadratic part of the objective func-

tion with D being a symmetric positive-definite matrix. If D= 0, the problem reduces
to a LP problem. The solution of the quadratic programming problem stated in Eqs.
(4.72)–(4.74) can be obtained by using the Lagrange multiplier technique. By intro-
ducing the slack variables s2

i , i= 1, 2, . . . , m, in Eq. (4.73) and the surplus variables
t2
j , j= 1, 2, ..., n, in Eq. (4.74), the quadratic programming problem can be written as

(see Eq. (4.72)) subject to the equality constraints

AT
i X + s2

i = bi, i = 1, 2, . . . ,m (4.75)

−xj + t2
j = 0, j = 1, 2, . . . , n (4.76)

where

Ai =

⎧⎪⎪⎨⎪⎪⎩

ai1

ai2

⋮

ain

⎫⎪⎪⎬⎪⎪⎭
The Lagrange function can be written as

L(X, S,T,𝝀,𝜽) = CTX + 1
2

XTDX +
m∑

i=1

𝜆i(AT
i X + s2

i − bi)

+
n∑

j=1

𝜃j(−xj + t2
j) (4.77)

The necessary conditions for the stationariness of L give

𝜕L
𝜕xj

= cj +
n∑

i=1

dijxi +
m∑

i=1

𝜆iaij − 𝜃j = 0, j = 1, 2, . . . , n (4.78)

𝜕L
𝜕si

= 2𝜆isi = 0, i = 1, 2, . . . ,m (4.79)

𝜕L
𝜕tj

= 2𝜃jtj = 0, j = 1, 2, . . . , n (4.80)

𝜕L
𝜕𝜆i

= AT
i X + s2

i − bi = 0, i = 1, 2, . . . ,m (4.81)

𝜕L
𝜕𝜃j

= −xj + t2
j = 0, j = 1, 2, . . . , n (4.82)

By defining a set of new variables Yi as

Yi = s2
i ≥ 0, i = 1, 2, . . . ,m (4.83)

�

� �

�

210 Linear Programming II: Additional Topics and Extensions

Equation (4.81) can be written as

AT
i X − bi = −s2

i = −Yi, i = 1, 2, . . . ,m (4.84)

Multiplying Eq. (4.79) by si and Eq. (4.80) by tj, we obtain

𝜆is
2
i = 𝜆iYi = 0, i = 1, 2, . . . ,m (4.85)

𝜃jt
2
j = 0, j = 1, 2, . . . , n (4.86)

Combining Eqs. (4.84) and (4.85), and Eqs. (4.82) and (4.86), we obtain

𝜆i(AT
i X − bi) = 0, i = 1, 2, . . . ,m (4.87)

𝜃jxj = 0, j = 1, 2, . . . , n (4.88)

Thus, the necessary conditions can be summarized as follows:

cj − 𝜃j +
n∑

i=1

xidij +
m∑

i=1

𝜆iaij = 0, j = 1, 2, . . . , n (4.89)

AT
i X − bi = −Yi, i = 1, 2, . . . ,m (4.90)

xj ≥ 0, j = 1, 2, . . . , n (4.91)

Yi ≥ 0, i = 1, 2, . . . ,m (4.92)

𝜆i ≥ 0, i = 1, 2, . . . ,m (4.93)

𝜃j ≥ 0, j = 1, 2, . . . , n (4.94)

𝜆iYi = 0, i = 1, 2, . . . ,m (4.95)

𝜃jxj = 0, j = 1, 2, . . . , n (4.96)

We can notice one important thing in Eqs. (4.89)–(4.96). With the exception of
Eqs. (4.95) and (4.96), the necessary conditions are linear functions of the variables xj,
Yi, 𝜆i, and 𝜃j. Thus, the solution of the original quadratic programming problem can
be obtained by finding a nonnegative solution to the set of m+ n linear equations given
by Eqs. (4.89) and (4.90), which also satisfies the m+ n equations stated in Eqs. (4.95)
and (4.96).

Since D is a positive-definite matrix, f (X) will be a strictly convex function,6

and the feasible space is convex (because of linear equations), any local minimum
of the problem will be the global minimum. Further, it can be seen that there are 2
(n+m) variables and 2 (n+m) equations in the necessary conditions stated in Eqs.
(4.89)–(4.96). Hence the solution of the Eqs. (4.89), (4.90), (4.95), and (4.96) must
be unique. Thus, the feasible solution satisfying all the Eqs. (4.89)–(4.96), if it exists,
must give the optimum solution of the quadratic programming problem directly. The
solution of the system of equations above can be obtained by using phase I of the sim-
plex method. The only restriction here is that the satisfaction of the nonlinear relations,
Eqs. (4.95) and (4.96), has to be maintained all the time. Since our objective is just to

6See Appendix A for the definition and properties of a convex function.

�

� �

�

4.8 Quadratic Programming 211

find a feasible solution to the set of Eqs. (4.89)–(4.96), there is no necessity of phase
II computations. We shall follow the procedure developed by Wolfe [4.21] to apply
phase I. This procedure involves the introduction of n nonnegative artificial variables
zi into the Eq. (4.89) so that

cj − 𝜃j +
n∑

i=1

xidij +
m∑

i=1

𝜆iaij + zj = 0, j = 1, 2, . . . , n (4.97)

Then we minimize

F =
n∑

j=1

zj (4.98)

subject to the constraints

cj − 𝜃j +
n∑

i=1

xidij +
m∑

i=1

𝜆iaij + zj = 0, j = 1, 2, . . . , n

AT
i X + Yi = bi, i = 1, 2, . . . ,m

X≥ 𝟎, Y≥ 𝟎, 𝝀≥ 𝟎, 𝜽≥ 𝟎

While solving this problem, we have to take care of the additional conditions

𝜆iYi = 0, j = 1, 2, . . . ,m

𝜃jxj = 0, j = 1, 2, . . . , n (4.99)

Thus, when deciding whether to introduce Yi into the basic solution, we first have
to ensure that either 𝜆i is not in the solution or 𝜆i will be removed when Yi enters the
basis. Similar care has to be taken regarding the variables 𝜃j and xj. These additional
checks are not very difficult to make during the solution procedure.

Example 4.14
Minimize f = −4x1 + x2

1 − 2x1x2 + 2x2
2

subject to

2x1 + x2 ≤ 6

x1 − 4x2 ≤ 0

x1 ≥ 0, x2 ≥ 0

SOLUTION By introducing the slack variables Y1 = s2
1 and Y2 = s2

2 and the surplus
variables 𝜃1 = t2

1 and 𝜃2 = t2
2, the problem can be stated as follows:

Minimize f = (−4 0)
{

x1

x2

}
+ 1

2
(x1 x2)

[
2 −2

−2 4

]{
x1

x2

}
subject to [

2 1
1 −4

]{
x1

x2

}
+
{

Y1

Y2

}
=
{

6
0

}
−x1 + 𝜃1 = 0

−x2 + 𝜃2 = 0 (E1)

�

� �

�

212 Linear Programming II: Additional Topics and Extensions

By comparing this problem with the one stated in Eqs. (4.72)–(4.74), we find that

c1 = −4, c2 = 0, D =
[

2 −2
−2 4

]
, A =

[
2 1
1 −4

]
,

A1 =
{

2
1

}
, A2 =

{
1

−4

}
, and B =

{
6
0

}
The necessary conditions for the solution of the problem stated in Eq. (E1) can be

obtained, using Eqs. (4.89)–(4.96), as

−4 − 𝜃1 + 2x1 − 2x2 + 2𝜆1 + 𝜆2 = 0

0 − 𝜃2 − 2x1 + 4x2 + 𝜆1 − 4𝜆2 = 0

2x1 + x2 − 6 = −Y1

x1 − 4x2 − 0 = −Y2 (E2)

x1 ≥ 0, x2 ≥ 0,Y1 ≥ 0,Y2 ≥ 0, 𝜆1 ≥ 0,

𝜆2 ≥ 0, 𝜃1 ≥ 0, 𝜃2 ≥ 0 (E3)

𝜆1Y1 = 0, 𝜃1x1 = 0

𝜆2Y2 = 0, 𝜃2x2 = 0 (E4)

(If Yi is in the basis, 𝜆i cannot be in the basis, and if xj is in the basis, 𝜃j cannot be
in the basis to satisfy these equations.) Equation (E2) can be rewritten as

2x1 − 2x2 + 2𝜆1 + 𝜆2 − 𝜃1 + z1 = 4

−2x1 + 4x2 + 𝜆1 − 4𝜆2 − 𝜃2 + z2 = 0

2x1 + x2 + Y1 = 6

x1 − 4x2 + Y2 = 0 (E5)

where z1 and z2 are artificial variables. To find a feasible solution to Eqs. (E2)–(E4)
by using phase I of simplex method, we minimize w= z1 + z2 with constraints stated
in Eqs. (E5), (E3), and (E4). The initial simplex tableau is shown below:

Variables bi∕aisBasic
variables x1 x2 𝜆1 𝜆2 𝜃1 𝜃2 Y1 Y2 z1 z2 w bi for ais > 0

Y1 2 1 0 0 0 0 1 0 0 0 0 6 6
Y2 1 −4 0 0 0 0 0 1 0 0 0 0
z1 2 −2 2 1 −1 0 0 0 1 0 0 4

z2 −2 4 1 −4 0 −1 0 0 0 1 0 0 0← Smaller
one

−w 0 −2 −3 3 1 1 0 0 0 0 1 −4

x2 selected for ↑ ↑
entering next basis Most negative

�

� �

�

4.8 Quadratic Programming 213

According to the regular procedure of simplex method, 𝜆1 enters the next basis
since the cost coefficient of 𝜆1 is most negative and z2 leaves the basis since the ratio
bi∕ais is smaller for z2. However, 𝜆1 cannot enter the basis, as Y1 is already in the basis
[to satisfy Eq. (E4)]. Hence, we select x2 for entering the next basis. According to this
choice, z2 leaves the basis. By carrying out the required pivot operation, we obtain the
following tableau:

Variables bi∕aisBasic
variables x1 x2 𝜆1 𝜆2 𝜃1 𝜃2 Y1 Y2 z1 z2 w bi for ais > 0

Y1
5
2

0 − 1
4

1 0 1
4

1 0 0 − 1
4

0 6 12
5
← Smaller
one

Y2 −1 0 1 −4 0 −1 0 1 0 1 0 0

z1 1 0 5
2

−1 −1 − 1
2

0 0 1 1
2

0 4 4

x2 − 1
2

1 1
4

−1 0 − 1
4

0 0 0 1
4

0 0

−w −1 0 − 5
2

1 1 1
2

0 0 0 1
2

1 −4

↑ ↑
x1 selected Most negative
to enter the basis

This table shows that 𝜆1 has to enter the basis and Y2 or x2 has to leave the basis.
However, 𝜆1 cannot enter the basis since Y1 is already in the basis [to satisfy the
requirement of Eq. (E4)]. Hence x1 is selected to enter the basis and this gives Y1
as the variable that leaves the basis. The pivot operation on the element 5

2
results in

the following tableau:

Variables bi∕aisBasic
variables x1 x2 𝜆1 𝜆2 𝜃1 𝜃2 Y1 Y2 z1 z2 w bi for ais > 0

x1 1 0 − 1
10

2
5

0 1
10

2
5

0 0 − 1
10

0 12
5

Y2 0 0 9
10

− 18
5

0 − 9
10

2
5

1 0 9
10

0 12
5

8
3

z1 0 0 13
5

− 7
5

−1 − 3
5

− 2
5

0 1 3
5

0 8
5

18
3
← Smaller
one

x2 0 1 1
5

− 4
5

0 − 1
5

1
5

0 0 1
5

0 6
5

6

−w 0 0 − 13
5

7
5

1 3
5

2
5

0 0 2
5

1 − 8
5

↑
Most negative

From this table we find that 𝜆1 enters the basis (this can be permitted this time
since Y1 is not in the basis) and z1 leaves the basis. The necessary pivot operation
gives the following table:

�

� �

�

214 Linear Programming II: Additional Topics and Extensions

Variables bi∕aisBasic
variables x1 x2 𝜆1 𝜆2 𝜃1 𝜃2 Y1 Y2 z1 z2 w bi for ais > 0

x1 1 0 0 9
26

− 1
26

1
13

5
13

0 1
26

− 1
13

0 32
13

Y2 0 0 0 − 81
26

9
26

− 9
13

7
13

1 − 9
26

9
13

0 24
13

𝜆1 0 0 1 − 7
13

− 5
13

− 3
13

− 2
13

0 5
13

3
13

0 8
13

x2 0 1 0 − 9
13

1
13

− 2
13

3
13

0 − 1
13

2
13

0 14
13

−w 0 0 0 0 0 0 0 0 1 1 1 0

Since both the artificial variables z1 and z2 are driven out of the basis, the present
table gives the desired solution as x1 =

32
13

, x2 =
14
13

, Y2 =
24
13

,𝜆1 =
8
13

(basic variables),
𝜆2 = 0, Y1 = 0, 𝜃1 = 0, 𝜃2 = 0 (nonbasic variables). Thus, the solution of the original
quadratic programming problem is given by

x∗1 = 32
13
, x∗2 = 14

13
, and fmin = f (x∗1, x

∗
2) = − 88

13

4.9 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of a linear programming problem
using the interior point method is given in Example 17.3. Also, the MATLAB solu-
tion of a quadratic programming problem (given in Example 4.14) is presented as
Example 17.4.

REFERENCES AND BIBLIOGRAPHY

4.1 Gass, S. (1964). Linear Programming. New York: McGraw-Hill.

4.2 Lemke, C.E. (1954). The dual method of solving the linear programming problem. Naval
Research and Logistics Quarterly 1: 36–47.

4.3 Dantzig, G.B., Ford, L.R., and Fulkerson, D.R. (1956). A primal–dual algorithm for
linear programs. In: Linear Inequalities and Related Systems, Annals of Mathematics
Study No. 38 (eds. H.W. Kuhn and A.W. Tucker), 171–181. Princeton, NJ: Princeton
University Press.

4.4 Dantzig, G.B. and Wolfe, P. (1960). Decomposition principle for linear programming.
Operations Research 8: 101–111.

4.5 Lasdon, L.S. (1970). Optimization Theory for Large Systems. New York: Macmillan.

4.6 Hitchcock, F.L. (1941). The distribution of a product from several sources to numerous
localities. Journal of Mathematical Physics 20: 224–230.

4.7 T. C. Koopmans, (1947). Optimum utilization of the transportation system, Proceedings
of the International Statistical Conference, Washington, DC.

4.8 Zukhovitskiy, S. and Avdeyeva, L. (1966). Linear and Convex Programming, 147–155.
Philadelphia: W. B. Saunders.

4.9 Garvin, W.W. (1960). Introduction to Linear Programming. New York: McGraw-Hill.

4.10 Dantzig, G.B. (1963). Linear Programming and Extensions. Princeton, NJ: Princeton
University Press.

4.11 Lemke, C.E. (1968). On complementary pivot theory. In: Mathematics of the Decision
Sciences (eds. G.B. Dantzig and A.F. Veinott), Part 1, 95–136. Providence, RI: American
Mathematical Society.

�

� �

�

Review Questions 215

4.12 Murty, K. (1976). Linear and Combinatorial Programming. New York: Wiley.

4.13 Bitran, G.R. and Novaes, A.G. (1973). Linear programming with a fractional objective
function. Operations Research 21: 22–29.

4.14 Choo, E.U. and Atkins, D.R. (1982). Bicriteria linear fractional programming. Journal
of Optimization Theory and Applications 36: 203–220.

4.15 Singh, C. (1981). Optimality conditions in fractional programming. Journal of Opti-
mization Theory and Applications 33: 287–294.

4.16 Lasserre, J.B. (1981). A property of certain multistage linear programs and some appli-
cations. Journal of Optimization Theory and Applications 34: 197–205.

4.17 Cohen, G. (1978). Optimization by decomposition and coordination: a unified approach.
IEEE Transactions on Automatic Control 23: 222–232.

4.18 Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. Com-
binatorica 4 (4): 373–395.

4.19 Winston, W.L. (1991). Operations Research Applications and Algorithms, 2e. Boston:
PWS-Kent.

4.20 Hooker, J.N. (1986). Karmarkar’s linear programming algorithm. Interfaces 16 (4):
75–90.

4.21 Wolfe, P. (1959). The simplex method for quadratic programming. Econometrica 27:
382–398.

4.22 Boot, J.C.G. (1964). Quadratic Programming. Amsterdam: North-Holland.

4.23 Van de Panne, C. (1974). Methods for Linear and Quadratic Programming. Amsterdam:
North-Holland.

4.24 Van de Panne, C. and Whinston, A. (1969). The symmetric formulation of the simplex
method for quadratic programming. Econometrica 37: 507–527.

REVIEW QUESTIONS
4.1 Is the decomposition method efficient for all LP problems?

4.2 What is the scope of postoptimality analysis?

4.3 Why is Karmarkar’s method called an interior method?

4.4 What is the major difference between the simplex and Karmarkar methods?

4.5 State the form of LP problem required by Karmarkar’s method.

4.6 What are the advantages of the revised simplex method?

4.7 Match the following terms and descriptions:

(a) Karmarkar’s method Moves from one vertex to another

(b) Simplex method Interior point algorithm

(c) Quadratic programming Phase I computations not required

(d) Dual simplex method Dantzig and Wolfe method

(e) Decomposition method Wolfe’s method

4.8 Answer true or false:

(a) The quadratic programming problem is a convex programming problem.

(b) It is immaterial whether a given LP problem is designated the primal or dual.

(c) If the primal problem involves minimization of f subject to greater-than constraints,
its dual deals with the minimization of f subject to less-than constraints.

(d) If the primal problem has an unbounded solution, its dual will also have an
unbounded solution.

(e) The transportation problem can be solved by simplex method.

�

� �

�

216 Linear Programming II: Additional Topics and Extensions

4.9 Match the following in the context of duality theory:

(a) xi is nonnegative
xi is unrestricted

ith constraint is of less-than or
equal-to type

Maximization type
(b) ith constraint is of equality type ith variable is unrestricted
(c) ith constraint is of greater-than or

equal-to type
ith variable is nonnegative

(d) Minimization type ith constraint is of equality type

PROBLEMS

Solve LP problems 4.1–4.3 by the revised simplex method.

4.1 . Minimize f = −5x1 + 2x2 + 5x3 − 3x4
subject to

2x1 + x2 − x3 = 6

3x1 + 8x3 + x4 = 7

xi ≥ 0, i = 1 to 4

4.2 . Maximize f = 15x1 + 6x2 + 9x3 + 2x4
subject to

10x1 + 5x2 + 25x3 + 3x4 ≤ 50

12x1 + 4x2 + 12x3 + x4 ≤ 48

7x1 + x4 ≤ 35

xi ≥ 0, i = 1 to 4

4.3 . Minimize f = 2x1 + 3x2 + 2x3 − x4 + x5
subject to

3x1 − 3x2 + 4x3 + 2x4 − x5 = 0

x1 + x2 + x3 + 3x4 + x5 = 2

xi ≥ 0, i = 1, 2, . . . , 5

4.4 Discuss the relationships between the regular simplex method and the revised simplex
method.

4.5 Solve the following LP problem graphically and by the revised simplex method:

Maximize f = x2

subject to

−x1 + x2 ≤ 0

−2x1 − 3x2 ≤ 6

x1, x2 unrestricted in sign

4.6 Consider the following LP problem:

Minimize f = 3x1 + x3 + 2x5

�

� �

�

Problems 217

subject to
x1 + x3 − x4 + x5 = −1

x2 − 2x3 + 3x4 + 2x5 = −2

xi ≥ 0, i = 1 to 5

Solve this problem using the dual simplex method.

4.7 . Maximize f = 4x1 + 2x2
subject to

x1 − 2x2 ≥ 2

x1 + 2x2 = 8

x1 − x2 ≤ 11

x1 ≥ 0, x2 unrestricted in sign

(a) Write the dual of this problem.

(b) Find the optimum solution of the dual.

(c) Verify the solution obtained in part (b) by solving the primal problem graphically.

4.8 A water resource system consisting of two reservoirs is shown in Figure 4.4. The flows
and storages are expressed in a consistent set of units. The following data are available:

Quantity Stream 1 (i= 1) Stream 2 (i= 2)

Capacity of reservoir i 9 7
Available release from

reservoir i
9 6

Capacity of channel
below reservoir i

4 4

Actual release from
reservoir i

x1 x2

The capacity of the main channel below the confluence of the two streams is 5 units. If the
benefit is equivalent to $2× 106 and $3× 106 per unit of water released from reservoirs

Channel 2
(x2)

Channel 1
(x1)

Stream 2

Stream 1

Reservoir 2

Reservoir 1

Irrigation
district 2

Main channel
(x1 + x2)

Irrigation
district 1

Figure 4.4 Water resource system.

�

� �

�

218 Linear Programming II: Additional Topics and Extensions

1 and 2, respectively, determine the releases x1 and x2 from the reserovirs to maximize
the benefit. Solve this problem using duality theory.

4.9 Solve the following LP problem by the dual simplex method:

Minimize f = 2x1 + 9x2 + 24x3 + 8x4 + 5x5

subject to
x1 + x2 + 2x3 − x5 − x6 = 1

−2x1 + x3 + x4 + x5 − x7 = 2

xi ≥ 0, i = 1 to 7

4.10 Solve Problem 3.1 by solving its dual.

4.11 Show that neither the primal nor the dual of the problem

Maximize f = −x1 + 2x2

subject to

−x1 + x2 ≤ −2

x1 − x2 ≤ 1

x1 ≥ 0, x2 ≥ 0

has a feasible solution. Verify your result graphically.

4.12 Solve the following LP problem by decomposition principle, and verify your result by
solving it by the revised simplex method:

Maximize f = 8x1 + 3x2 + 8x3 + 6x4

subject to

4x1 + 3x2 + x3 + 3x4 ≤ 16

4x1 − x2 + x3 ≤ 12

x1 + 2x2 ≤ 8

3x1 + x2 ≤ 10

2x3 + 3x4 ≤ 9

4x3 + x4 ≤ 12

xi ≥ 0, i = 1 to 4

4.13 Apply the decomposition principle to the dual of the following problem and solve it:

Minimize f = 10x1 + 2x2 + 4x3 + 8x4 + x5

subject to

x1 + 4x2 − x3 ≥ 16

2x1 + x2 + x3 ≥ 4

3x1 + x4 + x5 ≥ 8

x1 + 2x4 − x5 ≥ 20

xi ≥ 0, i = 1 to 5

�

� �

�

Problems 219

4.14 Express the dual of the following LP problem:

Maximize f = 2x1 + x2

subject to

x1 − 2x2 ≥ 2

x1 + 2x2 = 8

x1 − x2 ≤ 11

x1 ≥ 0, x2 is unrestricted in sign

4.15 Find the effect of changing b=
{

1200
800

}
to
{

1180
120

}
in Example 4.5 using sensitivity anal-

ysis.

4.16 Find the effect of changing the cost coefficients c1 and c4 from −45 and −50 to −40 and
−60, respectively, in Example 4.5 using sensitivity analysis.

4.17 Find the effect of changing c1 from −45 to −40 and c2 from −100 to −90 in Example 4.5
using sensitivity analysis.

4.18 If a new product, E, which requires 10 minutes of work on lathe and 10 minutes of work
on milling machine per unit, with a profit of $120 per unit is available in Example 4.5,
determine whether it is worth manufacturing E.

4.19 A metallurgical company produces four products, A, B, C, and D, by using copper and
zinc as basic materials. The material requirements and the profit per unit of each of the
four products, and the maximum quantities of copper and zinc available are given below:

Product
A B C D

Maximum quantity
available

Copper (lb) 4 9 7 10 6000
Zinc (lb) 2 1 3 20 4000
Profit per unit ($) 15 25 20 60

Find the number of units of the various products to be produced for maximizing the profit.
Solve Problems 4.20–4.28 using the data of Problem 4.19.

4.20 Find the effect of changing the profit per unit of product D to $30.

4.21 Find the effect of changing the profit per unit of product A to $10, and of product B to
$20.

4.22 Find the effect of changing the profit per unit of product B to $30 and of product C to
$25.

4.23 Find the effect of changing the available quantities of copper and zinc to 4000 and
6000 lb, respectively.

4.24 What is the effect of introducing a new product, E, which requires 6 lb of copper and 3 lb
of zinc per unit if it brings a profit of $30 per unit?

4.25 Assume that products A, B, C, and D require, in addition to the stated amounts of copper
and zinc, 4, 3, 2 and 5 lb of nickel per unit, respectively. If the total quantity of nickel
available is 2000 lb, in what way the original optimum solution is affected?

4.26 If product A requires 5 lb of copper and 3 lb of zinc (instead of 4 lb of copper and 2 lb of
zinc) per unit, find the change in the optimum solution.

�

� �

�

220 Linear Programming II: Additional Topics and Extensions

4.27 If product C requires 5 lb of copper and 4 lb of zinc (instead of 7 lb of copper and 3 lb of
zinc) per unit, find the change in the optimum solution.

4.28 If the available quantities of copper and zinc are changed to 8000 and 5000 lb, respec-
tively, find the change in the optimum solution.

4.29 Solve the following LP problem:

Minimize f = 8x1 − 2x2

subject to

−4x1 + 2x2 ≤ 1

5x1 − 4x2 ≤ 3

x1 ≥ 0, x2 ≥ 0

Investigate the change in the optimum solution of Problem 4.29 when the following
changes are made (a) by using sensitivity analysis and (b) by solving the new problem
graphically:

4.30 b1 = 2

4.31 b2 = 4

4.32 c1 = 10

4.33 c2 =−4

4.34 a11 =−5

4.35 a22 =−2

4.36 Perform one iteration of Karmarkar’s method for the LP problem:

Minimize f = 2x1 − 2x2 + 5x3

subject to
x1 − x2 = 0

x1 + x2 + x3 = 1

xi ≥ 0, i = 1, 2, 3

4.37 Perform one iteration of Karmarkar’s method for the following LP problem:

Minimize f = 3x1 + 5x2 − 3x3

subject to
x1 − x3 = 0

x1 + x2 + x3 = 1

xi ≥ 0, i = 1, 2, 3

4.38 Transform the following LP problem into the form required by Karmarkar’s method:

Minimize f = x1 + x2 + x3

subject to

x1 + x2 − x3 = 4

3x1 − x2 = 0

xi ≥ 0, i = 1, 2, 3

4.39 A contractor has three sets of heavy construction equipment available at both New York
and Los Angeles. He has construction jobs in Seattle, Houston, and Detroit that require

�

� �

�

Problems 221

Detroit

c11 = 4

c22 = 7

c 21 =
 2

c12 = 3

c23 = 5

c
13 = 1

1

2Los Angeles

New York

Houston

Seattle1

2

3

Figure 4.5 Shipping costs between cities.

two, three, and one set of equipment, respectively. The shipping costs per set between
cities i and j (cij) are shown in Figure 4.5. Formulate the problem of finding the shipping
pattern that minimizes the cost.

4.40
Minimize f (X) = 3x2

1 + 2x2
2 + 5x3

2 − 4x1x2 − 2x1x3 − 2x1x3 − 2x2x3

subject to

3x1 + 5x2 + 2x3 ≥ 10

3x1 + 5x3 ≤ 15

xi ≥ 0, i = 1, 2, 3

by quadratic programming.

4.41 Find the solution of the quadratic programming problem stated in Example 1.5.

4.42 According to elastic–plastic theory, a frame structure fails (collapses) due to the forma-
tion of a plastic hinge mechanism. The various possible mechanisms in which a portal
frame (Figure 4.6) can fail are shown in Figure 4.7. The reserve strengths of the frame in
various failure mechanisms (Zi) can be expressed in terms of the plastic moment capac-
ities of the hinges as indicated in Figure 4.7. Assuming that the cost of the frame is
proportional to 200 times each of the moment capacities M1, M2, M6, and M7, and 100
times each of the moment capacities M3, M4, and M5, formulate the problem of mini-
mizing the total cost to ensure nonzero reserve strength in each failure mechanism. Also,
suggest a suitable technique for solving the problem. Assume that the moment capaci-
ties are restricted as 0≤Mi ≤ 2× 105 lb-in., i= 1, 2, . . . , 7. Data: x= 100 in., y= 150 in.,
P1 = 1000 lb., and P2 = 500 lb.

P1

P2
3

2 4

5

6

71

xx

y

Figure 4.6 Plastic hinges in a frame.

�

� �

�

222 Linear Programming II: Additional Topics and Extensions

Z1 = M3 + 2M4 + M5 – xP1 Z2 = M2 + 2M4 + M6 – xP1 Z3 = M2 + 2M4 + M5 – xP1

(a) (b) (c)

Z4 = M3 + 2M4 + M6 – xP1 Z5 = M1 + M2 + M6 + M7 – yP2 Z6 = M1 + M3 + M5 + M7 – yP2

(d) (e) (f)

Z7 = M1 + M3 + M6 + M7 – yP2 Z9 = M1 + 2M4 + 2M6 + M7
– xP1 – yP2

Z8 = M1 + M2 + M5 + M7 – yP2

Z10 = M1 + 2M4 + 2M5 + M7
– xP1 – yP2

(g) (h) (i)

(j)

Figure 4.7 Possible failure mechanisms of a portal frame.

4.43 Solve the LP problem stated in Problem 4.9 using MATLAB (interior method).

4.44 Solve the LP problem stated in Problem 4.12 using MATLAB (interior method).

4.45 Solve the LP problem stated in Problem 4.13 using MATLAB (interior method).

4.46 Solve the LP problem stated in Problem 4.36 using MATLAB (interior method).

4.47 Solve the LP problem stated in Problem 4.37 using MATLAB (interior method).

4.48 Solve the following quadratic programming problem using MATLAB:

Maximize f = 2x1 + x2 − x2
1

subject to 2x1 + 3x2 ≤ 6, 2x1 + x2 ≤ 4, x1 ≥ 0, x2 ≥ 0

4.49 Solve the following quadratic programming problem using MATLAB:

Maximize f = 4x1 + 6x2 − x2
1 − x2

2

subject to x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0

�

� �

�

Problems 223

4.50 Solve the following quadratic programming problem using MATLAB:

Minimize f = (x1 − 1)2 + x2 − 2

subject to − x1 + x2 − 1 = 0, x1 + x2 − 2 ≤ 0, x1 ≥ 0, x2 ≥ 0

4.51 Solve the following quadratic programming problem using MATLAB:

Minimize f = x2
1 + x2

2 − 3x1x2 − 6x1 + 5x2

subject to x1 + x2 ≤ 4, 3x1 + 6x2 ≤ 20, x1 ≥ 0, x2 ≥ 0

�

� �

�

�

� �

�

5

Nonlinear Programming I:
One-Dimensional Minimization
Methods

5.1 INTRODUCTION

In Chapter 2 we saw that if the expressions for the objective function and the con-
straints are fairly simple in terms of the design variables, the classical methods of
optimization can be used to solve the problem. On the other hand, if the optimiza-
tion problem involves the objective function and/or constraints that are not stated as
explicit functions of the design variables or which are too complicated to manipulate,
we cannot solve it by using the classical analytical methods. The following example is
given to illustrate a case where the constraints cannot be stated as explicit functions of
the design variables. Example 5.2 illustrates a case where the objective function is a
complicated one for which the classical methods of optimization are difficult to apply.

Example 5.1 Formulate the problem of designing the planar truss shown in
Figure 5.1 for minimum weight subject to the constraint that the displacement of any
node, in either the vertical or the horizontal direction, should not exceed a value 𝛿.

SOLUTION Let the density 𝜌 and Young’s modulus E of the material, the length
of the members l, and the external loads Q, R, and S be known as design data. Let
the member areas A1, A2, . . . , A11 be taken as the design variables x1, x2, . . . , x11,
respectively. The equations of equilibrium can be derived in terms of the unknown
nodal displacements u1, u2, . . . , u10 as1 (the displacements u11, u12, u13, and u14 are

1According to the matrix methods of structural analysis, the equilibrium equations for the jth member are
given by [5.1]

[kj]
4×4

uj
4×1

= Pj
4×1

where the stiffness matrix can be expressed as

[kj] =
AjEj

lj

⎡⎢⎢⎢⎢⎣
cos2

𝜃j cos 𝜃j sin 𝜃j −cos2
𝜃j − cos 𝜃j sin 𝜃j

cos 𝜃j sin 𝜃j sin2
𝜃j − cos 𝜃j sin 𝜃j −sin2

𝜃j

−cos2
𝜃j − cos 𝜃j sin 𝜃j −cos2

𝜃j cos 𝜃j sin 𝜃j

− cos 𝜃j sin 𝜃j −sin2
𝜃j cos 𝜃j sin 𝜃j sin2

𝜃j

⎤⎥⎥⎥⎥⎦
where 𝜃j is the inclination of the jth member with respect to the x-axis, Aj the cross-sectional area of the
jth member, lj the length of the jth member, uj the vector of displacements for the jth member, and Pj the
vector of loads for the jth member. The formulation of the equilibrium equations for the complete truss
follows fairly standard procedure [5.1].

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

225

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

226 Nonlinear Programming I: One-Dimensional Minimization Methods

R

Q
1

6 5

(a) (b)
S

74

2

2 31

3

ll

l ll

5
60° 60°60° 60°

60°60° 60°60°60°60°

4

8 10 u12 u8 u10 u14

u11 u13

u3 u5

u6u4u2

u1

u7 u9

11 y

x
976

Figure 5.1 Planar truss: (a) nodal and member numbers; (b) nodal degrees of freedom.

zero, as they correspond to the fixed nodes)

(4x4 + x6 + x7)u1 +
√

3(x6 − x7)u2 − 4x4u3 − x7u7 +
√

3x7u8 = 0 (E1)√
3(x6 − x7)u1 + 3(x6 + x7)u2 +

√
3x7u7 − 3x7u8 = −4Rl

E
(E2)

− 4x4u1 + (4x4 + 4x5 + x8 + x9)u3 +
√

3(x8 − x9)u4 − 4x5u5

− x8u7 −
√

3x8u8 − x9u9 +
√

3x9u10 = 0√
3(x8 − x9)u3 + 3(x8 + x9)u4 −

√
3x8u7 (E3)√

3(x8 − x9)u3 + 3(x8 + x9)u4 −
√

3x8u7 − 3x8u8 +
√

3x9u9 − 3x9u10 = 0 (E4)

−4x5u3 + (4x5 + x10 + x11)u5 +
√

3(x10 − x11)u6 − x10u9 −
√

3x10u10 = 4Ql
E

(E5)√
3(x10 − x11)u5 + 3(x10 + x11)u6 −

√
3x10u9 − 3x10u10 = 0 (E6)

− x7u1 +
√

3x7u2 − x8u3 −
√

3x8u4 + (4x1 + 4x2

+ x7 + x8)u7 −
√

3(x7 − x8)u8 − 4x2u9 = 0 (E7)√
3x7u1 − 3x7u2 −

√
3x8u3 − 3x8u4 −

√
3(x7 − x8)u7 + 3(x7 + x8)u8 = 0 (E8)

− x9u3 +
√

3x9u4 − x10u5 −
√

3x10u6 − 4x2u7

+ (4x2 + 4x3 + x9 + x10)u9 −
√

3(x9 − x10)u10 = 0 (E9)√
3x9u3 − 3x9u4 −

√
3x10u5 − 3x10u6 −

√
3(x9 − x10)u9 + 3(x9 + x10)u10

= −4Sl
E

(E10)

It is important to note that an explicit closed-form solution cannot be obtained
for the displacements as the number of equations becomes large. However, given any
vector X, the system of Eqs. (E1)–(E10) can be solved numerically to find the nodal
displacement u1, u2, . . . , u10.

The optimization problem can be stated as follows:

Minimize f (X) =
11∑
i=1

𝜌xili (E11)

�

� �

�

5.1 Introduction 227

subject to the constraints

gj(X) = |uj(X)| − 𝛿 ≤ 0, j = 1, 2, . . . , 10 (E12)

xi ≥ 0, i = 1, 2, . . . , 11 (E13)

The objective function of this problem is a straightforward function of the design
variables as given in Eq. (E11). The constraints, although written by the abstract
expressions gj (X), cannot easily be written as explicit functions of the components
of X. However, given any vector X we can calculate gj(X) numerically. Many
engineering design problems possess this characteristic (i.e. the objective and/or the
constraints cannot be written explicitly in terms of the design variables). In such
cases we need to use the numerical methods of optimization for solution.

Example 5.2 The shear stress induced along the z-axis when two spheres are in con-
tact with each other is given by

𝜏zx

pmax
= 1

2

⎡⎢⎢⎢⎢⎣
3

2

{
1 +

(
z
a

)2
} − (1 + v)

{
1 − z

a
tan−1

(
1
z
a

)}⎤⎥⎥⎥⎥⎦
(E1)

where a is the radius of the contact area and pmax is the maximum pressure developed
at the center of the contact area (Figure 5.2):

a =
⎧⎪⎨⎪⎩

3F
8

1−v2
1

E1
+ 1−v2

2

E2

1
d1
+ 1

d2

⎫⎪⎬⎪⎭
1∕3

(E2)

pmax = 3F
2𝜋a2

(E3)

where F is the contact force, E1 and E2 are Young’s moduli of the two spheres, 𝜈1 and
𝜈2 are Poisson’s ratios of the two spheres (if 𝜈1 = 𝜈2, 𝜈 can be used as in Eq. (E1)),
and d1 and d2 the diameters of the two spheres. In many practical applications, such
as ball bearings, when the contact load (F) is large, a crack originates at the point of
maximum shear stress and propagates to the surface, leading to a fatigue failure. To
locate the origin of a crack, it is necessary to find the point at which the shear stress
attains its maximum value. Formulate the problem of finding the location of maximum
shear stress for 𝜈 = 𝜈1 = 𝜈2 = 0.3.

SOLUTION For 𝜈1 = 𝜈2 = 0.3, Eq. (E1) reduces to

f (𝜆) = 0.75
1 + 𝜆2

+ 0.65𝜆 tan−1 1
𝜆
− 0.65 (E4)

where f = 𝜏zx/pmax and 𝜆 = z/a. Since Eq. (E4) is a nonlinear function of the distance,
𝜆, the application of the necessary condition for the maximum of f, df/d𝜆 = 0, gives
rise to a nonlinear equation from which a closed-form solution for 𝜆* cannot easily be
obtained. In such cases, numerical methods of optimization can be conveniently used
to find the value of 𝜆*.

�

� �

�

228 Nonlinear Programming I: One-Dimensional Minimization Methods

E1, υ1

F

F

x

y

z

d1

d2

E2, υ2

2a

Contact area

Pmax

Pmax

a a

Figure 5.2 Contact stress between two spheres.

The basic philosophy of most of the numerical methods of optimization is to
produce a sequence of improved approximations to the optimum according to the
following scheme:

1. Start with an initial trial point X1.
2. Find a suitable direction Si (i = 1 to start with) that points in the general direc-

tion of the optimum.
3. Find an appropriate step length 𝜆∗i for movement along the direction Si.
4. Obtain the new approximation Xi+1 as

Xi+1 = Xi + 𝜆∗i Si (5.1)

5. Test whether Xi+1 is optimum. If Xi+1 is optimum, stop the procedure. Other-
wise, set a new i = i + 1 and repeat step (2) onward.

The iterative procedure indicated by Eq. (5.1) is valid for unconstrained as well
as constrained optimization problems. The procedure is represented graphically for a
hypothetical two-variable problem in Figure 5.3. Equation (5.1) indicates that the effi-
ciency of an optimization method depends on the efficiency with which the quantities
𝜆
∗
i and Si are determined. The methods of finding the step length 𝜆∗i are considered in

this chapter and the methods of finding Si are considered in Chapters 6 and 7.
If f (X) is the objective function to be minimized, the problem of determining 𝜆∗i

reduces to finding the value 𝜆i = 𝜆
∗
i that minimizes f (Xi+1) = f (Xi + 𝜆iSi) = f (𝜆i)

for fixed values of Xi and Si. Since f becomes a function of one variable 𝜆i only, the
methods of finding 𝜆∗i in Eq. (5.1) are called one-dimensional minimization methods.
Several methods are available for solving a one-dimensional minimization problem.
These can be classified as shown in Table 5.1.

�

� �

�

5.1 Introduction 229

x1

x2

X4

Optimum point

f = C1

f = C2

f = C3

f = C4

f = C5

f = C6
f = C7

X2

X1

S1

S2

S3

S4
X3

C1<C2 < < C7

λ*
2

λ*
1

Figure 5.3 Iterative process of optimization.

Table 5.1 One-dimensional Minimization Methods.

Analytical methods

(differential calculus methods)

Numerical methods

Elimination

methods

Interpolation

methods

Unrestricted
search

Requiring no
derivatives
(quadratic)

Requiring
derivatives

Cubic

Direct root
Exhaustive search

Dichotomous
search

Fibonacci method
Golden section

method

Newton
Quasi-
Newton
Secant

We saw in Chapter 2 that the differential calculus method of optimization is an
analytical approach and is applicable to continuous, twice-differentiable functions. In
this method, calculation of the numerical value of the objective function is virtually the
last step of the process. The optimal value of the objective function is calculated after
determining the optimal values of the decision variables. In the numerical methods

�

� �

�

230 Nonlinear Programming I: One-Dimensional Minimization Methods

of optimization, an opposite procedure is followed in that the values of the objective
function are first found at various combinations of the decision variables and conclu-
sions are then drawn regarding the optimal solution. The elimination methods can be
used for the minimization of even discontinuous functions. The quadratic and cubic
interpolation methods involve polynomial approximations to the given function. The
direct root methods are root finding methods that can be considered to be equivalent
to quadratic interpolation.

5.2 UNIMODAL FUNCTION

A unimodal function is one that has only one peak (maximum) or valley (minimum)
in a given interval. Thus a function of one variable is said to be unimodal if, given
that two values of the variable are on the same side of the optimum, the one nearer
the optimum gives the better functional value (i.e. the smaller value in the case of a
minimization problem). This can be stated mathematically as follows:

A function f (x) is unimodal if (i) x1 < x2 < x* implies that f (x2) < f (x1),
and (ii) x2 > x1 > x* implies that f (x1) < f (x2), where x* is the minimum
point.

Some examples of unimodal functions are shown in Figure 5.4. Thus a unimodal
function can be a nondifferentiable or even a discontinuous function. If a function is
known to be unimodal in a given range, the interval in which the minimum lies can be
narrowed down provided that the function values are known at two different points in
the range.

For example, consider the normalized interval [0, 1] and two function evaluations
within the interval as shown in Figure 5.5. There are three possible outcomes, namely,
f1 < f2, f1 > f2, or f1 = f2. If the outcome is that f1 < f2, the minimizing x cannot lie
to the right of x2. Thus, that part of the interval [x2, 1] can be discarded and a new
smaller interval of uncertainty, [0, x2], results as shown in Figure 5.5a. If f (x1)> f (x2),
the interval [0, x1] can be discarded to obtain a new smaller interval of uncertainty,
[x1, 1] (Figure 5.5b), while if f (x1) = f (x2), intervals [0, x1] and [x2, 1] can both be
discarded to obtain the new interval of uncertainty as [x1, x2] (Figure 5.5c). Further,
if one of the original experiments2 remains within the new interval, as will be the
situation in Figure 5.5a,b, only one other experiment need be placed within the new

aa

(a) (b) (c)

bba b x1

f(x) f(x)f(x)

x2
xxx

Figure 5.4 Unimodal function.

2Each function evaluation is termed as an experiment or a trial in the elimination methods.

�

� �

�

5.3 Unrestricted Search 231

f(x)

f1

f2

x2x1
x x x

10 x2x1 10 x2x1 10

f1

(b) (c)(a)

f1
f2 f2

f(x) f(x)

Figure 5.5 Outcome of first two experiments: (a) f1 < f2; (b) f1 > f2; (c) f1 = f2.

interval in order that the process be repeated. In situations such as Figure 5.5c, two
more experiments are to be placed in the new interval in order to find a reduced
interval of uncertainty.

The assumption of unimodality is made in all the elimination techniques. If a
function is known to be multimodal (i.e. having several valleys or peaks), the range of
the function can be subdivided into several parts and the function treated as a unimodal
function in each part.

Elimination Methods

5.3 UNRESTRICTED SEARCH

In most practical problems, the optimum solution is known to lie within restricted
ranges of the design variables. In some cases this range is not known, and hence the
search has to be made with no restrictions on the values of the variables.

5.3.1 Search with Fixed Step Size

The most elementary approach for such a problem is to use a fixed step size and move
from an initial guess point in a favorable direction (positive or negative). The step size
used must be small in relation to the final accuracy desired. Although this method is
very simple to implement, it is not efficient in many cases. This method is described
in the following steps:

1. Start with an initial guess point, say, x1.
2. Find f1 = f (x1).
3. Assuming a step size s, find x2 = x1 + s.
4. Find f2 = f (x2).
5. If f2 < f1, and if the problem is one of minimization, the assumption of uni-

modality indicates that the desired minimum cannot lie at x< x1. Hence the
search can be continued further along points x3, x4, . . . using the unimodality
assumption while testing each pair of experiments. This procedure is continued
until a point, xi = x1 + (i − 1)s, shows an increase in the function value.

6. The search is terminated at xi, and either xi−1 or xi can be taken as the optimum
point.

7. Originally, if f2 > f1, the search should be carried in the reverse direction at
points x−2, x−3, . . . , where x−j = x1 − (j − 1)s.

�

� �

�

232 Nonlinear Programming I: One-Dimensional Minimization Methods

8. If f2 = f1, the desired minimum lies in between x1 and x2, and the minimum
point can be taken as either x1 or x2.

9. If it happens that both f2 and f−2 are greater than f1, it implies that the desired
minimum will lie in the double interval x−2 < x< x2.

5.3.2 Search with Accelerated Step Size

Although the search with a fixed step size appears to be very simple, its major limi-
tation comes because of the unrestricted nature of the region in which the minimum
can lie. For example, if the minimum point for a particular function happens to be
xopt = 50 000 and, in the absence of knowledge about the location of the minimum,
if x1 and s are chosen as 0.0 and 0.1, respectively, we have to evaluate the function
5 000 001 times to find the minimum point. This involves a large amount of compu-
tational work. An obvious improvement can be achieved by increasing the step size
gradually until the minimum point is bracketed. A simple method consists of doubling
the step size as long as the move results in an improvement of the objective function.
Several other improvements of this method can be developed. One possibility is to
reduce the step length after bracketing the optimum in (xi−1, xi). By starting either
from xi−1 or xi, the basic procedure can be applied with a reduced step size. This pro-
cedure can be repeated until the bracketed interval becomes sufficiently small. The
following example illustrates the search method with accelerated step size.

Example 5.3 Find the minimum of f = x (x− 1.5) by starting from 0.0 with an initial
step size of 0.05.

SOLUTION The function value at x1 is f1 = 0.0. If we try to start moving in the
negative x direction, we find that x−2 = −0.05 and f−2 = 0.0775. Since f−2 > f1, the
assumption of unimodality indicates that the minimum cannot lie toward the left of
x−2. Thus we start moving in the positive x direction and obtain the following results:

i Value of s xi = x1 + s fi = f (xi) Is fi > fi−1?

1 — 0.0 0.0 —
2 0.05 0.05 −0.0725 No
3 0.10 0.10 −0.140 No
4 0.20 0.20 −0.260 No
5 0.40 0.40 −0.440 No
6 0.80 0.80 −0.560 No
7 1.60 1.60 +0.160 Yes

From these results, the optimum point can be seen to be xopt ≈ x6 = 0.8. In this case, the
points x6 and x7 do not really bracket the minimum point but provide information about it.
If a better approximation to the minimum is desired, the procedure can be restarted from x5

with a smaller step size.

5.4 EXHAUSTIVE SEARCH

The exhaustive search method can be used to solve problems where the interval in
which the optimum is known to lie is finite. Let xs and xf denote, respectively, the
starting and final points of the interval of uncertainty.3 The exhaustive search method

3Since the interval (xs, xf), but not the exact location of the optimum in this interval, is known to us, the
interval (xs, xf) is called the interval of uncertainty.

�

� �

�

5.4 Exhaustive Search 233

xs x1 x2 x3 x4 x5 x6 x7 x8 xf

Figure 5.6 Exhaustive search.

consists of evaluating the objective function at a predetermined number of equally
spaced points in the interval (xs, xf), and reducing the interval of uncertainty using the
assumption of unimodality. Suppose that a function is defined on the interval (xs, xf)
and let it be evaluated at eight equally spaced interior points x1 to x8. Assuming that the
function values appear as shown in Figure 5.6, the minimum point must lie, according
to the assumption of unimodality, between points x5 and x7. Thus the interval (x5, x7)
can be considered as the final interval of uncertainty.

In general, if the function is evaluated at n equally spaced points in the original
interval of uncertainty of length L0 = xf − xs, and if the optimum value of the function
(among the n function values) turns out to be at point xj, the final interval of uncertainty
is given by

Ln = xj+1 − xj−1 = 2
n + 1

L0 (5.2)

The final interval of uncertainty obtainable for different number of trials in the
exhaustive search method is given below:

Number of trials 2 3 4 5 6 . . . n

Ln/L0 2/3 2/4 2/5 2/6 2/7 . . . 2/(n+ 1)

Since the function is evaluated at all n points simultaneously, this method can be
called a simultaneous search method. This method is relatively inefficient compared
to the sequential search methods discussed next, where the information gained from
the initial trials is used in placing the subsequent experiments.

Example 5.4 Find the minimum of f = x(x− 1.5) in the interval (0.0, 1.00) to within
10% of the exact value.

SOLUTION If the middle point of the final interval of uncertainty is taken as the
approximate optimum point, the maximum deviation could be 1/(n+ 1) times the ini-
tial interval of uncertainty. Thus to find the optimum within 10% of the exact value,
we should have

1
n + 1

≤ 1
10

or n ≥ 9

By taking n = 9, the following function values can be calculated:

i 1 2 3 4 5 6 7 8 9

xi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

fi = f (xi) −0.14 −0.26 −0.36 −0.44 −0.50 −0.54 −0.56 −0.56 −0.54

�

� �

�

234 Nonlinear Programming I: One-Dimensional Minimization Methods

Since x7 = x8, the assumption of unimodality gives the final interval of uncertainty
as L9 = (0.7, 0.8). By taking the middle point of L9 (i.e. 0.75) as an approximation to
the optimum point, we find that it is, in fact, the true optimum point.

5.5 DICHOTOMOUS SEARCH

The exhaustive search method is a simultaneous search method in which all the
experiments are conducted before any judgment is made regarding the location of
the optimum point. The dichotomous search method, as well as the Fibonacci and the
golden section methods discussed in subsequent sections, are sequential search meth-
ods in which the result of any experiment influences the location of the subsequent
experiment.

In the dichotomous search, two experiments are placed as close as possible at
the center of the interval of uncertainty. Based on the relative values of the objective
function at the two points, almost half of the interval of uncertainty is eliminated. Let
the positions of the two experiments be given by (Figure 5.7)

x1 =
L0

2
− 𝛿

2

x2 =
L0

2
+ 𝛿

2

where 𝛿 is a small positive number chosen so that the two experiments give signifi-
cantly different results. Then the new interval of uncertainty is given by (L0/2+ 𝛿/2).
The building block of dichotomous search consists of conducting a pair of experiments
at the center of the current interval of uncertainty. The next pair of experiments is,
therefore, conducted at the center of the remaining interval of uncertainty. This results
in the reduction of the interval of uncertainty by nearly a factor of 2. The intervals
of uncertainty at the end of different pairs of experiments are given in the following
table:

Number of experiments 2 4 6

Final interval of uncertainty 1
2
(L0 + 𝛿)

1
2

(
L0+𝛿

2

)
+ 𝛿

2
1
2

(
L0+𝛿

4
+ 𝛿

2

)
+ 𝛿

2

In general, the final interval of uncertainty after conducting n experiments (n even)
is given by

Ln =
L0

2n∕2
+ 𝛿

(
1 − 1

2n∕2

)
(5.3)

f1

x1

L0/2

δ/2δ/2

L0

x2xs xf

f2

Figure 5.7 Dichotomous search.

�

� �

�

5.5 Dichotomous Search 235

The following example is given to illustrate the method of search.

Example 5.5 Find the minimum of f = x(x− 1.5) in the interval (0.0, 1.00) to within
10% of the exact value.

SOLUTION The ratio of final to initial intervals of uncertainty is given by
(from Eq. (5.3))

Ln

L0
= 1

2n∕2
+ 𝛿

L0

(
1 − 1

2n∕2

)
where 𝛿 is a small quantity, say 0.001, and n is the number of experiments. If the
middle point of the final interval is taken as the optimum point, the requirement can
be stated as

1
2

Ln

L0
≤ 1

10

i.e.
1

2n∕2
+ 𝛿

L0

(
1 − 1

2n∕2

)
≤ 1

5

Since 𝛿 = 0.001 and L0 = 1.0, we have

1

2n∕2
+ 1

1000

(
1 − 1

2n∕2

)
≤ 1

5

i.e.
999
1000

1

2n∕2
≤ 995

5000
or 2n∕2 ≥ 999

199
≃ 5.0

Since n has to be even, this inequality gives the minimum admissible value of n
as 6.

The search is made as follows. The first two experiments are made at

x1 =
L0

2
− 𝛿

2
= 0.5 − 0.0005 = 0.4995

x2 =
L0

2
+ 𝛿

2
= 0.5 + 0.0005 = 0.5005

with the function values given by

f1 = f (x1) = 0.4995(−1.0005) ≃ −0.49957

f2 = f (x2) = 0.5005(−0.9995) ≃ −0.50025

Since f2 < f1, the new interval of uncertainty will be (0.4995, 1.0). The second
pair of experiments is conducted at

x3 =
(

0.4995 + 1.0 − 0.4995
2

)
− 0.0005 = 0.74925

x4 =
(

0.4995 + 1.0 − 0.4995
2

)
+ 0.0005 = 0.75025

which give the function values as

f3 = f (x3) = 0.74925(−0.75075) = −0.5624994375

f4 = f (x4) = 0.75025(−0.74975) = −0.5624999375

�

� �

�

236 Nonlinear Programming I: One-Dimensional Minimization Methods

Since f3 > f4, we delete (0.4995, x3) and obtain the new interval of uncertainty as

(x3, 1.0) = (0.74925, 1.0)

The final set of experiments (will be conducted at)

x5 =
(

0.74925 + 1.0 − 0.74925
2

)
− 0.0005 = 0.874125

x6 =
(

0.74925 + 1.0 − 0.74925
2

)
+ 0.0005 = 0.875125

The corresponding function values are

f5 = f (x5) = 0.874125(−0.625875) = −0.5470929844

f6 = f (x6) = 0.875125(−0.624875) = −0.5468437342

Since f5 < f6, the new interval of uncertainty is given by (x3, x6) = (0.749 25,
0.875 125). The middle point of this interval can be taken as optimum, and hence

xopt ≃ 0.8121875 and fopt ≃ −0.5586327148

5.6 INTERVAL HALVING METHOD

In the interval halving method, exactly one-half of the current interval of uncertainty
is deleted in every stage. It requires three experiments in the first stage and two exper-
iments in each subsequent stage. The procedure can be described by the following
steps:

1. Divide the initial interval of uncertainty L0 = [a, b] into four equal parts and
label the middle point x0 and the quarter-interval points x1 and x2.

2. Evaluate the function f (x) at the three interior points to obtain f1 = f (x1), f0 = f
(x0), and f2 = f (x2).

3. .(a) If f2 > f0 > f1 as shown in Figure 5.8a, delete the interval (x0, b), label x1
and x0 as the new x0 and b, respectively, and go to step 4.

(b) If f2 < f0 < f1 as shown in Figure 5.8b, delete the interval (a, x0), label x2
and x0 as the new x0 and a, respectively, and go to step 4.

(c) If f1 > f0 and f2 > f0 as shown in Figure 5.8c, delete both the intervals (a, x1)
and (x2, b), label x1 and x2 as the new a and b, respectively, and go to step
4.

4. Test whether the new interval of uncertainty, L = b − a, satisfies the conver-
gence criterion L ≤ 𝜀, where 𝜀 is a small quantity. If the convergence criterion
is satisfied, stop the procedure. Otherwise, set the new L0 = L and go to step1.

Remarks:

1. In this method, the function value at the middle point of the interval of uncer-
tainty, f0, will be available in all the stages except the first stage.

�

� �

�

5.6 Interval Halving Method 237

L0

(a)

x0x1

f1

f0

f2

x2 ba

L0

(b)

x0x1

f1

f0

f2

x2 ba

L0

(c)

x0x1

f1

f0

f2

x2 ba

Figure 5.8 Possibilities in the interval halving method: (a) f2 > f0 > f1; (b) f1 > f0 > f2;
(c) f1 > f0 and f2 > f0.

2. The interval of uncertainty remaining at the end of n experiments (n ≥ 3 and
odd) is given by

Ln =
(1

2

)(n−1)∕2

L0 (5.4)

Example 5.6 Find the minimum of f = x(x− 1.5) in the interval (0.0, 1.0) to within
10% of the exact value.

�

� �

�

238 Nonlinear Programming I: One-Dimensional Minimization Methods

SOLUTION If the middle point of the final interval of uncertainty is taken as the
optimum point, the specified accuracy can be achieved if

1
2

Ln ≤ L0

10
or

(1
2

)(n−1)∕2

L0 ≤ L0

5
(E1)

Since L0 = 1, Eq. (E1) gives

1

2(n−1)∕2
≤ 1

5
or 2(n−1)∕2 ≥ 5 (E2)

Since n has to be odd, inequality (E2) gives the minimum permissible value of
n as 7. With this value of n = 7, the search is conducted as follows. The first three
experiments are placed at one-fourth points of the interval L0 = [a = 0, b = 1] as

x1 = 0.25, f1 = 0.25(−1.25) = −0.3125

x0 = 0.50, f0 = 0.50(−1.00) = −0.5000

x2 = 0.75, f2 = 0.75(−0.75) = −0.5625

Since f1 > f0 > f2, we delete the interval (a, x0) = (0.0, 0.5), label x2 and x0 as the
new x0 and a so that a = 0.5, x0 = 0.75, and b = 1.0. By dividing the new interval of
uncertainty, L3 = (0.5, 1.0) into four equal parts, we obtain

x1 = 0.625, f1 = 0.625(−0.875) = −0.546875

x0 = 0.750, f0 = 0.750(−0.750) = −0.562500

x2 = 0.875, f2 = 0.875(−0.625) = −0.546875

Since f1 > f0 and f2 > f0, we delete both the intervals (a, x1) and (x2, b), and label
x1, x0, and x2 as the new a, x0, and b, respectively. Thus the new interval of uncer-
tainty will be L5 = (0.625, 0.875). Next, this interval is divided into four equal parts to
obtain

x1 = 0.6875, f1 = 0.6875(−0.8125) = −0.558594

x0 = 0.75, f0 = 0.75(−0.75) = −0.5625

x2 = 0.8125, f2 = 0.8125(−0.6875) = −0.558594

Again we note that f1 > f0 and f2 > f0 and hence we delete both the intervals (a, x1)
and (x2, b) to obtain the new interval of uncertainty as L7 = (0.6875, 0.8125). By taking
the middle point of this interval (L7) as optimum, we obtain

xopt ≈ 0.75 and fopt ≈ −0.5625

(This solution happens to be the exact solution in this case.)

5.7 FIBONACCI METHOD

As stated earlier, the Fibonacci method can be used to find the minimum of a function
of one variable even if the function is not continuous. This method, like many other
elimination methods, has the following limitations:

1. The initial interval of uncertainty, in which the optimum lies, has to be known.
2. The function being optimized has to be unimodal in the initial interval of

uncertainty.

�

� �

�

5.7 Fibonacci Method 239

3. The exact optimum cannot be located in this method. Only an interval known as
the final interval of uncertainty will be known. The final interval of uncertainty
can be made as small as desired by using more computations.

4. The number of function evaluations to be used in the search or the resolution
required has to be specified beforehand.

This method makes use of the sequence of Fibonacci numbers, {Fn}, for placing
the experiments. These numbers are defined as

F0 = F1 = 1

Fn = Fn−1 + Fn−2, n = 2, 3, 4, . . .

which yield the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Procedure. Let L0 be the initial interval of uncertainty defined by a≤ x≤ b and n
be the total number of experiments to be conducted. Define

L∗
2 =

Fn−2

Fn
L0 (5.5)

and place the first two experiments at points x1 and x2, which are located at a distance
of L∗

2 from each end of L0.4 This gives5

x1 = a + L∗
2 = a +

Fn−2

Fn
L0

x2 = b − L∗
2 = b −

Fn−2

Fn
L0 = a +

Fn−1

Fn
L0 (5.6)

Discard part of the interval by using the unimodality assumption. Then there
remains a smaller interval of uncertainty L2 given by6

L2 = L0 − L∗
2 = L0

(
1 −

Fn−2

Fn

)
=

Fn−1

Fn
L0 (5.7)

and with one experiment left in it. This experiment will be at a distance of

L∗
2 =

Fn−2

Fn
L0 =

Fn−2

Fn−1
L2 (5.8)

from one end and

L2 − L∗
2 =

Fn−3

Fn
L0 =

Fn−3

Fn−1
L2 (5.9)

4If an experiment is located at a distance of (Fn−2/Fn) L0 from one end, it will be at a distance of (Fn−1/Fn)
L0 from the other end. Thus L∗

2 = (Fn−1/Fn) L0 will yield the same result as with L∗
2 = (Fn−2/Fn) L0.

5It can be seen that

L∗
2 =

Fn−2

Fn

L0 ≤ 1
2

L0 for n ≥ 2

6The symbol Lj is used to denote the interval of uncertainty remaining after conducting j experiments, while
the symbol L∗

j is used to define the position of the jth experiment.

�

� �

�

240 Nonlinear Programming I: One-Dimensional Minimization Methods

from the other end. Now place the third experiment in the interval L2 so that the current
two experiments are located at a distance of

L∗
3 =

Fn−3

Fn
L0 =

Fn−3

Fn−1
L2 (5.10)

from each end of the interval L2. Again the unimodality property will allow us to
reduce the interval of uncertainty to L3 given by

L3 = L2 − L∗
3 = L2 −

Fn−3

Fn−1
L2 =

Fn−2

Fn−1
L2 =

Fn−2

Fn
L0 (5.11)

This process of discarding a certain interval and placing a new experiment in the
remaining interval can be continued, so that the location of the jth experiment and the
interval of uncertainty at the end of j experiments are, respectively, given by

L∗
j =

Fn−j

Fn−(j−2)
Lj−1 (5.12)

Lj =
Fn−(j−1)

Fn
L0 (5.13)

The ratio of the interval of uncertainty remaining after conducting j of the n pre-
determined experiments to the initial interval of uncertainty becomes

Lj

L0
=

Fn−(j−1)

Fn
(5.14)

and for j = n, we obtain
Ln

L0
=

F1

Fn
= 1

Fn
(5.15)

The ratio Ln/L0 will permit us to determine n, the required number of experi-
ments, to achieve any desired accuracy in locating the optimum point. Table 5.2 gives
the reduction ratio in the interval of uncertainty obtainable for different number of
experiments.

Position of the Final Experiment. In this method the last experiment has to be placed
with some care. Equation (5.12) gives

L∗
n

Ln−1
=

F0

F2
= 1

2
for all n (5.16)

Thus after conducting n− 1 experiments and discarding the appropriate interval
in each step, the remaining interval will contain one experiment precisely at its mid-
dle point. However, the final experiment, namely, the nth experiment, is also to be
placed at the center of the present interval of uncertainty. That is, the position of the
nth experiment will be same as that of (n− 1)th one, and this is true for whatever
value we choose for n. Since no new information can be gained by placing the nth
experiment exactly at the same location as that of the (n− 1)th experiment, we place
the nth experiment very close to the remaining valid experiment, as in the case of the
dichotomous search method. This enables us to obtain the final interval of uncertainty
to within 1

2
Ln−1. A flowchart for implementing the Fibonacci method of minimization

is given in Figure 5.9.

�

� �

�

5.7 Fibonacci Method 241

Table 5.2 Reduction Ratios.

Value of n Fibonacci number, Fn Reduction ratio, Ln/L0

0 1 1.0
1 1 1.0
2 2 0.5
3 3 0.333 3
4 5 0.2
5 8 0.125 0
6 13 0.076 92
7 21 0.047 62
8 34 0.029 41
9 55 0.018 18

10 89 0.011 24
11 144 0.006 944
12 233 0.004 292
13 377 0.002 653
14 610 0.001 639
15 987 0.001 013
16 1 597 0.000 640 6
17 2 584 0.000 387 0
18 4 181 0.000 239 2
19 6 765 0.000 147 9
20 10 946 0.000 091 35

Example 5.7 Minimize f (x) = 0.65− [0.75/(1+ x2)]− 0.65x tan−1(1/x) in the inter-
val [0, 3] by the Fibonacci method using n = 6. (Note that this objective is equivalent
to the one stated in Example 5.2.)

SOLUTION Here n = 6 and L0 = 3.0, which yield

L∗
2 =

Fn−2

Fn
L0 = 5

13
(3.0) = 1.153846

Thus, the positions of the first two experiments are given by x1 = 1.153 846
and x2 = 3.0− 1.153 846 = 1.846 154 with f1 = f (x1) = −0.207 270 and
f2 = f (x2) = −0.115 843. Since f1 is less than f2, we can delete the interval [x2,
3.0] by using the unimodality assumption (Figure 5.10a). The third experiment
is placed at x3 = 0+ (x2 − x1) = 1.846 154− 1.153 846 = 0.692 308, with the
corresponding function value of f3 = −0.291 364.

Since f1 > f3, we delete the interval [x1, x2] (Figure 5.10b). The next exper-
iment is located at x4 = 0+ (x1 − x3) = 1.153 846− 0.692 308 = 0.461 538 with
f4 =−0.309 811. Nothing that f4 < f3, we delete the interval [x3, x1] (Figure 5.10c). The
location of the next experiment can be obtained as x5 = 0+ (x3 − x4) = 0.692 308−
0.461 538 = 0.230 770 with the corresponding objective function value of
f5 = −0.263 678. Since f5 > f4, we delete the interval [0, x5] (Figure 5.10d). The final
experiment is positioned at x6 = x5 + (x3 − x4) = 0.230 770+ (0.692 308− 0.461 538)
= 0.461 540 with f6 = −0.309 810. (Note that, theoretically, the value of x6 should
be same as that of x4; however, it is slightly different from x4, due to round-off
error).

Since f6 > f4, we delete the interval [x6, x3] and obtain the final interval of uncer-
tainty as L6 = [x5, x6] = [0.230 770, 0.461 540] (Figure 5.10e). The ratio of the final

�

� �

�

242 Nonlinear Programming I: One-Dimensional Minimization Methods

Enter with N, A1 and B1

This comparison is made so that

x1 always lies to the left of x2

A1 = initial point
B1 = final point
B1 – A1 = Initial interval

 of uncertainty

No

No

No Yes Print A1, B1,

LN = B1 – A1
Stop

Calculate

Compare

f1 with f2

Yes

Yes

Is l = N?

J = 2

x1 = B1 – L*
2

x2 = A1 + L*
2

x1 = A1 + L*
2

x2 = B1 – L*
2

F0 = F1 = 1

Fl = Fl–1 + Fl–2

L*
2 = (FN–2 / FN)(B1 – A1)

Find new L*
2 = FN–J L1/FN–(J–2)

L*
2 = FN–J (B1–A1)/(FN–(J–2)

Find new L*
2 = FN–J L1/FN–(J–2)

Is L*
2 > (L1/ 2)?

L1 = B1 – A1

J = J + 1

J = J + 1

f1 = f(x1)

f2 = f(x2)

f2 > f1

B1 = x2

A1 = x1 A1 = x1, B1 = x2

f1 > f2

f1 = f2

Is J = N?

l = 2

l = l + 1

Figure 5.9 Flowchart for implementing Fibonacci search method.

to the initial interval of uncertainty is

L6

L0
= 0.461540 − 0.230770

3.0
= 0.076923

This value can be compared with Eq. (5.15), which states that if n experiments
(n = 6) are planned, a resolution no finer than 1/Fn = 1/F6 = 1

13
= 0.076 923 can be

expected from the method.

�

� �

�

5.8 Golden Section Method 243

f(x)

f (x)

f (x)

0

0

0

X X X X X X X X

X X X X X X X X X

X X X X X X X

(a) f1 < f2; delete [x2, 3.0]

(b) f1 > f3; delete [x1, x2]

(c) f4 < f3; delete [x3, x1]

x

x

3
x

L2

L3

L4

x1 = 1.153846 x2 = 1.846154

x3 = 0.692308

x4 = 0.461538 x3 = 0.692308

x1 = 1.153846

f3 = –0.291364

f1 = –0.207270

f3 = –0.291364

f4 = –0.309811

x1 = 1.153846 x2 = 1.846154

f1 = –0.207270

f2 = –0.115843

Figure 5.10 Graphical representation of the solution of Example 5.7.

5.8 GOLDEN SECTION METHOD

The golden section method is the same as the Fibonacci method except that in the
Fibonacci method the total number of experiments to be conducted has to be specified
before beginning the calculation, whereas this is not required in the golden section
method. In the Fibonacci method, the location of the first two experiments is deter-
mined by the total number of experiments, N. In the golden section method we start
with the assumption that we are going to conduct a large number of experiments. Of
course, the total number of experiments can be decided during the computation.

The intervals of uncertainty remaining at the end of different number of experi-
ments can be computed as follows:

L2 = lim
N→∞

FN−1

FN
L0 (5.17)

�

� �

�

244 Nonlinear Programming I: One-Dimensional Minimization Methods

f(x)

0

(e) f6 > f4 ; delete [x6, x3]

x

L6

x5 = 0.230770

x6 = 0.461540
x4 = 0.461538

x3 = 0.692308

f6 = –0.309810

f4 = –0.309811

f(x)

0

(d) f5 > f4; delete [0, x5]

x

L5

x5 = 0.230770 x4 = 0.461538 x3 = 0.692308

f5 = –0.263678

f4 = –0.309811

X X X X X X X X X

X X X X X X X X

Figure 5.10 (Continued)

L3 = lim
N→∞

FN−2

FN
L0 = lim

N→∞

FN−2

FN−1

FN−1

FN
L0

≃ lim
N→∞

(
FN−1

FN

)2

L0 (5.18)

This result can be generalized to obtain

Lk = lim
N→∞

(
FN−1

FN

)k−1

L0 (5.19)

Using the relation
FN = FN−1 + FN−2 (5.20)

we obtain, after dividing both sides by FN−1,

FN

FN−1
= 1 +

FN−2

FN−1
(5.21)

By defining a ratio 𝛾 as

𝛾 = lim
N→∞

FN

FN−1
(5.22)

Equation (5.21) can be expressed as

𝛾 ≃ 1
𝛾
+ 1

�

� �

�

5.8 Golden Section Method 245

that is,
𝛾

2 − 𝛾 − 1 = 0 (5.23)

This gives the root 𝛾 = 1.618, and hence Eq. (5.19) yields

Lk =
(

1
𝛾

)k−1

L0 = (0.618)k−1L0 (5.24)

In Eq. (5.18) the ratios FN−2/FN−1 and FN−1/FN have been taken to be same for
large values of N. The validity of this assumption can be seen from the following
table:

Value of N 2 3 4 5 6 7 8 9 10 ∞

Ratio FN−1

FN
0.5 0.667 0.6 0.625 0.6156 0.619 0.6177 0.6181 0.6184 0.618

The ratio 𝛾 has a historical background. Ancient Greek architects believed that a
building having the sides d and b satisfying the relation

d + b
d

= d
b
= 𝛾 (5.25)

would have the most pleasing properties (Figure 5.11). The origin of the name, golden
section method, can also be traced to the Euclid’s geometry. In Euclid’s geometry,
when a line segment is divided into two unequal parts so that the ratio of the whole to
the larger part is equal to the ratio of the larger to the smaller, the division is called the
golden section and the ratio is called the golden mean.

Procedure. The procedure is same as the Fibonacci method except that the location
of the first two experiments is defined by

L∗
2 =

FN−2

FN
L0 =

FN−2

FN−1

FN−1

FN
L0 =

L0

𝛾2
= 0.382L0 (5.26)

The desired accuracy can be specified to stop the procedure.

Example 5.8 Minimize the function

f (x) = 0.65 − [0.75∕(1 + x2)] − 0.65x tan−1(1∕x)

using the golden section method with n = 6.

b

d

Figure 5.11 Rectangular building of sides b and d.

�

� �

�

246 Nonlinear Programming I: One-Dimensional Minimization Methods

SOLUTION The locations of the first two experiments are defined by L∗
2 = 0.382

L0 = (0.382) (3.0) = 1.1460. Thus x1 = 1.1460 and x2 = 3.0− 1.1460 = 1.8540
with f1 = f (x1) = −0.208 654 and f2 = f (x2) = −0.115 124. Since f1 < f2, we

delete the interval [x2, 3.0] based on the assumption of unimodality and obtain the new
interval of uncertainty as L2 = [0, x2] = [0.0, 1.8540]. The third experiment is placed
at x3 = 0+ (x2 − x1) = 1.8540− 1.1460 = 0.7080. Since f3 = −0.288 943 is smaller
than f1 = −0.208 654, we delete the interval [x1, x2] and obtain the new interval of
uncertainty as [0.0, x1] = [0.0, 1.1460]. The position of the next experiment is given
by x4 = 0+ (x1 − x3) = 1.1460− 0.7080 = 0.4380 with f4 = −0.308 951.

Since f4 < f3, we delete [x3, x1] and obtain the new interval of uncertainty as
[0, x3] = [0.0, 0.7080]. The next experiment is placed at x5 = 0+ (x3 − x4) = 0.7080−
0.4380 = 0.2700. Since f5 = −0.278 434 is larger than f4 = −0.308 951, we delete the
interval [0, x5] and obtain the new interval of uncertainty as [x5, x3]= [0.2700, 0.7080].
The final experiment is placed at x6 = x5 + (x3 − x4) = 0.2700+ (0.7080− 0.4380) =
0.5400 with f6 = −0.308 234. Since f6 > f4, we delete the interval [x6, x3] and obtain
the final interval of uncertainty as [x5, x6] = [0.2700, 0.5400]. Note that this final
interval of uncertainty is slightly larger than the one found in the Fibonacci method,
[0.461 540, 0.230 770]. The ratio of the final to the initial interval of uncertainty in the
present case is

L6

L0
= 0.5400 − 0.2700

3.0
= 0.27

3.0
= 0.09

5.9 COMPARISON OF ELIMINATION METHODS

The efficiency of an elimination method can be measured in terms of the ratio of the
final and the initial intervals of uncertainty, Ln/L0. The values of this ratio achieved
in various methods for a specified number of experiments (n = 5 and n = 10) are
compared in Table 5.3. It can be seen that the Fibonacci method is the most effi-
cient method, followed by the golden section method, in reducing the interval of
uncertainty.

A similar observation can be made by considering the number of experiments (or
function evaluations) needed to achieve a specified accuracy in various methods. The
results are compared in Table 5.4 for maximum permissible errors of 0.1 and 0.01. It
can be seen that to achieve any specified accuracy, the Fibonacci method requires the
least number of experiments, followed by the golden section method.

Table 5.3 Final Intervals of Uncertainty.

Method Formula n = 5 n = 10

Exhaustive search Ln = 2
n+1

L0 0.333 33L0 0.181 82L0

Dichotomous search
(𝛿 = 0.01 and
n = even)

Ln = L0

2n∕2 + 𝛿
(

1 − 1
2n∕2

)
1
4
L0 + 0.007 5 with n = 4,

1
8
L0 + 0.008 75 with n = 6

0.031 25L0 + 0.009 687 5

Interval halving (n≥ 3
and odd)

Ln =
(

1
2

)(n−1)∕2
L0 0.25L0 0.062 5L0 with n = 9,

0.031 25L0 with n = 11

Fibonacci Ln = 1
Fn

L0 0.125L0 0.011 24L0

Golden section Ln = (0.618)n− 1L0 0.1459L0 0.013 15L0

�

� �

�

5.9 Comparison of Elimination Methods 247

Table 5.4 Number of Experiments for a Specified Accuracy.

Method Error: 1
2

Ln

L0
≤ 0.1 Error: 1

2

Ln

L0
≤ 0.01

Exhaustive search n≥ 9 n≥ 99
Dichotomous search (𝛿 = 0.01, L0 = 1) n≥ 6 n≥ 14
Interval halving (n≥ 3 and odd) n≥ 7 n≥ 13
Fibonacci n≥ 4 n≥ 9
Golden section n≥ 5 n≥ 10

Interpolation Methods

The interpolation methods were originally developed as one-dimensional searches
within multivariable optimization techniques, and are generally more efficient than
Fibonacci-type approaches. The aim of all the one-dimensional minimization methods
is to find 𝜆*, the smallest nonnegative value of 𝜆, for which the function

f (𝜆) = f (X+ 𝜆S) (5.27)

attains a local minimum. Hence if the original function f (X) is expressible as an
explicit function of xi (i = 1, 2, . . . , n), we can readily write the expression for
f (𝜆) = f (X+ 𝜆S) for any specified vector S, set

df

d𝜆
(𝜆) = 0 (5.28)

and solve Eq. (5.28) to find 𝜆* in terms of X and S. However, in many practical prob-
lems, the function f (𝜆) cannot be expressed explicitly in terms of 𝜆 (as shown in
Example 5.1). In such cases the interpolation methods can be used to find the value
of 𝜆*.

Example 5.9 Derive the one-dimensional minimization problem for the following
case:

Minimize f (X) = (x2
1 − x2)2 + (1 − x1)2 (E1)

from the starting point X1 =
{−2
−2

}
along the search direction S =

{
1.00
0.25

}
.

SOLUTION The new design point X can be expressed as

X =
{

x1
x2

}
= X1 + 𝜆S=

{
−2 + 𝜆

−2 + 0.25𝜆

}
By substituting x1 = −2+ 𝜆 and x2 = −2+ 0.25𝜆 in Eq. (E1), we obtain f as a

function of 𝜆 as

f (𝜆) = f

(
−2 + 𝜆

−2 + 0.25𝜆

)
= [(−2 + 𝜆)2 − (−2 + 0.25𝜆)]2

+ [1 − (−2 + 𝜆)]2 = 𝜆
4 − 8.5𝜆3 + 31.0625𝜆2 − 57.0𝜆 + 45.0

The value of 𝜆 at which f (𝜆) attains a minimum gives 𝜆*.
In the following sections, we discuss three different interpolation methods with

reference to one-dimensional minimization problems that arise during multivariable
optimization problems.

�

� �

�

248 Nonlinear Programming I: One-Dimensional Minimization Methods

5.10 QUADRATIC INTERPOLATION METHOD

The quadratic interpolation method uses the function values only; hence it is useful
to find the minimizing step (𝜆*) of functions f (X) for which the partial derivatives
with respect to the variables xi are not available or difficult to compute [5.2, 5.5].
This method finds the minimizing step length 𝜆* in three stages. In the first stage the
S-vector is normalized so that a step length of 𝜆 = 1 is acceptable. In the second stage
the function f (𝜆) is approximated by a quadratic function h(𝜆) and the minimum, �̃�∗,
of h(𝜆) is found. If �̃�∗ is not sufficiently close to the true minimum 𝜆

*, a third stage
is used. In this stage a new quadratic function (refit) h′(𝜆) = a′ + b′𝜆+ c′𝜆2 is used to
approximate f (𝜆), and a new value of �̃�∗ is found. This procedure is continued until a
�̃�
∗ that is sufficiently close to 𝜆* is found.

Stage 1. In this stage,7 the S vector is normalized as follows: Find Δ = max
i

|si|, where

si is the ith component of S and divide each component of S by Δ. Another method
of normalization is to find Δ = (s2

1 + s2
2 +⋯ + s2

n)1∕2 and divide each component of S
by Δ.

Stage 2. Let
h(𝜆) = a + b𝜆 + c𝜆2 (5.29)

be the quadratic function used for approximating the function f (𝜆). It is worth noting
at this point that a quadratic is the lowest-order polynomial for which a finite minimum
can exist. The necessary condition for the minimum of h (𝜆) is that

dh
d𝜆

= b + 2c𝜆 = 0

that is,
�̃�
∗ = − b

2c
(5.30)

The sufficiency condition for the minimum of h(𝜆) is that

d2h
d𝜆2

||||�̃�∗ > 0

that is,
c > 0 (5.31)

To evaluate the constants a, b, and c in Eq. (5.29), we need to evaluate the function
f (𝜆) at three points. Let 𝜆 = A, 𝜆 = B, and 𝜆 = C be the points at which the function f
(𝜆) is evaluated and let fA, fB, and fC be the corresponding function values, that is,

fA = a + b A + cA2

fB = a + b B + c B2

fC = a + b C + c C2 (5.32)

The solution of Eq. (5.32) gives

a =
fABC(C − B) + fBCA(A − C) + fCAB(B − A)

(A − B)(B − C)(C − A)
(5.33)

7This stage is not required if the one-dimensional minimization problem has not arisen within a multivari-
able minimization problem.

�

� �

�

5.10 Quadratic Interpolation Method 249

b =
fA(B2 − C2) + fB(C2 − A2) + fC(A2 − B2)

(A − B)(B − C)(C − A)
(5.34)

c = −
fA(B − C) + fB(C − A) + fC(A − B)

(A − B)(B − C)(C − A)
(5.35)

From Eqs. (5.30), (5.34), and (5.35), the minimum of h (𝜆) can be obtained as

�̃�
∗ = −b

2c
=

fA(B2 − C2) + fB(C2 − A2) + fC(A2 − B2)
2[fA(B − C) + fB(C − A) + fC(A − B)]

(5.36)

provided that c, as given by Eq. (5.35), is positive.
To start with, for simplicity, the points A, B, and C can be chosen as 0, t, and

2t, respectively, where t is a preselected trial step length. By this procedure, we can
save one function evaluation since fA = f (𝜆 = 0) is generally known from the previous
iteration (of a multivariable search). For this case, Eqs. (5.33)–(5.36) reduce to

a = fA (5.37)

b =
4fB − 3fA − fC

2t
(5.38)

c =
fC − fA − 2fB

2t2
(5.39)

�̃�
∗ =

4fB − 3fA − fC
4fB − 2fC − 2fA

t (5.40)

provided that

c =
fC + fA − 2fB

2t2
> 0 (5.41)

The inequality (5.41) can be satisfied if

fA + fC
2

> fB (5.42)

(i.e. the function value fB should be smaller than the average value of fA and fC). This
can be satisfied if fB lies below the line joining fA and fC as shown in Figure 5.12.

The following procedure can be used not only to satisfy the inequality (5.42) but
also to ensure that the minimum �̃�

∗ lies in the interval 0 < �̃�∗ < 2t.

1. Assuming that fA = f (𝜆 = 0) and the initial step size t0 are known, evaluate the
function f at 𝜆 = t0 and obtain f1 = f (𝜆 = t0). The possible outcomes are shown
in Figure 5.13.

2. If f1 > fA is realized (Figure 5.13c), set fC = f1 and evaluate the function f at
𝜆 = t0/2 and �̃�∗ using Eq. (5.40) with t = t0/2.

3. If f1 ≤ fA is realized (Figure 5.13a or b), set fB = f1, and evaluate the function f
at 𝜆 = 2t0 to find f2 = f (𝜆 = 2t0). This may result in any one of the situations
shown in Figure 5.14.

4. If f2 turns out to be greater than f1 (Figure 5.14b or c), set fC = f2 and compute
�̃�
∗ according to Eq. (5.40) with t = t0.

5. If f2 turns out to be smaller than f1, set new f1 = f2 and t0 = 2t0, and repeat steps
2–4 until we are able to find �̃�∗.

�

� �

�

250 Nonlinear Programming I: One-Dimensional Minimization Methods

CBA

fA

fB fC

f(λ)

λ

2

fA+ fC

Figure 5.12 fB smaller than (fA + fC)/2.

f1

t0

fA

A
(c)

(b)

f

λ

λ*~

f1
f1

t0

fAfA

A

ff

λ
λ*~

(a)

t0A λ
λ*~

Figure 5.13 Possible outcomes when the function is evaluated at 𝜆 = t0: (a) f1 < fA and
t0 < �̃�

∗; (b) f1 < fA and t0 > �̃�
∗; (c) f1 > fA and t0 > �̃�

∗.

A t0 2t0

fA

f(λ)

f1
f2

λ A

(a) (b) (c)

t0 2t0

fA

f(λ)

f1

f2

λ A t0 2t0

fA

f(λ)

f1
f2

λ A t0 2t0

fA

f(λ)

f1

f2

λ

Figure 5.14 Possible outcomes when function is evaluated at 𝜆 = t0 and 2t0: (a) f2 < f1 and
f2 < fA; (b) f2 < fA and f2 > f1; (c) f2 > fA and f2 > f1.

�

� �

�

5.10 Quadratic Interpolation Method 251

Stage 3. The �̃�∗ found in stage 2 is the minimum of the approximating quadratic h(𝜆)
and we have to make sure that this �̃�∗ is sufficiently close to the true minimum 𝜆

* of
f(𝜆) before taking 𝜆* ≃ �̃�∗. Several tests are possible to ascertain this. One possible test
is to compare f (�̃�∗) with h(�̃�∗) and consider �̃�∗ a sufficiently good approximation if
they differ not more than by a small amount. This criterion can be stated as|||||h(�̃�∗) − f (�̃�∗)

f (�̃�∗)

||||| ≤ 𝜀1 (5.43)

Another possible test is to examine whether df/d𝜆 is close to zero at �̃�∗. Since the
derivatives of f are not used in this method, we can use a finite-difference formula for
df/d𝜆 and use the criterion||||| f (�̃�∗ + Δ�̃�∗) − f (�̃�∗ − Δ�̃�∗)

2Δ�̃�∗
||||| ≤ 𝜀2 (5.44)

to stop the procedure. In Eqs. (5.43) and (5.44), 𝜀1 and 𝜀2 are small numbers to be
specified depending on the accuracy desired.

If the convergence criteria stated in Eqs. (5.43) and (5.44) are not satisfied, a new
quadratic function

h′(𝜆) = a′ + b′𝜆 + c′𝜆2

is used to approximate the function f (𝜆). To evaluate the constants a′, b′, and c′, the
three best function values of the current fA = f (𝜆 = 0), fB = f (𝜆 = t0), fC = f(𝜆 = 2t0),
and f̃ = f (𝜆 = �̃�∗) are to be used. This process of trying to fit another polynomial to
obtain a better approximation to �̃�∗ is known as refitting the polynomial.

For refitting the quadratic, we consider all possible situations and select the best
three points of the present A, B, C, and �̃�∗. There are four possibilities, as shown
in Figure 5.15. The best three points to be used in refitting in each case are given

A

fA
fB fC

f(λ)

λ

B C

(a)

λ*~

f
~

A

fA
fAfB

fB

fC

fC

f(λ) f(λ)

λ λ

B C

(c)

λ*~
A B C

(d)

λ*~

f
~

f
~

A

fA

fB

fC

f(λ)

λ

B C

(b)

λ*~

f
~

Figure 5.15 Various possibilities for refitting.

�

� �

�

252 Nonlinear Programming I: One-Dimensional Minimization Methods

Table 5.5 Refitting Scheme.

New points for refitting

Case Characteristics Old New

1 �̃�
∗
> B A B

f̃ < fB B �̃�
∗

C C
Neglect old A

2 �̃�
∗
> B A A

f̃ > fB B B
C �̃�

∗

Neglect old C
3 �̃�

∗
< B A A

f̃ < fB B �̃�
∗

C B
Neglect old C

4 �̃�
∗
< B A �̃�

∗

f̃ > fB B B
C C

Neglect old A

in Table 5.5. A new value of �̃�∗ is computed by using the general formula, Eq. (5.36).
If this �̃�∗ also does not satisfy the convergence criteria stated in Eqs. (5.43) and (5.44),
a new quadratic has to be refitted according to the scheme outlined in Table 5.5.

Example 5.10 Find the minimum of f = 𝜆5 − 5𝜆3 − 20𝜆+ 5.

SOLUTION Since this is not a multivariable optimization problem, we can proceed
directly to stage 2. Let the initial step size be taken as t0 = 0.5 and A = 0.

Iteration 1

fA = f (𝜆 = 0) = 5

f1 = f (𝜆 = t0) = 0.03125 − 5(0.125) − 20(0.5) + 5 = −5.59375

Since f1 < fA, we set fB = f1 = −5.593 75, and find that

f2 = f (𝜆 = 2t0 = 1.0) = −19.0

As f2 < f1, we set new t0 = 1 and f1 = −19.0. Again we find that f1 < fA and
hence set fB = f1 = −19.0, and find that f2 = f (𝜆 = 2t0 = 2) = −43. Since f2 < f1,
we again set t0 = 2 and f1 = −43. As this f1 < fA, set fB = f1 = −43 and evaluate
f2 = f (𝜆 = 2t0 = 4) = 629. This time f2 > f1 and hence we set fC = f2 = 629 and
compute �̃�∗ from Eq. (5.40) as

�̃�
∗ = 4(−43) − 3(5) − 629

4(−43) − 2(629) − 2(5)
(2) = 1632

1440
= 1.133

Convergence test: Since A = 0, fA = 5, B = 2, fB = −43, C = 4, and fC = 629, the
values of a, b, and c can be found to be

a = 5, b = −204, c = 90

�

� �

�

5.11 Cubic Interpolation Method 253

and
h(�̃�∗) = h(1.133) = 5 − 204(1.133) + 90(1.133)2 = −110.600

Since

f̃ = f (�̃�∗) = (1.133)5 −5(1.133)3 − 20(1.133) + 5.0 = −23.065

we have |||||h(�̃�∗) − f (�̃�∗)
f (�̃�∗)

||||| = ||||−110.600 + 23.065
−23.065

|||| = 3.795

As this quantity is very large, convergence is not achieved and hence we have to
use refitting.

Iteration 2

Since �̃�∗ <B and f̃ > fB, we take the new values of A, B, and C as

A = 1.133 fA = −23.065

B = 2.0 fB = −43.0

C = 4.0 fC = 629.0

and compute new �̃�
∗, using Eq. (5.36), as

= (−23.065)(4.0 − 16.0) + (−43.0)(16.0 − 1.284) + (629.0)(1.284 − 4.0)
2[(−23.065)(2.0 − 4.0) + (−43.0)(4.0 − 1.133) + (629.0)(1.133 − 2.0)]

= 1.658

Convergence test: To test the convergence, we compute the coefficients of the
quadratic as

a = 286.8322, b = −415.3741, c = 125.2290

As

h(�̃�∗) = h(1.658) = 286.8322 − 417.0(1.658) + 125.2290(1.658)2 = −57.608

f̃ = f (�̃�∗) = 12.529 − 5(4.558) − 20(1.658) + 5.0 = −38.42

we obtain |||||h(�̃�∗) − f (�̃�∗)
f (�̃�∗)

||||| = ||||−57.608 + 38.42
−38.42

|||| = 0.499

Since this quantity is not sufficiently small, we need to proceed to the next refit.

5.11 CUBIC INTERPOLATION METHOD

The cubic interpolation method finds the minimizing step length 𝜆* in four stages
[5.5, 5.11]. It makes use of the derivative of the function f:

f ′(𝜆) =
d f

d𝜆
= d

d𝜆
f (X+ 𝜆 S) = ST∇f (X+ 𝜆 S)

The first stage normalizes the S vector so that a step size 𝜆 = 1 is acceptable.
The second stage establishes bounds on 𝜆*, and the third stage finds the value of �̃�∗

�

� �

�

254 Nonlinear Programming I: One-Dimensional Minimization Methods

by approximating f (𝜆) by a cubic polynomial h(𝜆). If the �̃�∗ found in stage 3 does
not satisfy the prescribed convergence criteria, the cubic polynomial is refitted in the
fourth stage.

Stage 1. Calculate Δ = maxi |si|, where |si| is the absolute value of the ith component
of S, and divide each component of S by Δ. An alternative method of normalization
is to find

Δ = (s2
1 + s2

2 +⋯ + s2
n)1∕2

and divide each component of S by Δ.

Stage 2. To establish lower and upper bounds on the optimal step size 𝜆*, we need to
find two points A and B at which the slope df/d𝜆 has different signs. We know that at
𝜆 = 0,

d f

d𝜆

||||𝜆=0
= ST∇f (X) < 0

since S is presumed to be a direction of descent.8

Hence to start with we can take A = 0 and try to find a point 𝜆 = B at which the
slope df/d𝜆 is positive. Point B can be taken as the first value out of t0, 2t0, 4t0, 8t0, . . .
at which f ′ is nonnegative, where t0 is a preassigned initial step size. It then follows
that 𝜆* is bounded in the interval A<𝜆* ≤ B (Figure 5.16).

Stage 3. If the cubic equation

h(𝜆) = a + b𝜆 + c𝜆2 + d𝜆3 (5.45)

is used to approximate the function f (𝜆) between points A and B, we need to find the
values fA = f (𝜆 = A), f ′A = df/d𝜆 (𝜆 = A), fB = f (𝜆 = B), and f ′B = df/d𝜆 (𝜆 = B) in order
to evaluate the constants, a, b, c, and d in Eq. (5.45). By assuming that A≠ 0, we can
derive a general formula for �̃�∗. From Eq. (5.45) we have

fA = a + b A + c A2 + d A3

fB = a + b B + c B2 + d B3

f ′A = b + 2c A + 3d A2

f ′B = b + 2c B + 3d B2 (5.46)

Equation (5.46) can be solved to find the constants as

a = fA − bA − cA2 − dA3 (5.47)

A B

f(λ)

0

+
–

λ

Figure 5.16 Minimum of f (𝜆) lies between A and B.

8In this case the angle between the direction of steepest descent and S will be less than 90∘.

�

� �

�

5.11 Cubic Interpolation Method 255

with

b = 1
(A − B)2

(B2f ′A + A2f ′B + 2ABZ) (5.48)

c = 1
(A − B)2

[(A + B)Z + B f ′A + A f ′B] (5.49)

and
d = 1

3(A − B)2
(2Z + f ′A + f ′B) (5.50)

where

Z =
3(fA − fB)

B − A
+ f ′A + f ′B (5.51)

The necessary condition for the minimum of h(𝜆) given by Eq. (5.45) is that

dh
d𝜆

= b + 2c𝜆 + 3d𝜆2 = 0

that is,

�̃�
∗ = −c ± (c2 − 3bd)1∕2

3d
(5.52)

The application of the sufficiency condition for the minimum of h(𝜆) leads to the
relation

d2h
d𝜆2

||||�̃�∗ = 2c + 6d�̃�∗ > 0 (5.53)

By substituting the expressions for b, c, and d given by Eqs. (5.48)–(5.50) into
Eqs. (5.52) and (5.53), we obtain

�̃�
∗ = A +

f ′A + Z ± Q

f ′A + f ′B + 2Z
(B − A) (5.54)

where

Q = (Z2 − f ′A f ′B)
1∕2 (5.55)

2(B − A)(2Z + f ′A + f ′B)(f
′
A + Z + Q)

− 2(B − A)(f ′2A + Zf ′B + 3Zf ′A + 2Z2)

− 2(B + A)f ′A f ′B > 0 (5.56)

By specializing Eqs. (5.47)–(5.56) for the case where A = 0, we obtain

a = fA

b = f ′A

c = − 1
B
(Z + f ′A)

d = 1
3B2

(2Z + f ′A + f ′B)

�̃�
∗ = B

f ′A + Z ± Q

f ′A + f ′B + 2Z
(5.57)

Q = (Z2 − f ′A f ′B)
1∕2

> 0 (5.58)

�

� �

�

256 Nonlinear Programming I: One-Dimensional Minimization Methods

where

Z =
3(fA − fB)

B
+ f ′A + f ′B (5.59)

The two values of �̃�∗ in Eqs. (5.54) and (5.57) correspond to the two possibilities
for the vanishing of h′(𝜆) (i.e. at a maximum of h(𝜆) and at a minimum). To avoid
imaginary values of Q, we should ensure the satisfaction of the condition

Z2 − f ′A f ′B ≥ 0

in Eq. (5.55). This inequality is satisfied automatically since A and B are selected such
that f ′A < 0 and f ′B ≥ 0. Furthermore, the sufficiency condition (when A = 0) requires
that Q> 0, which is already satisfied. Now we compute �̃�∗ using Eq. (5.57) and proceed
to the next stage.

Stage 4. The value of �̃�∗ found in stage 3 is the true minimum of h(𝜆) and may not be
close to the minimum of f (𝜆). Hence the following convergence criteria can be used
before choosing 𝜆* ≈ �̃�∗: |||||h(�̃�∗) − f (�̃�∗)

f (�̃�∗)

||||| ≤ 𝜀1 (5.60)

|||| df

d𝜆

||||�̃�∗ = |ST∇f |
�̃�∗ ≤ 𝜀2 (5.61)

where 𝜀1 and 𝜀2 are small numbers whose values depend on the accuracy desired. The
criterion of Eq. (5.61) can be stated in nondimensional form as||||| ST∇f|S||∇f | |||||�̃�∗ ≤ 𝜀2 (5.62)

If the criteria stated in Eqs. (5.60) and (5.62) are not satisfied, a new cubic equation

h′(𝜆) = a′ + b′𝜆 + c′𝜆2 + d′
𝜆

3

can be used to approximate f (𝜆). The constants a′, b′, c′, and d′ can be evaluated by
using the function and derivative values at the best two points out of the three points
currently available: A, B, and �̃�∗. Now the general formula given by Eq. (5.54) is to be
used for finding the optimal step size �̃�∗. If f ′ (�̃�∗)< 0, the new points A and B are taken
as �̃�∗ and B, respectively; otherwise (if f ′ (�̃�∗) > 0), the new points A and B are taken
as A and �̃�∗, and Eq. (5.54) is applied to find the new value of �̃�∗. Equations (5.60) and
(5.62) are again used to test for the convergence of �̃�∗. If convergence is achieved, �̃�∗

is taken as 𝜆* and the procedure is stopped. Otherwise, the entire procedure is repeated
until the desired convergence is achieved.

The flowchart for implementing the cubic interpolation method is given in
Figure 5.17.

Example 5.11 Find the minimum of f= 𝜆5 − 5𝜆3 − 20𝜆+ 5 by the cubic interpolation
method.

SOLUTION Since this problem has not arisen during a multivariable optimization
process, we can skip stage 1. We take A = 0 and find that

df

d𝜆
(𝜆 = A = 0) = 5𝜆4 − 15𝜆2 − 20|

𝜆=0 = −20 < 0

�

� �

�

5.11 Cubic Interpolation Method 257

Enter with X, S and t0

Set fA = f(0), f ʹA = f ʹ(0) and A = 0

Set fA = fB
 f ʹA = f ʹB

 A = t0

Is f ʹB > 0? Set l = 0

Set l = l + 1

Is l ≥ lmax?

Yes

No

No

Set

Set

Yes

and Stop

Yes

Yes

Set

t0 = 2t0

B = t0

Set fB = f(t0) and f ʹB = f ʹ(t0)

l indicates counter for

number of refits

Calculate

NO

Z = (3(fA – fB)/(B–A)) + f ʹA + f ʹB

Is

NO

Yes

NO

Take λ* = λ*~

–

f(λ*)
~

f(λ*)
~

h(λ*)
~

≤ ε1 ?

B = λ*~

A = λ*~

fB = f(λ*)
~

fA = f(λ*)
~

f ʹB = f ʹ(λ*)
~

f ʹA = f ʹ(λ*)
~

Q = (Z2 – f ʹA f ʹB)
1

2

λ* = A + (f ʹA + Z ± Q)(B–A)/(f ʹA + f ʹB + 2Z)
~

Is ≤ ε2 ?
|S| |∇f|

∇fST

λ*~

λ*~Is ∇fST

Figure 5.17 Flowchart for cubic interpolation method.

�

� �

�

258 Nonlinear Programming I: One-Dimensional Minimization Methods

To find B at which df/d𝜆 is nonnegative, we start with t0 = 0.4 and evaluate the
derivative at t0, 2t0, 4t0, This gives

f ′(t0 = 0.4) = 5(0.4)4 − 15(0.4)2 − 20.0 = −22.272

f ′(2t0 = 0.8) = 5(0.8)4 − 15(0.8)2 − 20.0 = −27.552

f ′(4t0 = 1.6) = 5(1.6)4 − 15(1.6)2 − 20.0 = −25.632

f ′(8t0 = 3.2) = 5(3.2)4 − 15(3.2)2 − 20.0 = −350.688

Thus we find that9

A = 0.0, fA = 5.0, f ′A = −20.0

B = 3.2, fB = 113.0, f ′B = 350.688

A < 𝜆∗ < B

Iteration 1

To find the value of �̃�∗ and to test the convergence criteria, we first compute Z and Q
as

Z = 3(5.0 − 113.0)
3.2

− 20.0 + 350.688 = 229.588

Q = [229.5882 + (20.0)(350.688)]1∕2 = 244.0

Hence

�̃�
∗ = 3.2

(−20.0 + 229.588 ± 244.0
−20.0 + 350.688 + 459.176

)
= 1.84 or −0.1396

By discarding the negative value, we have

�̃�
∗ = 1.84

Convergence criterion: If �̃�∗ is close to the true minimum, 𝜆*, then f ′ (�̃�∗) = df
(�̃�∗)/d𝜆 should be approximately zero. Since f ′ = 5𝜆4 − 15𝜆2 − 20,

f ′(�̃�∗) = 5(1.84)4 − 15(1.84)2 − 20 = −13.0

Since this is not small, we go to the next iteration or refitting. As f ′(�̃�∗) < 0, we
take A = �̃�∗ and

fA = f (�̃�∗) = (1.84)5 − 5(1.84)3 − 20(1.84) + 5 = −41.70

Thus
A = 1.84, fA = −41.70, f ′A = −13.0

B = 3.2, fB = 113.0, f ′B = 350.688

A < �̃�
∗
< B

Iteration 2

Z = 3(−41.7 − 113.0)
3.20 − 1.84

− 13.0 + 350.688 = −3.312

Q = [(−3.312)2 + (13.0)(350.688)]1∕2 = 67.5

9As f ′ has been found to be negative at 𝜆 = 1.6 also, we can take A = 1.6 for faster convergence.

�

� �

�

5.12 Direct Root Methods 259

Hence

�̃�
∗ = 1.84 + −13.0 − 3.312 ± 67.5

−13.0 + 350.688 − 6.624
(3.2 − 1.84) = 2.05

Convergence criterion:

f ′(�̃�∗) = 5.0(2.05)4 − 15.0(2.05)2 − 20.0 = 5.35

Since this value is large, we go the next iteration with B= �̃�∗ = 2.05 (as f ′ (�̃�∗)> 0)
and

fB = (2.05)5 − 5.0(2.05)3 − 20.0(2.05) + 5.0 = −42.90

Thus

A = 1.84, fA = −41.70, f ′A = −13.00

B = 2.05, fB = −42.90, f ′B = 5.35

A < �̃�∗ < B

Iteration 3

Z = 3.0(−41.70 + 42.90)
(2.05 − 1.84)

− 13.00 + 5.35 = 9.49

Q = [(9.49)2 + (13.0)(5.35)]1∕2 = 12.61

Therefore,

�̃�
∗ = 1.84 + −13.00 − 9.49 ± 12.61

−13.00 + 5.35 + 18.98
(2.05 − 1.84) = 2.0086

Convergence criterion:

f ′(�̃�∗) = 5.0(2.0086)4 − 15.0(2.0086)2 − 20.0 = 0.855

Assuming that this value is close to zero, we can stop the iterative process and
take

𝜆
∗ ≃ �̃�

∗ = 2.0086

5.12 DIRECT ROOT METHODS

The necessary condition for f (𝜆) to have a minimum of 𝜆* is that f ′(𝜆*) = 0. The
direct root methods seek to find the root (or solution) of the equation, f ′(𝜆) = 0. Three
root-finding methods – the Newton, the quasi-Newton, and the secant methods – are
discussed in this section.

5.12.1 Newton Method

Consider the quadratic approximation of the function f (𝜆) at 𝜆 = 𝜆i using the Taylor’s
series expansion:

f (𝜆) = f (𝜆i) + f ′(𝜆i)(𝜆 − 𝜆i) +
1
2

f ′′(𝜆i)(𝜆 − 𝜆i)2 (5.63)

By setting the derivative of Eq. (5.63) equal to zero for the minimum of f (𝜆), we
obtain

f ′(𝜆) = f ′(𝜆i) + f ′′(𝜆i)(𝜆 − 𝜆i) = 0 (5.64)

�

� �

�

260 Nonlinear Programming I: One-Dimensional Minimization Methods

If 𝜆i denotes an approximation to the minimum of f (𝜆), Eq. (5.64) can be rear-
ranged to obtain an improved approximation as

𝜆i+1 = 𝜆i −
f ′(𝜆i)
f ′′(𝜆i)

(5.65)

Thus, the Newton method, Eq. (5.65), is equivalent to using a quadratic approx-
imation for the function f (𝜆) and applying the necessary conditions. The iterative
process given by Eq. (5.65) can be assumed to have converged when the derivative,
f ′(𝜆i+1), is close to zero: | f ′(𝜆i+1)| ≤ 𝜀 (5.66)

where 𝜀 is a small quantity. The convergence process of the method is shown graphi-
cally in Figure 5.18a.

Remarks:

1. The Newton method was originally developed by Newton for solving nonlinear
equations and later refined by Raphson, and hence the method is also known
as Newton–Raphson method in the literature of numerical analysis.

2. The method requires both the first- and second-order derivatives of f(𝜆).
3. If f ′′(𝜆i)≠ 0 (in Eq. (5.65)), the Newton iterative method has a powerful

(fastest) convergence property, known as quadratic convergence.10

Tangent at λi

Tangent at λi

λ

Tangent at λi + 1

Tangent at λi + 1

(a)

(b)

O

O

fʹ(λ)

fʹ(λ)

λi + 1

λi + 2

λi+1 λi+2

λi

λi

λ*

λ*

Figure 5.18 Iterative process of Newton method: (a) convergence; (b) divergence.

10The definition of quadratic convergence is given in Section 6.7.

�

� �

�

5.12 Direct Root Methods 261

4. If the starting point for the iterative process is not close to the true solution 𝜆*,
the Newton iterative process might diverge as illustrated in Figure 5.18b.

Example 5.12 Find the minimum of the function

f (𝜆) = 0.65 − 0.75
1 + 𝜆2

− 0.65𝜆 tan−1 1
𝜆

using the Newton–Raphson method with the starting point 𝜆1 = 0.1. Use 𝜀 = 0.01 in
Eq. (5.66) for checking the convergence.

SOLUTION The first and second derivatives of the function f(𝜆) are given by

f ′(𝜆) = 1.5𝜆
(1 + 𝜆2)2

+ 0.65
1 + 𝜆2

− 0.65𝜆 tan−1 1
𝜆

f ′′(𝜆) = 1.5𝜆(1 − 3𝜆2)
(1 + 𝜆2)3

+ 0.65(1 − 𝜆2)
(1 + 𝜆2)2

+ 0.65
1 + 𝜆2

= 2.8 − 3.2𝜆2

(1 + 𝜆2)3

Iteration 1

𝜆1 = 0.1, f (𝜆1) = −0.188197, f ′(𝜆1) = −0.744832,

f ′′(𝜆1) = 2.68659, 𝜆2 = 𝜆1 −
f ′(𝜆1)
f ′′(𝜆1)

= 0.377241

Convergence check: |f ′(𝜆2)| = |−0.138 230| >𝜀.

Iteration 2

f (𝜆2) = −0.303279, f ′(𝜆2) = −0.138230, f ′′(𝜆2) = 1.57296

𝜆3 = 𝜆2 −
f ′(𝜆2)
f ′′(𝜆2)

= 0.465119

Convergence check: |f ′(𝜆3)| = |− 0.017 907 8| >𝜀.

Iteration 3

f (𝜆3) = −0.309881, f ′(𝜆3) = −0.0179078, f ′′(𝜆3) = 1.17126

𝜆4 = 𝜆3 −
f ′(𝜆3)
f ′′(𝜆3)

= 0.480409

Convergence check: |f ′(𝜆4)| = |− 0.000 503 3| <𝜀.
Since the process has converged, the optimum solution is taken as 𝜆* ≈ 𝜆4 =

0.480 409.

5.12.2 Quasi-Newton Method

If the function being minimized f (𝜆) is not available in closed form or is difficult to
differentiate, the derivatives f ′ (𝜆) and f ′′(𝜆) in Eq. (5.65) can be approximated by the
finite difference formulas as

f ′(𝜆i) =
f (𝜆i + Δ𝜆) − f (𝜆i − Δ𝜆)

2Δ𝜆
(5.67)

f ′′(𝜆i) =
f (𝜆i + Δ𝜆) − 2f (𝜆i) + f (𝜆i − Δ𝜆)

Δ𝜆2
(5.68)

�

� �

�

262 Nonlinear Programming I: One-Dimensional Minimization Methods

where Δ𝜆 is a small step size. Substitution of Eqs. (5.67) and (5.68) into Eq. (5.65)
leads to

𝜆i+1 = 𝜆i −
Δ𝜆[f (𝜆i + Δ𝜆) − f (𝜆i − Δ𝜆)]

2[f (𝜆i + Δ𝜆) − 2f (𝜆i) + f (𝜆i − Δ𝜆)]
(5.69)

The iterative process indicated by Eq. (5.69) is known as the quasi-Newton
method. To test the convergence of the iterative process, the following criterion can
be used: |f ′(𝜆i+1)| = |||| f (𝜆i+1 + Δ𝜆) − f (𝜆i+1 − Δ𝜆)

2Δ𝜆
|||| ≤ 𝜀 (5.70)

where a central difference formula has been used for evaluating the derivative of f and
𝜀 is a small quantity.

Remarks:

1. The central difference formulas have been used in Eqs. (5.69) and (5.70). How-
ever, the forward or backward difference formulas can also be used for this
purpose.

2. Equation (5.69) requires the evaluation of the function at the points 𝜆i +Δ𝜆
and 𝜆i −Δ𝜆 in addition to 𝜆i in each iteration.

Example 5.13 Find the minimum of the function

f (𝜆) = 0.65 − 0.75
1 + 𝜆2

− 0.65𝜆 tan−1 1
𝜆

using quasi-Newton method with the starting point 𝜆1 = 0.1 and the step sizeΔ𝜆= 0.01
in central difference formulas. Use 𝜀= 0.01 in Eq. (5.70) for checking the convergence.

SOLUTION

Iteration 1

𝜆1 = 0.1, Δ𝜆 = 0.01, 𝜀 = 0.01, f1 = f (𝜆1) = −0.188197,

f +1 = f (𝜆1 + Δ𝜆) = −0.195512, f −1 = f (𝜆1 − Δ𝜆) = −0.180615

𝜆2 = 𝜆1 −
Δ𝜆(f +1 − f −1)

2(f +1 − 2f1 + f −1)
= 0.377882

Convergence check:

|f ′(𝜆2)| = |||||
f +2 − f −2

2Δ𝜆

||||| = 0.137300 > 𝜀

Iteration 2

f2 = f (𝜆2) = −0.303368, f +2 = f (𝜆2 + Δ𝜆) = −0.304662,

f −2 = f (𝜆2 − Δ𝜆) = −0.301916

𝜆3 = 𝜆2 −
Δ𝜆(f +2 − f −2)

2(f +2 − 2f2 + f −2)
= 0.465390

�

� �

�

5.12 Direct Root Methods 263

Convergence check:

|f ′(𝜆3)| = |||||
f +3 − f −3

2Δ𝜆

||||| = 0.017700 > 𝜀

Iteration 3

f3 = f (𝜆3) = −0.309885, f +3 = f (𝜆3 + Δ𝜆) = −0.310004,

f −3 = f (𝜆3 − Δ𝜆) = −0.309650

𝜆4 = 𝜆3 −
Δ𝜆(f +3 − f −3)

2(f +3 − 2f3 + f −3)
= 0.480600

Convergence check:

|f ′(𝜆4)| = |||||
f +4 − f −4

2Δ𝜆

||||| = 0.000350 < 𝜀

Since the process has converged, we take the optimum solution as 𝜆* ≈ 𝜆4 =
0.480 600.

5.12.3 Secant Method

The secant method uses an equation similar to Eq. (5.64) as

f ′(𝜆) = f ′(𝜆i) + s(𝜆 − 𝜆i) = 0 (5.71)

where s is the slope of the line connecting the two points (A, f ′(A)) and (B, f ′(B)),
where A and B denote two different approximations to the correct solution, 𝜆*.The
slope s can be expressed as (Figure 5.19)

s =
f ′(B) − f ′(A)

B − A
(5.72)

fʹ(λ)

fʹ(A)

fʹ(B)

A = λi

B

Slope, s

λ*
λ

λi+2

λi+1

Figure 5.19 Iterative process of the secant method.

�

� �

�

264 Nonlinear Programming I: One-Dimensional Minimization Methods

Equation (5.71) approximates the function f ′(𝜆) between A and B as a linear
equation (secant), and hence the solution of Eq. (5.71) gives the new approximation
to the root of f ′(𝜆) as

𝜆i+1 = 𝜆i −
f ′(𝜆i)

s
= A −

f ′(A)(B − A)
f ′(B) − f ′(A)

(5.73)

The iterative process given by Eq. (5.73) is known as the secant method
(Figure 5.19). Since the secant approaches the second derivative of f(𝜆) at A as B
approaches A, the secant method can also be considered as a quasi-Newton method.
It can also be considered as a form of elimination technique since part of the interval,
(A, 𝜆i+1) in Figure 5.19, is eliminated in every iteration. The iterative process can be
implemented by using the following step-by-step procedure.

1. Set 𝜆1 = A = 0 and evaluate f ′(A). The value of f ′(A) will be negative. Assume
an initial trial step length t0. Set i = 1.

2. Evaluate f ′(t0).
3. If f ′(t0) < 0, set A = 𝜆i = t0, f ′(A) = f ′(t0), new t0 = 2t0, and go to step 2.
4. If f ′(t0)≥ 0, set B = t0, f ′(B) = f ′(t0), and go to step 5.
5. Find the new approximate solution of the problem as

𝜆i+1 = A −
f ′(A)(B − A)
f ′(B) − f ′(A)

(5.74)

6. Test for convergence: |f ′(𝜆i + 1)| ≤ 𝜀 (5.75)

where 𝜀 is a small quantity. If Eq. (5.75) is satisfied, take 𝜆* ≈ 𝜆i+1 and stop the
procedure. Otherwise, go to step 7.

7. If f ′(𝜆i+1)≥ 0, set new B = 𝜆i+1, f ′(B) = f ′(𝜆i+1), i = i + 1, and go to step 5.
8. If f ′(𝜆i+1) < 0, set new A = 𝜆i+1, f ′(A) = f ′(𝜆i+1), i = i + 1, and go to step 5.

Remarks:

1. The secant method is identical to assuming a linear equation for f ′(𝜆). This
implies that the original function, f(𝜆), is approximated by a quadratic equation.

2. In some cases, we may encounter a situation where the function f ′(𝜆) varies
very slowly with 𝜆, as shown in Figure 5.20. This situation can be identified
by noticing that the point B remains unaltered for several consecutive refits.
Once such a situation is suspected, the convergence process can be improved
by taking the next value of 𝜆i+1 as (A + B)/2 instead of finding its value from
Eq. (5.74).

Example 5.14 Find the minimum of the function

f (𝜆) = 0.65 − 0.75
1 + 𝜆2

− 0.65𝜆 tan 1 1
𝜆

using the secant method with an initial step size of t0 = 0.1, 𝜆1 = 0.0, and 𝜀 = 0.01.

SOLUTION 𝜆1 = A = 0.0, t0 = 0.1, f ′(A) = −1.021 02, B = A+ t0 = 0.1,
f ′(B) = −0.744 832. Since f ′(B) < 0, we set new A = 0.1, f ′(A) = −0.744 832,

�

� �

�

5.13 Practical Considerations 265

0 A

B

fʹA

fʹB

λ

fʹ(λ)

λ*
1

~ λ*
2

~
λ*

3
~

Figure 5.20 Situation when f ′ varies very slowly.

t0 = 2(0.1) = 0.2, B = 𝜆1 + t0 = 0.2, and compute f ′(B) = −0.490 343. Since f ′(B) < 0,
we set new A = 0.2, f ′(A) = −0.490 343, t0 = 2(0.2) = 0.4, B = 𝜆1 + t0 = 0.4, and
compute f ′(B) =−0.103 652. Since f ′(B)< 0, we set new A = 0.4, f ′(A) =−0.103 652,
t0 = 2(0.4) = 0.8, B = 𝜆1 + t0 = 0.8, and compute f ′(B) = +0.180 800. Since f ′(B) > 0,
we proceed to find 𝜆2.

Iteration 1

Since A = 𝜆1 = 0.4, f ′(A) = −0.103 652, B = 0.8, f ′(B) = +0.180 800, we compute

𝜆2 = A −
f ′(A)(B − A)
f ′(B) − f ′(A)

= 0.545757

Convergence check: |f ′(𝜆2)| = |+ 0.010 578 9| >𝜀.

Iteration 2

Since f ′(𝜆2) = +0.010 578 9 > 0, we set new A = 0.4, f ′(A) = −0.103 652,
B = 𝜆2 = 0.545 757, f ′(B) = f ′(𝜆2) = +0.010 578 9, and compute

𝜆3 = A −
f ′(A)(B − A)
f ′(B) − f ′(A)

= 0.490632

Convergence check: |f ′(𝜆3)| = |+ 0.001 512 35| <𝜀.
Since the process has converged, the optimum solution is given by 𝜆* ≈ 𝜆3 =

0.490 632.

5.13 PRACTICAL CONSIDERATIONS

5.13.1 How to Make the Methods Efficient and More Reliable

In some cases, some of the interpolation methods discussed in Sections 5.10–5.12 may
be very slow to converge, may diverge, or may predict the minimum of the function, f
(𝜆), outside the initial interval of uncertainty, especially when the interpolating poly-
nomial is not representative of the variation of the function being minimized. In such
cases we can use the Fibonacci or golden section method to find the minimum. In
some problems it might prove to be more efficient to combine several techniques. For

�

� �

�

266 Nonlinear Programming I: One-Dimensional Minimization Methods

example, the unrestricted search with an accelerated step size can be used to bracket
the minimum and then the Fibonacci or the golden section method can be used to find
the optimum point. In some cases the Fibonacci or golden section method can be used
in conjunction with an interpolation method.

5.13.2 Implementation in Multivariable Optimization Problems

As stated earlier, the one-dimensional minimization methods are useful in multivari-
able optimization problems to find an improved design vector Xi+1 from the current
design vector Xi using the formula

Xi+1 = Xi + 𝜆∗i Si (5.76)

where Si is the known search direction and 𝜆∗i is the optimal step length found by
solving the one-dimensional minimization problem as

𝜆
∗
i = min

𝜆i

[f (Xi + 𝜆iSi)] (5.77)

Here the objective function f is to be evaluated at any trial step length t0 as

f (t0) = f (Xi + t0Si) (5.78)

Similarly, the derivative of the function f with respect to 𝜆 corresponding to the
trial step length t0 is to be found as

df

d𝜆

||||𝜆=t0

= ST
i Δf

|||||𝜆=t0

(5.79)

Separate function programs or subroutines can be written conveniently to imple-
ment Eqs. (5.78) and (5.79).

5.13.3 Comparison of Methods

It has been shown in Section 5.9 that the Fibonacci method is the most efficient elim-
ination technique in finding the minimum of a function if the initial interval of uncer-
tainty is known. In the absence of the initial interval of uncertainty, the quadratic
interpolation method or the quasi-Newton method is expected to be more efficient
when the derivatives of the function are not available. When the first derivatives of the
function being minimized are available, the cubic interpolation method or the secant
method are expected to be very efficient. On the other hand, if both the first and second
derivatives of the function are available, the Newton method will be the most efficient
one in finding the optimal step length, 𝜆*.

In general, the efficiency and reliability of the various methods are problem depen-
dent and any efficient computer program must include many heuristic additions not
indicated explicitly by the method. The heuristic considerations are needed to handle
multimodal functions (functions with multiple extreme points), sharp variations in the
slopes (first derivatives) and curvatures (second derivatives) of the function, and the
effects of round-off errors resulting from the precision used in the arithmetic opera-
tions. A comparative study of the efficiencies of the various search methods is given
in Ref. [5.10].

�

� �

�

Review Questions 267

5.14 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of the one-variable optimization
problem considered in Example 5.8 is given in Example 17.5.

REFERENCES AND BIBLIOGRAPHY

5.1 Rao, S.S. (2018). The Finite Element Method in Engineering, 6e. Oxford:
Elsevier-Butterworth-Heinemann.

5.2 Powell, M.J.D. (1964). An efficient method for finding the minimum of a function of
several variables without calculating derivatives. Computer Journal 7: 155–162.

5.3 Fletcher, R. and Reeves, C.M. (1964). Function minimization by conjugate gradients.
Computer Journal 7: 149–154.

5.4 Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969). Applied Numerical Methods. New
York: Wiley.

5.5 Fox, R.L. (1971). Optimization Methods for Engineering Design. Reading, MA:
Addison-Wesley.

5.6 Wilde, D.J. (1964). Optimum Seeking Methods. Englewood Cliffs, NJ: Prentice Hall.

5.7 Cohen, A.I. (1981). Stepsize analysis for descent methods. Journal of Optimization The-
ory and Applications 33: 187–205.

5.8 Gill, P.E., Murray, W., and Wright, M.H. (1981). Practical Optimization. New York:
Academic Press.

5.9 Dennis, J.E. and Schnabel, R.B. (1983). Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Englewood Cliffs, NJ: Prentice Hall.

5.10 Brent, R.P. (1973). Algorithms for Minimization Without Derivatives. Englewood Cliffs,
NJ: Prentice Hall.

5.11 Davidon, W.C. (1959). Variable Metric Method for Minimization. Argonne National
Laboratory, ANL-5990 (rev).

REVIEW QUESTIONS

5.1 What is a one-dimensional minimization problem?

5.2 What are the limitations of classical methods in solving a one-dimensional minimization
problem?

5.3 What is the difference between elimination and interpolation methods?

5.4 Define Fibonacci numbers.

5.5 What is the difference between Fibonacci and golden section methods?

5.6 What is a unimodal function?

5.7 What is an interval of uncertainty?

5.8 Suggest a method of finding the minimum of a multimodal function.

5.9 What is an exhaustive search method?

5.10 What is a dichotomous search method?

5.11 Define the golden mean.

5.12 What is the difference between quadratic and cubic interpolation methods?

5.13 Why is refitting necessary in interpolation methods?

�

� �

�

268 Nonlinear Programming I: One-Dimensional Minimization Methods

5.14 What is a direct root method?

5.15 What is the basis of the interval halving method?

5.16 What is the difference between Newton and quasi-Newton methods?

5.17 What is the secant method?

5.18 Answer true or false:

(a) A unimodal function cannot be discontinuous.

(b) All elimination methods assume the function to be unimodal.

(c) The golden section method is more accurate than the Fibonacci method.

(d) Nearly 50% of the interval of uncertainty is eliminated with each pair of experiments
in the dichotomous search method.

(e) The number of experiments to be conducted is to be specified beforehand in both
the Fibonacci and golden section methods.

PROBLEMS

5.1 Find the minimum of the function

f (x) = 0.65 − 0.75
1 + x2

− 0.65x tan−1 1
x

using the following methods:

(a) Unrestricted search with a fixed step size of 0.1 from the starting point 0.0

(b) Unrestricted search with an accelerated step size using an initial step size of 0.1 and
starting point of 0.0

(c) Exhaustive search method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

(d) Dichotomous search method in the interval (0, 3) to achieve an accuracy of within
5% of the exact value using a value of 𝛿 = 0.0001

(e) Interval halving method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

5.2 Find the minimum of the function given in Problem 5.1 using the quadratic interpolation
method with an initial step size of 0.1.

5.3 Find the minimum of the function given in Problem 5.1 using the cubic interpolation
method with an initial step size of t0 = 0.1.

5.4 Plot the graph of the function f (x) given in Problem 5.1 in the range (0, 3) and identify
its minimum.

5.5 The shear stress induced along the z-axis when two cylinders are in contact with each
other is given by

𝜏zy

pmax
= −1

2

⎡⎢⎢⎢⎢⎣
− 1√

1 +
(

z
b

)2
+

⎧⎪⎨⎪⎩2 − 1

1 +
(

z
b

)2

⎫⎪⎬⎪⎭ ×
√

1 +
(z

b

)2
− 2

(z
b

)⎤⎥⎥⎥⎥⎦
(5.80)

�

� �

�

Problems 269

F

F

y

d2

E2 , v2

E1 , v1
d1

2b

b
Contact area

b

pmax

pmax

l

z

x

Figure 5.21 Contact stress between two cylinders.

where 2b is the width of the contact area and pmax is the maximum pressure developed
at the center of the contact area (Figure 5.21):

b =

⎛⎜⎜⎜⎜⎝
2F
𝜋l

1 − v2
1

E1
+

1 − v2
2

E2

1
d1

+ 1
d2

⎞⎟⎟⎟⎟⎠

1∕2

(5.81)

pmax = 2F
𝜋bl

(5.82)

F is the contact force; E1 and E2 are Young’s moduli of the two cylinders; 𝜈1 and 𝜈2 are
Poisson’s ratios of the two cylinders; d1 and d2 the diameters of the two cylinders, and l
the axial length of contact (length of the shorter cylinder). In many practical applications,
such as roller bearings, when the contact load (F) is large, a crack originates at the point
of maximum shear stress and propagates to the surface leading to a fatigue failure. To
locate the origin of a crack, it is necessary to find the point at which the shear stress attains
its maximum value. Show that the problem of finding the location of the maximum shear
stress for 𝜈1 = 𝜈2 = 0.3 reduces to maximizing the function

f (𝜆) = 0.5√
1 + 𝜆2

−
√

1 + 𝜆2
(

1 − 0.5
1 + 𝜆2

)
+ 𝜆 (5.83)

where f = 𝜏zy/pmax and 𝜆 = z/b.

5.6 Plot the graph of the function f (𝜆) given by Eq. (5.83) in Problem 5.5 in the range (0, 3)
and identify its maximum.

�

� �

�

270 Nonlinear Programming I: One-Dimensional Minimization Methods

5.7 Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the following
methods:

(a) Unrestricted search with a fixed step size of 0.1 from the starting point 0.0

(b) Unrestricted search with an accelerated step size using an initial step length of 0.1
and a starting point of 0.0

(c) Exhaustive search method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

(d) Dichotomous search method in the interval (0, 3) to achieve an accuracy of within
5% of the exact value using a value of 𝛿 = 0.0001

(e) Interval halving method in the interval (0, 3) to achieve an accuracy of within 5%
of the exact value

5.8 Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the following
methods:

(a) Fibonacci method with n = 8

(b) Golden section method with n = 8

5.9 Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the quadratic
interpolation method with an initial step length of 0.1.

5.10 Find the maximum of the function given by Eq. (5.83) in Problem 5.5 using the cubic
interpolation method with an initial step length of t0 = 0.1.

5.11 Find the maximum of the function f(𝜆) given by Eq. (5.83) in Problem 5.5 using the
following methods:

(a) Newton method with the starting point 0.6

(b) Quasi-Newton method with the starting point 0.6 and a finite difference step size of
0.001

(c) Secant method with the starting point 𝜆1 = 0.0 and t0 = 0.1

5.12 Prove that a convex function is unimodal.

5.13 Compare the ratios of intervals of uncertainty (Ln/L0) obtainable in the following methods
for n = 2, 3, . . . , 10:

(a) Exhaustive search

(b) Dichotomous search with 𝛿 = 10−4

(c) Interval halving method

(d) Fibonacci method

(e) Golden section method

5.14 Find the number of experiments to be conducted in the following methods to obtain a
value of Ln/L0 = 0.001:

(a) Exhaustive search

(b) Dichotomous search with 𝛿 = 10−4

(c) Interval halving method

(d) Fibonacci method

(e) Golden section method

5.15 Find the value of x in the interval (0, 1) which minimizes the function f = x(x− 1.5) to
within ±0.05 by (a) the golden section method and (b) the Fibonacci method.

�

� �

�

Problems 271

5.16 Find the minimum of the function f = 𝜆5 − 5𝜆3 − 20𝜆+ 5 by the following methods:

(a) Unrestricted search with a fixed step size of 0.1 starting from 𝜆 = 0.0

(b) Unrestricted search with accelerated step size from the initial point 0.0 with a start-
ing step length of 0.1

(c) Exhaustive search in the interval (0, 5)

(d) Dichotomous search in the interval (0, 5) with 𝛿 = 0.0001

(e) Interval halving method in the interval (0, 5)

(f) Fibonacci search in the interval (0, 5)

(g) Golden section method in the interval (0, 5)

5.17 Find the minimum of the function f = (𝜆/log 𝜆) by the following methods (take the initial
trial step length as 0.1):

(a) Quadratic interpolation method

(b) Cubic interpolation method

5.18 Find the minimum of the function f = 𝜆/log 𝜆 using the following methods:

(a) Newton method

(b) Quasi-Newton method

(c) Secant method

5.19 Consider the function

f =
2x2

1 + 2x2
2 + 3x2

3 − 2x1x2 − 2x2x3

x2
1 + x2

2 + 2x2
3

Substitute X = X1 + 𝜆S into this function and derive an exact formula for the minimizing
step length 𝜆*.

5.20 Minimize the function f = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 starting from the point X1 =
{

0
0

}
along the direction S =

{−1
0

}
using the quadratic interpolation method with an initial step

length of 0.1.

5.21 Consider the problem

Minimize f (X) = 100(x2 − x2
1)

2 + (1 − x1)2

and the starting point, X1 =
{−1

1

}
. Find the minimum of f (X) along the direction,

S1 =
{

4
0

}
using quadratic interpolation method. Use a maximum of two refits.

5.22 Solve Problem 5.21 using the cubic interpolation method. Use a maximum of two refits.

5.23 Solve Problem 5.21 using the direct root method. Use a maximum of two refits.

5.24 Solve Problem 5.21 using the Newton method. Use a maximum of two refits.

5.25 Solve Problem 5.21 using the Fibonacci method with L0 = (0, 0.1).

�

� �

�

�

� �

�

6

Nonlinear Programming II:
Unconstrained Optimization
Techniques

6.1 INTRODUCTION

This chapter deals with the various methods of solving the unconstrained minimization
problem:

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭which minimizes f (X) (6.1)

It is true that rarely a practical design problem would be unconstrained; still, a
study of this class of problems is important for the following reasons:

1. The constraints do not have significant influence in certain design problems.
2. Some of the powerful and robust methods of solving constrained minimization

problems require the use of unconstrained minimization techniques.
3. The study of unconstrained minimization techniques provide the basic under-

standing necessary for the study of constrained minimization methods.
4. The unconstrained minimization methods can be used to solve certain complex

engineering analysis problems. For example, the displacement response (linear
or nonlinear) of any structure under any specified load condition can be found
by minimizing its potential energy. Similarly, the eigenvalues and eigenvectors
of any discrete system can be found by minimizing the Rayleigh quotient.

As discussed in Chapter 2, a point X* will be a relative minimum of f(X) if the
necessary conditions

𝜕f

𝜕xi
(X = X∗) = 0, i = 1, 2, . . . , n (6.2)

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

273

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

274 NLP II: Unconstrained Optimization

are satisfied. The point X* is guaranteed to be a relative minimum if the Hessian matrix
is positive definite, that is,

JX∗ = [J]X∗ =
[
𝜕

2f

𝜕xi 𝜕xj
(X∗)

]
= positive definite (6.3)

Equations (6.2) and (6.3) can be used to identify the optimum point during numer-
ical computations. However, if the function is not differentiable, Eqs. (6.2) and (6.3)
cannot be applied to identify the optimum point. For example, consider the function

f (x) =

{
ax

−bx

for

for

x ≥ 0

x ≤ 0

where a> 0 and b> 0. The graph of this function is shown in Figure 6.1. It can be
seen that this function is not differentiable at the minimum point, x* = 0, and hence
Eqs. (6.2) and (6.3) are not applicable in identifying x*. In all such cases, the commonly
understood notion of a minimum, namely, f(X*)< f(X) for all X, can be used only
to identify a minimum point. The following example illustrates the formulation of a
typical analysis problem as an unconstrained minimization problem.

Example 6.1 A cantilever beam is subjected to an end force P0 and an end
moment M0 as shown in Figure 6.2a. By using a one-finite-element model indicated
in Figure 6.2b, the transverse displacement, w(x), can be expressed as [6.1]

w(x) = {N1(x) N2(x) N3(x) N4(x)}

⎧⎪⎪⎨⎪⎪⎩
u1

u2

u3

u4

⎫⎪⎪⎬⎪⎪⎭
(E1)

where Ni(x) are called shape functions and are given by

N1(x) = 2𝛼3 − 3𝛼2 + 1 (E2)

N2(x) = (𝛼3 − 2𝛼2 + 𝛼)l (E3)

N3(x) = −2𝛼3 + 3𝛼2 (E4)

N4(x) = (𝛼3 − 𝛼2)l (E5)

𝛼 = x/l, and u1, u2, u3, and u4 are the end displacements (or slopes) of the beam. The
deflection of the beam at point A can be found by minimizing the potential energy of
the beam (F), which can be expressed as [6.1]

F = 1
2
∫ l

0 EI
(

d2w
dx2

)2
dx − P0u3 − M0u4 (E6)

f(x) = –bx

f(x)

f(x) = ax

x
0

Figure 6.1 Function is not differentiable at minimum point.

�

� �

�

6.1 Introduction 275

u2 = 0

u1 = 0

w(x)

w(x)

x

x

M0

P0

A

u3

u4

u1

u2

l

l

(a)

(b)

Figure 6.2 Finite-element model of a cantilever beam.

where E is Young’s modulus and I is the area moment of inertia of the beam. Formulate
the optimization problem in terms of the variables x1 = u3 and x2 = u4l for the case
P0l3/EI = 1 and M0l2/EI = 2.

SOLUTION Since the boundary conditions are given by u1 = u2 = 0, w(x) can be
expressed as

w(x) = (−2𝛼3 + 3𝛼2)u3 + (𝛼3 − 𝛼2)lu4 (E7)

so that
d2w

dx2
=

6u3

l2
(−2𝛼 + 1) +

2u4

l
(3𝛼 − 1) (E8)

Eq. (E6) can be rewritten as

F = 1
2
∫ l

0 EI
(

d2w
dx2

)2
l d𝛼 − P0u3 − M0u4

= EIl
2 ∫

l

0

[
6u3

l2
(−2𝛼 + 1) +

2u4

l
(3𝛼 − 1)

]2

d𝛼 − P0u3 − M0u4

= EI
l3
(6u2

3 + 2u2
4l2 − 6u3u4l) − P0u3 − M0u4 (E9)

By using the relations u3 = x1, u4l = x2, P0l3/EI = 1, and M0l2/EI = 2, and intro-
ducing the notation f = Fl3/EI, Eq. (E9) can be expressed as

f = 6x2
1 − 6x1x2 + 2x2

2 − x1 − 2x2 (E10)

�

� �

�

276 NLP II: Unconstrained Optimization

Thus the optimization problem is to determine x1 and x2, which minimize the
function f given by Eq. (E10).

6.1.1 Classification of Unconstrained Minimization Methods

Several methods are available for solving an unconstrained minimization problem.
These methods can be classified into two broad categories as direct search methods
and descent methods as indicated in Table 6.1. The direct search methods require only
the objective function values but not the partial derivatives of the function in finding
the minimum and hence are often called the nongradient methods. The direct search
methods are also known as zeroth-order methods since they use zeroth-order deriva-
tives of the function. These methods are most suitable for simple problems involving
a relatively small number of variables. These methods are, in general, less efficient
than the descent methods. The descent techniques require, in addition to the function
values, the first and in some cases the second derivatives of the objective function.
Since more information about the function being minimized is used (through the use
of derivatives), descent methods are generally more efficient than direct search tech-
niques. The descent methods are known as gradient methods. Among the gradient
methods, those requiring only first derivatives of the function are called first-order
methods; those requiring both first and second derivatives of the function are termed
second-order methods.

6.1.2 General Approach

All the unconstrained minimization methods are iterative in nature and hence they start
from an initial trial solution and proceed toward the minimum point in a sequential
manner as shown in Figure 5.3. The iterative process is given by

Xi+1 = Xi + 𝜆∗i Si (6.4)

where Xi is the starting point, Si is the search direction, 𝜆∗i is the optimal step length,
and Xi+1 is the final point in iteration i. It is important to note that all the unconstrained
minimization methods (i) require an initial point X1 to start the iterative procedure, and
(ii) differ from one another only in the method of generating the new point Xi+1 (from
Xi) and in testing the point Xi+1 for optimality.

6.1.3 Rate of Convergence

Different iterative optimization methods have different rates of convergence. In gen-
eral, an optimization method is said to have convergence of order p if [6.2]‖Xi+1 − X∗‖‖Xi − X∗‖p

≤ k, k ≥ 0, p ≥ 1 (6.5)

Table 6.1 Unconstrained minimization methods.

Direct search methodsa Descent methodsb

Random search method Steepest descent (Cauchy) method
Grid search method Fletcher–Reeves method
Univariate method Newton’s method
Pattern search methods Marquardt method
Powell’s method Quasi-Newton methods

Davidon–Fletcher–Powell method
Broyden–Fletcher–Goldfarb–Shanno method

Simplex method

aDo not require the derivatives of the function.
bRequire the derivatives of the function.

�

� �

�

6.1 Introduction 277

where Xi and Xi+1 denote the points obtained at the end of iterations i and i+ 1,
respectively, X* represents the optimum point, and ||X|| denotes the length or norm
of the vector X: ‖X‖ =√x2

1 + x2
2 +⋯ + x2

n

If p = 1 and 0≤ k≤ 1, the method is said to be linearly convergent (corresponds
to slow convergence). If p = 2, the method is said to be quadratically convergent
(corresponds to fast convergence). An optimization method is said to have superlinear
convergence (corresponds to fast convergence) if

lim
i→∞

‖Xi+1 − X∗‖‖Xi − X∗‖ → 0 (6.6)

The definitions of rates of convergence given in Eqs. (6.5) and (6.6) are applica-
ble to single-variable as well as multivariable optimization problems. In the case of
single-variable problems, the vector, Xi, for example, degenerates to a scalar, xi.

6.1.4 Scaling of Design Variables

The rate of convergence of most unconstrained minimization methods can be improved
by scaling the design variables. For a quadratic objective function, the scaling of the
design variables changes the condition number1 of the Hessian matrix. When the con-
dition number of the Hessian matrix is 1, the steepest descent method, for example,
finds the minimum of a quadratic objective function in one iteration.

If f = 1
2
XT[A]X denotes a quadratic term, a transformation of the form

X = [R]Y or

{
x1
x2

}
=
[

r11 r12
r21 r22

]{
y1
y2

}
(6.7)

can be used to obtain a new quadratic term as

1
2
YT[Ã]Y = 1

2
YT[R]T[A][R]Y (6.8)

The matrix [R] can be selected to make [Ã]= [R]T[A][R] diagonal (i.e. to eliminate
the mixed quadratic terms). For this, the columns of the matrix [R] are to be chosen as
the eigenvectors of the matrix [A]. Next the diagonal elements of the matrix [Ã] can be

1The condition number of an n × n matrix, [A], is defined as

cond([A]) = ||[A]|| ||[A]−1|| ≥ 1

where ||[A]|| denotes a norm of the matrix [A]. For example, the infinite norm of [A] is defined as the
maximum row sum given by

||[A]||∞ = max
1≤i≤n

n∑
j=1

|aij|
If the condition number is close to 1, the round-off errors are expected to be small in dealing with the matrix
[A]. For example, if cond[A] is large, the solution vector X of the system of equations [A]X = B is expected
to be very sensitive to small variations in [A] and B. If cond[A] is close to 1, the matrix [A] is said to be
well behaved or well conditioned. On the other hand, if cond[A] is significantly greater than 1, the matrix
[A] is said to be not well behaved or ill conditioned.

�

� �

�

278 NLP II: Unconstrained Optimization

reduced to 1 (so that the condition number of the resulting matrix will be 1) by using
the transformation

Y = [S]Z or

{
y1
y2

}
=

[
s11 0

0 s22

]{
z1
z2

}
(6.9)

where the matrix [S] is given by

[S] =
⎡⎢⎢⎢⎣
s11 = 1√

ã11

0

0 s22 = 1√
ã22

⎤⎥⎥⎥⎦ (6.10)

Thus the complete transformation that reduces the Hessian matrix of f to an iden-
tity matrix is given by

X = [R][S]Z ≡ [T]Z (6.11)

so that the quadratic term 1
2
XT[A]X reduces to 1

2
ZT[I]Z.

If the objective function is not a quadratic, the Hessian matrix and hence the
transformations vary with the design vector from iteration to iteration. For example,
the second-order Taylor’s series approximation of a general nonlinear function at the
design vector Xi can be expressed as

f (X) = c + BTX + 1
2
XT[A]X (6.12)

where

c = f (Xi) (6.13)

B =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕f

𝜕x1

||||Xi

⋮

𝜕f

𝜕xn

||||Xi

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(6.14)

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕
2f

𝜕x2
1

|||||Xi

⋯
𝜕

2f

𝜕x1𝜕xn

|||||Xi

⋮ ⋮

𝜕
2f

𝜕xn𝜕x1

|||||Xi

⋯
𝜕

2f

𝜕x2
n

|||||Xi

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.15)

The transformations indicated by Eqs. (6.7) and (6.9) can be applied to the matrix
[A] given by Eq. (6.15). The procedure of scaling the design variables is illustrated
with the following example.

Example 6.2 Find a suitable scaling (or transformation) of variables to reduce the
condition number of the Hessian matrix of the following function to 1:

f (x1, x2) = 6x2
1 − 6x1x2 + 2x2

2 − x1 − 2x2 (E1)

SOLUTION The quadratic function can be expressed as

f (X) = BTX + 1
2
XT[A]X (E2)

�

� �

�

6.1 Introduction 279

where

X =
{

x1
x2

}
, B =

{
−1
−2

}
, and [A] =

[
12 −6
−6 4

]
As indicated above, the desired scaling of variables can be accomplished in two

stages.

Stage 1: Reducing [A] to a Diagonal Form, [Ã]

The eigenvectors of the matrix [A] can be found by solving the eigenvalue problem

[[A] − 𝜆i[I]] ui = 𝟎 (E3)

where 𝜆i is the ith eigenvalue and ui is the corresponding eigenvector. In the present
case, the eigenvalues, 𝜆i, are given by|||||12 − 𝜆i −6

−6 4 − 𝜆i

||||| = 𝜆
2
i − 16𝜆i + 12 = 0 (E4)

which yield 𝜆1 = 8 +
√

52 = 15.2111 and 𝜆2 = 8 −
√

52 = 0.7889. The eigenvector
ui corresponding to 𝜆i can be found by solving Eq. (E3):[

12 − 𝜆1 −6

−6 4 − 𝜆1

]{
u11
u21

}
=
{

0
0

}
or (12 − 𝜆1)u11 − 6u21 = 0

or u21 = −0.5332u11

that is,

u1 =
{

u11

u21

}
=

{
1.0

−0.5332

}
and [

12 − 𝜆2 −6

−6 4 − 𝜆2

]{
u12
u22

}
=
{

0
0

}
or (12 − 𝜆2)u12 − 6u22 = 0

or u22 = 1.8685u12

that is,

u2 =

{
u12

u22

}
=

{
1.0

1.8685

}
Thus the transformation that reduces [A] to a diagonal form is given by

X = [R]Y=[u1 u2]Y =

[
1 1

−0.5352 1.8685

]{
y1
y2

}
(E5)

that is,

x1 = y1 + y2

x2 = −0.5352y1 + 1.8685y2

This yields the new quadratic term as 1
2
YT[Ã]Y, where

[Ã] = [R]T[A][R] =

[
19.5682 0.0

0.0 3.5432

]

�

� �

�

280 NLP II: Unconstrained Optimization

and hence the quadratic function becomes

f (y1, y2) = BT[R]Y + 1
2
YT[Ã]Y

= 0.0704y1 − 4.7370y2 +
1
2
(19.8682)y2

1 +
1
2
(3.5432)y2

2 (E6)

Stage 2: Reducing [Ã] to a Unit Matrix
The transformation is given by Y = [S]Z, where

[S] =

⎡⎢⎢⎢⎢⎣
1√

19.5682
0

0
1√

3.5432

⎤⎥⎥⎥⎥⎦
=

[
0.2262 0.0

0.0 0.5313

]

Stage 3: Complete Transformation

The total transformation is given by

X = [R]Y = [R][S]Z = [T]Z (E7)

where

[T] = [R][S] =

[
1 1

−0.5352 1.8685

][
0.2262 0

0 0.5313

]

=

[
0.2262 0.5313

−0.1211 0.9927

]
(E8)

or

x1 = 0.2262z1 + 0.5313z2

x2 = −0.1211z1 + 0.9927z2

With this transformation, the quadratic function of Eq. (E1) becomes

f (z1, z2) = BT[T]Z + 1
2
ZT[T]T[A][T]Z

= 0.0160z1 − 2.5167z2 +
1
2
z2

1 +
1
2
z2

2 (E9)

The contours of the quadratic functions given by Eqs. (E1), (E6), and (E9) are
shown in Figure 6.3a–c, respectively.

Direct Search Methods

6.2 RANDOM SEARCH METHODS

Random search methods are based on the use of random numbers in finding the min-
imum point. Since most of the computer libraries have random number generators,
these methods can be used quite conveniently. Some of the best known random search
methods are presented in this section.

6.2.1 Random Jumping Method

Although the problem is an unconstrained one, we establish the bounds li and ui for
each design variable xi, i = 1, 2, . . . , n, for generating the random values of xi:

li ≤ xi ≤ ui, i = 1, 2, . . . , n (6.16)

�

� �

�

6.2 Random Search Methods 281

f(x1, x2)

–20
–20 –15 –10 –5 0 5 10 15 20 25

–15

–10

–5

0

5

10

15

20

25

x 2

+182

+366

+735

+1.1e + 03

+1.66e + 03

+2.77e + 03

x1

(a)

f(y1, y2)

–20
–20 –15 –10 –5 0 5 10 15 20 25

–15

–10

–5

0

5

10

15

20

25

y 2

+643

+1.29e + 03

+1.94e + 03

+2.58e + 03

+3.23e + 03

+3.87e + 03

y1

(b)

Figure 6.3 Contours of the original and transformed functions.

�

� �

�

282 NLP II: Unconstrained Optimization

–20
–20

–15

–10

–5

0

5

10

15

20

25

–15 –10 –5 0 5 10 15 20 25
z1

(c)

z 2

f(z1, z2)

+48.3

+99.8

+151

+203

+254

+306

Figure 6.3 (Continued)

In the random jumping method, we generate sets of n random numbers (r1, r2,
. . . , rn), that are uniformly distributed between 0 and 1. Each set of these numbers is
used to find a point, X, inside the hypercube defined by Eq. (6.16) as

X =

⎧⎪⎪⎨⎪⎪⎩
x1

x2

⋮
xn

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩
l1 + r1(u1 − l1)
l2 + r2(u2 − l2)

⋮
ln + rn(un − ln)

⎫⎪⎪⎬⎪⎪⎭
(6.17)

and the value of the function is evaluated at this point X. By generating a large number
of random points X and evaluating the value of the objective function at each of these
points, we can take the smallest value of f(X) as the desired minimum point.

6.2.2 Random Walk Method

The random walk method is based on generating a sequence of improved approxima-
tions to the minimum, each derived from the preceding approximation. Thus if Xi is
the approximation to the minimum obtained in the (i − 1)th stage (or step or iteration),
the new or improved approximation in the ith stage is found from the relation

Xi+1 = Xi + 𝜆ui (6.18)

where 𝜆 is a prescribed scalar step length and ui is a unit random vector generated in
the ith stage. The detailed procedure of this method is given by the following steps
[6.3]:

�

� �

�

6.2 Random Search Methods 283

1. Start with an initial point X1, a sufficiently large initial step length 𝜆, a
minimum allowable step length 𝜀, and a maximum permissible number of
iterations N.

2. Find the function value f1 = f(X1).
3. Set the iteration number as i = 1.
4. Generate a set of n random numbers r1, r2, . . . , rn each lying in the interval

[−1, 1] and formulate the unit vector u as

u = 1

(r2
1 + r2

2 +⋯ + r2
n)1∕2

⎧⎪⎨⎪⎩
r1
r2
⋮
rn

⎫⎪⎬⎪⎭ (6.19)

The directions generated using Eq. (6.19) are expected to have a bias toward
the diagonals of the unit hypercube [6.3]. To avoid such a bias, the length of
the vector, R, is computed as

R = (r2
1 + r2

2 +⋯ + r2
n)1∕2

and the random numbers generated (r1, r2, . . . , rn) are accepted only if R≤ 1
but are discarded if R> 1. If the random numbers are accepted, the unbiased
random vector ui is given by Eq. (6.19).

5. Compute the new vector and the corresponding function value as X = X1 + 𝜆u
and f = f(X).

6. Compare the values of f and f1. If f < f1, set the new values as X1 = X and f1 = f
and go to step 3. If f ≥ f1, go to step 7.

7. If i ≤ N, set the new iteration number as i = i + 1 and go to step 4. On the other
hand, if i > N, go to step 8.

8. Compute the new, reduced, step length as 𝜆 = 𝜆/2. If the new step length is
smaller than or equal to 𝜀, go to step 9. Otherwise (i.e. if the new step length
is greater than 𝜀), go to step 4.

9. Stop the procedure by taking Xopt ≈ X1 and fopt ≈ f1.

This method is illustrated with the following example.

Example 6.3 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 using random walk

method from the point X1 =
{

0.0
0.0

}
with a starting step length of 𝜆 = 1.0. Take

𝜀 = 0.05 and N = 100.

SOLUTION The results are summarized in Table 6.2, where only the trials that pro-
duced an improvement are shown.

6.2.3 Random Walk Method with Direction Exploitation

In the random walk method described in Section 6.2.2, we proceed to generate a new
unit random vector ui+1 as soon as we find that ui is successful in reducing the function
value for a fixed step length 𝜆. However, we can expect to achieve a further decrease
in the function value by taking a longer step length along the direction ui. Thus the
random walk method can be improved if the maximum possible step is taken along
each successful direction. This can be achieved by using any of the one-dimensional

�

� �

�

284 NLP II: Unconstrained Optimization

Table 6.2 Minimization of f by random walk method.

Step
length,
𝜆

Number of
trials

requireda

Current objective
function value,
f1 = f(X1 + 𝜆u)

Components of X1 + 𝜆u

1 2

1.0 1 −0.936 96 0.349 43 −0.063 29
1.0 2 −1.152 71 1.325 88 −1.119 86

Next 100 trials did not reduce the function value.
0.5 1 −1.343 61 1.788 00 −1.128 84
0.5 3 −1.073 18 1.367 44 −1.202 32

Next 100 trials did not reduce the function value.
0.25 4 −0.864 19 1.230 25 −1.213 62
0.25 2 −0.869 55 1.480 19 −1.220 74
0.25 8 −1.106 61 1.559 58 −1.236 42
0.25 30 −0.942 78 1.370 74 −1.241 54
0.25 6 −1.087 29 1.574 74 −1.242 22
0.25 50 −0.926 06 1.383 68 −1.242 74
0.25 23 −1.079 12 1.581 35 −1.243 74

Next 100 trials did not reduce the function value.
0.125 1 −0.979 86 1.505 38 −1.248 94

Next 100 trials did not reduce the function value.
0.062 5 100 trials did not reduce the function value.
0.031 25 As this step length is smaller than 𝜖, the program is terminated.

aOut of the directions generated that satisfy R≤ 1, number of trials required to find a direction that also
reduces the value of f.

minimization methods discussed in Chapter 5. According to this procedure, the new
vector Xi+1 is found as

Xi+1 = Xi + 𝜆∗i ui (6.20)

where 𝜆∗i is the optimal step length found along the direction ui so that

fi+1 = f (Xi + 𝜆∗i ui) = min
𝜆i

f (Xi + 𝜆iui) (6.21)

The search method incorporating this feature is called the random walk method
with direction exploitation.

6.2.4 Advantages of Random Search Methods

1. These methods can work even if the objective function is discontinuous and
nondifferentiable at some of the points.

2. The random methods can be used to find the global minimum when the objec-
tive function possesses several relative minima.

3. These methods are applicable when other methods fail due to local difficulties
such as sharply varying functions and shallow regions.

4. Although the random methods are not very efficient by themselves, they can
be used in the early stages of optimization to detect the region where the global
minimum is likely to be found. Once this region is found, some of the more effi-
cient techniques can be used to find the precise location of the global minimum
point.

�

� �

�

6.4 Univariate Method 285

6.3 GRID SEARCH METHOD

This method involves setting up a suitable grid in the design space, evaluating the
objective function at all the gird points, and finding the grid point corresponding to the
lowest function value. For example, if the lower and upper bounds on the ith design
variable are known to be li and ui, respectively, we can divide the range (li, ui) into
pi − 1 equal parts so that x(1)i , x

(2)
i . . . x(pi)

i denote the grid points along the xi axis (i = 1,
2, . . . , n). This leads to a total of p1 p2 ⋯ pn grid points in the design space. A grid with
pi = 4 is shown in a two-dimensional design space in Figure 6.4. The grid points can
also be chosen based on methods of experimental design [6.4, 6.5]. It can be seen that
the grid method requires prohibitively large number of function evaluations in most
practical problems. For example, for a problem with 10 design variables (n = 10), the
number of grid points will be 310 = 59 049 with pi = 3 and 410 = 1 048 576 with pi = 4.
However, for problems with a small number of design variables, the grid method can
be used conveniently to find an approximate minimum. Also, the grid method can be
used to find a good starting point for one of the more efficient methods.

6.4 UNIVARIATE METHOD

In this method we change only one variable at a time and seek to produce a sequence of
improved approximations to the minimum point. By starting at a base point Xi in the
ith iteration, we fix the values of n− 1 variables and vary the remaining variable. Since
only one variable is changed, the problem becomes a one-dimensional minimization
problem and any of the methods discussed in Chapter 5 can be used to produce a new
base point Xi+1. The search is now continued in a new direction. This new direction
is obtained by changing any one of the n− 1 variables that were fixed in the previ-
ous iteration. In fact, the search procedure is continued by taking each coordinate
direction in turn. After all the n directions are searched sequentially, the first cycle is
complete and hence we repeat the entire process of sequential minimization. The pro-
cedure is continued until no further improvement is possible in the objective function

x2

x1
l1

l2

u2

u1

x2
(4)

x2
(3)

x2
(2)

x2
(1)

x1
(1)

x1
(2)

x1
(3)

x1
(4)

Figure 6.4 Grid with pi = 4.

�

� �

�

286 NLP II: Unconstrained Optimization

in any of the n directions of a cycle. The univariate method can be summarized as
follows:

1. Choose an arbitrary staring point X1 and set i = 1.
2. Find the search direction Si as

ST
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1, 0, 0, . . . , 0)
(1, 0, 0, . . . , 0)
(0, 0, 1, . . . , 0)
⋮
(0, 0, 0, . . . , 1)

for

for

for

for

i = 1, n + 1, 2n + 1, . . .

i = 2, n + 2, 2n + 2, . . .

i = 3, n + 3, 2n + 3, . . .

i = n, 2n, 3n, . . .

(6.22)

3. Determine whether 𝜆i should be positive or negative. For the current direction
Si, this means find whether the function value decreases in the positive or neg-
ative direction. For this we take a small probe length (𝜀) and evaluate fi = f(Xi),
f+ = f(Xi + 𝜀Si), and f− = f(Xi − 𝜀Si). If f+ < fi, Si will be the correct direction
for decreasing the value of f and if f− < fi, −Si will be the correct one. If both
f+ and f− are greater than fi, we take Xi as the minimum along the direction Si.

4. Find the optimal step length 𝜆∗i such that

f (Xi ± 𝜆∗i Si) = min
𝜆i

(Xi ± 𝜆iSi) (6.23)

where + or − sign has to be used depending upon whether Si or −Si is the
direction for decreasing the function value.

5. Set Xi+1 = Xi ± 𝜆∗i Si depending on the direction for decreasing the function
value, and fi+1 = f(Xi+1).

6. Set the new value of i = i + 1 and go to step 2. Continue this procedure until
no significant change is achieved in the value of the objective function.

The univariate method is very simple and can be implemented easily. However,
it will not converge rapidly to the optimum solution, as it has a tendency to oscillate
with steadily decreasing progress toward the optimum. Hence it will be better to stop
the computations at some point near to the optimum point rather than trying to find
the precise optimum point. In theory, the univariate method can be applied to find the
minimum of any function that possesses continuous derivatives. However, if the func-
tion has a steep valley, the method may not even converge. For example, consider the
contours of a function of two variables with a valley as shown in Figure 6.5. If the
univariate search starts at point P, the function value cannot be decreased either in
the direction ±S1 or in the direction ±S2. Thus the search comes to a halt and one
may be misled to take the point P, which is certainly not the optimum point, as the
optimum point. This situation arises whenever the value of the probe length 𝜀 needed
for detecting the proper direction (±S1 or ±S2) happens to be less than the number of
significant figures used in the computations.

Example 6.4 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 with the starting
point (0, 0).

SOLUTION We will take the probe length (𝜀) as 0.01 to find the correct direction for
decreasing the function value in step 3. Further, we will use the differential calculus
method to find the optimum step length 𝜆∗i along the direction ±Si in step 4.

�

� �

�

6.4 Univariate Method 287

x1

x2

P

ε

ε
S1

S2

f = 20

f = 10

f = 5

Optimum point

Line of steep
valley

Figure 6.5 Failure of the univariate method on a steep valley.

Iteration i = 1

Step 1: Set as i = 1 and Xi =
{

0
0

}
Step 2: Choose the search direction S1 as S1 =

{
1
0

}
.

Step 3: To find whether the value of f decreases along S1 or−S1, we use the probe
length 𝜀. Since

f1 = f (X1) = f (0, 0) = 0,

f + = f (X1 + 𝜀S1) = f (𝜀, 0) = 0.01 − 0 + 2(0.0001)

+ 0 + 0 = 0.0102 > f1

f − = f (X1 − 𝜀S1) = f (−𝜀, 0) = −0.01 − 0 + 2(0.0001)

+ 0 + 0 = −0.0098 < f1,

−S1 is the correct direction for minimizing f from X1.
Step 4: To find the optimum step length 𝜆∗1, we minimize

f (X1 − 𝜆1S1) = f (−𝜆1, 0)

= (−𝜆1) − 0 + 2(−𝜆1)2 + 0 + 0 = 2𝜆2
1 − 𝜆1

As df/d𝜆1 = 0 at 𝜆1 = 1
4
, we have 𝜆∗1 = 1

4
.

Step 5: Set

X2 = X1 − 𝜆∗1S1 =
{

0
0

}
− 1

4

{
1
0

}
=

{
− 1

4

0

}
f2 = f (X2) = f

(
− 1

4
, 0
)
= −1

8
.

�

� �

�

288 NLP II: Unconstrained Optimization

Iteration i = 2

Step 1: Set as i = 2 and Xi =
{
−1/4

0

}
Step 2: Choose the search direction S2 as S2 =

{
0
1

}
.

Step 3: Since f2 = f(X2) = −0.125,

f + = f (X2 + 𝜀S2) = f (−0.25, 0.01) = −0.1399 < f2

f − = f (X2 + 𝜀S2) = f (−0.25,−0.01) = −0.1099 > f2

S2 is the correct direction for decreasing the value of f from X2.
Step 4: We minimize f(X2 + 𝜆2S2) to find 𝜆∗2.

Here

f (X2 + 𝜆2S2) = f (−0.25, 𝜆2)

= −0.25 − 𝜆2 + 2(0.25)2 − 2(0.25)(𝜆2) + 𝜆2
2

= 𝜆
2
2 − 1.5𝜆2 − 0.125

df

d𝜆2
= 2𝜆2 − 1.5 = 0 at 𝜆∗2 = 0.75

Step 5: Set

X3 = X2 + 𝜆∗2S2 =
{
−0.25

0

}
+ 0.75

{
0
1

}
=
{
−0.25

0.75

}
f3 = f (X3) = −0.6875

Next, we set the iteration number as i = 3, and continue the procedure until the

optimum solution X∗ =
{
−1.0

1.5

}
with f(X*) = −1.25 is found.

Note: If the method is to be computerized, a suitable convergence criterion has to
be used to test the point Xi+1(i = 1, 2, . . .) for optimality.

6.5 PATTERN DIRECTIONS

In the univariate method, we search for the minimum along directions parallel to the
coordinate axes. We noticed that this method may not converge in some cases, and
that even if it converges, its convergence will be very slow as we approach the opti-
mum point. These problems can be avoided by changing the directions of search in a
favorable manner instead of retaining them always parallel to the coordinate axes. To
understand this idea, consider the contours of the function shown in Figure 6.6. Let
the points 1, 2, 3, . . . indicate the successive points found by the univariate method.
It can be noticed that the lines joining the alternate points of the search (e.g. 1, 3; 2,
4; 3, 5; 4, 6; . . .) lie in the general direction of the minimum and are known as pat-
tern directions. It can be proved that if the objective function is a quadratic in two
variables, all such lines pass through the minimum. Unfortunately, this property will
not be valid for multivariable functions even when they are quadratics. However, this
idea can still be used to achieve rapid convergence while finding the minimum of an
n-variable function. Methods that use pattern directions as search directions are known
as pattern search methods.

�

� �

�

6.6 Powell’s Method 289

Minimum point

x2
3

4

6
5

1 2

x1

Figure 6.6 Lines defined by the alternate points lie in the general direction of the minimum.

One of the best-known pattern search methods, the Powell’s method, is discussed
in Section 6.6. In general, a pattern search method takes n univariate steps, where n
denotes the number of design variables and then searches for the minimum along the
pattern direction Si, defined by

Si = Xi − Xi−n (6.24)

where Xi is the point obtained at the end of n univariate steps and Xi−n is the starting
point before taking the n univariate steps. In general, the directions used prior to taking
a move along a pattern direction need not be univariate directions.

6.6 POWELL’S METHOD

Powell’s method is an extension of the basic pattern search method. It is the most
widely used direct search method and can be proved to be a method of conjugate
directions [6.7]. A conjugate directions method will minimize a quadratic function in
a finite number of steps. Since a general nonlinear function can be approximated rea-
sonably well by a quadratic function near its minimum, a conjugate directions method
is expected to speed up the convergence of even general nonlinear objective func-
tions. The definition, a method of generation of conjugate directions, and the property
of quadratic convergence are presented in this section.

6.6.1 Conjugate Directions

Definition: Conjugate Directions. Let A = [A] be an n × n symmetric matrix.
A set of n vectors (or directions) {Si} is said to be conjugate (more accurately
A-conjugate) if

ST
i ASj = 0 for all i ≠ j, i = 1, 2, . . . , n, j = 1, 2, . . . , n (6.25)

�

� �

�

290 NLP II: Unconstrained Optimization

It can be seen that orthogonal directions are a special case of conjugate
directions (obtained with [A] = [I] in Eq. (6.25)).
Definition: Quadratically Convergent Method. If a minimization method, using
exact arithmetic, can find the minimum point in n steps while minimizing a
quadratic function in n variables, the method is called a quadratically convergent
method.

Theorem 6.1 Given a quadratic function of n variables and two parallel hyperplanes
1 and 2 of dimension k< n. Let the constrained stationary points of the quadratic func-
tion in the hyperplanes be X1 and X2, respectively. Then the line joining X1 and X2 is
conjugate to any line parallel to the hyperplanes.

Proof: Let the quadratic function be expressed as

Q(X) = 1
2
XTAX + BTX + C (6.26)

The gradient of Q is given by

∇Q(X) = AX + B

and hence
∇Q(X1) − ∇Q(X2) = A(X1 − X2) (6.27)

If S is any vector parallel to the hyperplanes, it must be orthogonal to the gradients
∇Q(X1) and ∇Q(X2). Thus

ST∇Q(X1) = STAX1 + STB = 0 (6.28)

ST∇Q(X2) = STAX2 + STB = 0 (6.29)

By subtracting Eq. (6.29) from Eq. (6.28), we obtain

STA(X1 − X2) = 0 (6.30)

Hence S and (X1 −X2) are A-conjugate.
The meaning of this theorem is illustrated in a two-dimensional space in

Figure 6.7. If X1 and X2 are the minima of Q obtained by searching along the
direction S from two different starting points Xa and Xb, respectively, the line
(X1 −X2) will be conjugate to the search direction S.

Theorem 6.2 If a quadratic function

Q(X) = 1
2
XTAX + BTX + C (6.31)

is minimized sequentially, once along each direction of a set of n mutually conjugate
directions, the minimum of the function Q will be found at or before the nth step
irrespective of the starting point.

Proof: Let X* minimize the quadratic function Q(X). Then

∇Q(X∗) = B + AX∗ = 𝟎 (6.32)

�

� �

�

6.6 Powell’s Method 291

x2

x1

Xa

Xb

X1

X2

S

S
(X1 –X2)

Figure 6.7 Conjugate directions.

Given a point X1 and a set of linearly independent directions S1, S2, . . . , Sn,
constants 𝛽 i can always be found such that

X∗ = X1 +
n∑

i=1

𝛽iSi (6.33)

where the vectors S1, S2, . . . , Sn have been used as basis vectors. If the directions Si
are A-conjugate and none of them is zero, the Si can easily be shown to be linearly
independent and the 𝛽 i can be determined as follows.

Eqs. (6.32) and (6.33) lead to

B + AX1 + A

(
n∑

i=1

𝛽iSi

)
= 𝟎 (6.34)

Multiplying this equation throughout by ST
j , we obtain

ST
j (B + AX1) + ST

j A

(
n∑

i=1

𝛽iSi

)
= 0 (6.35)

�

� �

�

292 NLP II: Unconstrained Optimization

Eq. (6.35) can be rewritten as

(B + AX1)TSj + 𝛽jS
T
j ASj = 𝟎 (6.36)

that is,

𝛽j = −
(B + AX1)TSj

ST
j ASj

(6.37)

Now consider an iterative minimization procedure starting at point X1, and suc-
cessively minimizing the quadratic Q(X) in the directions S1, S2, . . . , Sn, where these
directions satisfy Eq. (6.25). The successive points are determined by the relation

Xi+1 = Xi + 𝜆∗i Si, i = 1 to n (6.38)

where 𝜆∗i is found by minimizing Q(Xi + 𝜆iSi) so that2

ST
i ∇Q(Xi+1) = 0 (6.39)

Since the gradient of Q at the point Xi+1 is given by

∇Q(Xi+1) = B + AXi+1 (6.40)

Eq. (6.39) can be written as

ST
i {B + A(Xi + 𝜆∗i Si)} = 0 (6.41)

This equation gives

𝜆
∗
i = −

(B + AXi)TSi

ST
i ASi

(6.42)

From Eq. (6.38), we can express Xi as

Xi = X1 +
i−1∑
j=1

𝜆
∗
j Sj (6.43)

so that

XT
i ASi = XT

1 ASi +
i−1∑
j=1

𝜆
∗
j ST

j ASi

= XT
1 ASi (6.44)

using the relation (6.25). Thus Eq. (6.42) becomes

𝜆
∗
i = −(B + AX1)T

Si

ST
i ASi

(6.45)

2ST
i ∇Q(Xi+1) = 0 is equivalent to dQ/d𝜆i = 0 at Y = Xi+1:

dQ
d𝜆i

=
n∑

j=1

𝜕Q
𝜕yj

𝜕yj

𝜕𝜆i

where yj are the components of Y =Xi+1

�

� �

�

6.6 Powell’s Method 293

which can be seen to be identical to Eq. (6.37). Hence the minimizing step lengths
are given by 𝛽 i or 𝜆∗i . Since the optimal point X* is originally expressed as a sum of n
quantities 𝛽1, 𝛽2, . . . , 𝛽n, which have been shown to be equivalent to the minimizing
step lengths, the minimization process leads to the minimum point in n steps or less.
Since we have not made any assumption regarding X1 and the order of S1, S2, . . . , Sn,
the process converges in n steps or less, independent of the starting point as well as
the order in which the minimization directions are used.

Example 6.5 Consider the minimization of the function

f (x1, x2) = 6x2
1 + 2x2

2 − 6x1x2 − x1 − 2x2

If S1 =
{

1
2

}
denotes a search direction, find a direction S2 that is conjugate to

the direction S1.

SOLUTION The objective function can be expressed in matrix form as

f (X) = BTX + 1
2
XT[A]X

= {−1 − 2}
{

x1
x2

}
+ 1

2
(x1 x2)

[
12 −6
−6 4

]{
x1
x2

}
and the Hessian matrix [A] can be identified as

[A] =
[

12 −6
−6 4

]
The direction S2 =

{
s1
s2

}
will be conjugate to S1 =

{
1
2

}
if

ST
1 [A]S2 = (1 2)

[
12 −6
−6 4

]{
s1
s2

}
= 0

which upon expansion gives 2s2 = 0 or s1 = arbitrary and s2 = 0. Since s1 can have
any value, we select s1 = 1 and the desired conjugate direction can be expressed as

S2 =
{

1
0

}
.

6.6.2 Algorithm

The basic idea of Powell’s method is illustrated graphically for a two-variable func-
tion in Figure 6.8. In this figure the function is first minimized once along each of
the coordinate directions starting with the second coordinate direction and then in the
corresponding pattern direction. This leads to point 5. For the next cycle of minimiza-
tion, we discard one of the coordinate directions (the x1 direction in the present case)
in favor of the pattern direction. Thus we minimize along u2 and S1 and obtain point 7.
Then we generate a new pattern direction S2 as shown in the figure. For the next cycle
of minimization, we discard one of the previously used coordinate directions (the x2
direction in this case) in favor of the newly generated pattern direction. Then, by start-
ing from point 8, we minimize along directions S1 and S2, thereby obtaining points 9
and 10, respectively. For the next cycle of minimization, since there is no coordi-
nate direction to discard, we restart the whole procedure by minimizing along the x2
direction. This procedure is continued until the desired minimum point is found.

The flow diagram for the version of Powell’s method described above is given in
Figure 6.9. Note that the search will be made sequentially in the directions Sn; S1, S2,

�

� �

�

294 NLP II: Unconstrained Optimization

x1

1

2
3

4
5x2

B

C
D

6

F

G

P

9

10

Q

H

7

8

A

Figure 6.8 Progress of Powell’s method.

S3, . . . , Sn−1, Sn; S(1)
p ; S2, S3, . . . , Sn−1, Sn, S(1)

p ; S(2)
p ; S3, S4, . . . , Sn−1, Sn, S(1)

p , S(2)
p ;

S(3)
p , . . . until the minimum point is found. Here Si indicates the coordinate direction

ui and S(j)
p the jth pattern direction. In Figure 6.9, the previous base point is stored as

the vector Z in block A, and the pattern direction is constructed by subtracting the
previous base point from the current one in block B. The pattern direction is then used
as a minimization direction in blocks C and D. For the next cycle, the first direction
used in the previous cycle is discarded in favor of the current pattern direction. This is

�

� �

�

6.6 Powell’s Method 295

Start with X1

Set Si equal to the coordinate unit
vectors i = 1 to n

Find λ* to minimize f (X1 + λ Sn)

Set X = X1 + λ*Sn

A Set Z = X

Set i = 1

Is i = n + 1?
Yes

No

Find λ* to minimize f (X+ λSi)
Set X = X + λ*Si

Is X optimum?

No
Yes

Yes

StopSet i = i + 1

B

E

C

D

Set Si = X – Z

Find λ* to minimize
f(X + λSi)

Set X = X + λ*Si

Is X optimum?
No

Set new
Si = Si + 1

i = 1, 2,. . . , n

Figure 6.9 Flowchart for Powell’s Method.

achieved by updating the numbers of the search directions as shown in block E. Thus,
both points Z and X used in block B for the construction of pattern direction are points
that are minima along Sn in the first cycle, the first pattern direction S(1)

p in the second
cycle, the second pattern direction S(2)

p in the third cycle, and so on.

Quadratic Convergence It can be seen from Figure 6.9 that the pattern directions
S(1)

p , S(2)
p , S(3)

p , . . . are nothing but the lines joining the minima found along the
directions Sn, S(1)

p , S(2)
p , . . . , respectively. Hence by Theorem 6.1, the pairs of direc-

tions (Sn, S(1)
p), (S(1)

p , S(2)
p), and so on, are A-conjugate. Thus, all the directions Sn,

�

� �

�

296 NLP II: Unconstrained Optimization

S(1)
p , S(2)

p , . . . are A-conjugate. Since, by Theorem 6.2, any search method involving
minimization along a set of conjugate directions is quadratically convergent, Powell’s
method is quadratically convergent. From the method used for constructing the
conjugate directions S(1)

p , S(2)
p , . . . , we find that n minimization cycles are required to

complete the construction of n conjugate directions. In the ith cycle, the minimization
is done along the already constructed i conjugate directions and the n − i nonconjugate
(coordinate) directions. Thus after n cycles, all the n search directions are mutually
conjugate and a quadratic will theoretically be minimized in n2 one-dimensional
minimizations. This proves the quadratic convergence of Powell’s method.

It is to be noted that as with most of the numerical techniques, the convergence in
many practical problems may not be as good as the theory seems to indicate. Powell’s
method may require a lot more iterations to minimize a function than the theoretically
estimated number. There are several reasons for this:

1. Since the number of cycles n is valid only for quadratic functions, it will take
generally greater than n cycles for nonquadratic functions.

2. The proof of quadratic convergence has been established with the assumption
that the exact minimum is found in each of the one-dimensional minimiza-
tions. However, the actual minimizing step lengths 𝜆∗i will be only approximate,
and hence the subsequent directions will not be conjugate. Thus the method
requires more number of iterations for achieving the overall convergence.

3. Powell’s method, described above, can break down before the minimum point
is found. This is because the search directions Si might become dependent or
almost dependent during numerical computation.

Convergence Criterion The convergence criterion one would generally adopt in a
method such as Powell’s method is to stop the procedure whenever a minimization
cycle produces a change in all variables less than one-tenth of the required accuracy.
However, a more elaborate convergence criterion, which is more likely to prevent pre-
mature termination of the process, was given by Powell [6.7].

Example 6.6 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 from the starting

point X1 =
{

0
0

}
using Powell’s method.

SOLUTION

Cycle 1: Univariate Search

We minimize f along S2 = Sn =
{

0
1

}
from X1. To find the correct direction (+S2

or −S2) for decreasing the value of f, we take the probe length as 𝜀 = 0.01. As
f1 = f(X1) = 0.0, and

f + = f (X1 + 𝜀S2) = f (0.0, 0.01) = −0.0099 < f1

f decreases along the direction +S2. To find the minimizing step length 𝜆* along S2,
we minimize

f (X1 + 𝜆S2) = f (0.0, 𝜆) = 𝜆
2 − 𝜆

As df/d𝜆 = 0 at 𝜆∗ = 1
2
, we have X2 = X1 + 𝜆∗S2 =

{
0

0.5

}
.

�

� �

�

6.6 Powell’s Method 297

Next, we minimize f along S1 =
{

1
0

}
from X2 =

{
0.5
0.0

}
. Since

f2 = f (X2) = f (0.0, 0.5) = −0.25

f + = f (X2 + 𝜀S1) = f (0.01, 0.50) = −0.2298 > f2

f − = f (X2 + 𝜀S1) = f (−0.01, 0.50) = −0.2698

f decreases along −S1. As f(X2 − 𝜆S1) = f(−𝜆, 0.50) = 2𝜆2 − 2𝜆− 0.25, df/d𝜆 = 0 at

𝜆
∗ = 1

2
. Hence X3 = X2 − 𝜆∗S1 =

{
−0.5

0.5

}
.

Now we minimize f along S2 =
{

0
1

}
from X3 =

{
−0.5

0.5

}
. As f3 = f(X3)=−0.75,

f+ = f(X3 + 𝜀S2) = f(−0.5, 0.51) = −0.7599< f3, f decreases along +S2 direction.
Since

f (X3 + 𝜆S2) = f (−0.5, 0.5 + 𝜆) = 𝜆
2 − 𝜆 − 0.75,

df

d𝜆
= 0 at 𝜆∗ = 1

2

This gives

X4 = X3 + 𝜆∗S2 =
{
−0.5
1.0

}

Cycle 2: Pattern Search

Now we generate the first pattern direction as

S(1)
p = X4 − X2 =

{
− 1

2
1

}
−
{

0
1
2

}
=
{
−0.5
0.5

}
and minimize f along S(1)

p from X4. Since

f4 = f (X4) = −1.0

f + = f (X4 + 𝜀S(1)
p) = f (−0.5 − 0.005, 1 + 0.005)

= f (−0.505, 1.005) = −1.004975

f decreases in the positive direction of S(1)
p . As

f (X4 + 𝜆S(1)
p) = f (−0.5 − 0.5𝜆, 1.0 + 0.5𝜆)

= 0.25𝜆2 − 0.50𝜆 − 1.00,

df

d𝜆
= 0 at 𝜆* = 1.0 and hence

X5 = X4 + 𝜆∗S(1)
p =

{
− 1

2
1

}
+ 1.0

{
− 1

2
1
2

}
=
{
−1.0
1.5

}
The point X5 can be identified to be the optimum point.

�

� �

�

298 NLP II: Unconstrained Optimization

If we do not recognize X5 as the optimum point at this stage, we proceed to

minimize f along the direction S2 =
{

0
1

}
from X5. Then we would obtain

f5 = f (X5) = −1.25, f + = f (X5 + 𝜀S2) > f5,

and f − = f (X5 − 𝜀S2) > f5

This shows that f cannot be minimized along S2, and hence X5 will be the optimum
point. In this example the convergence has been achieved in the second cycle itself.
This is to be expected in this case, as f is a quadratic function, and the method is a
quadratically convergent method.

6.7 SIMPLEX METHOD

Definition: Simplex. The geometric figure formed by a set of n+ 1 points in an
n-dimensional space is called a simplex. When the points are equidistant, the simplex
is said to be regular. Thus, in two dimensions the simplex is a triangle, and in three
dimensions, it is a tetrahedron.

The basic idea in the simplex method3 is to compare the values of the objective
function at the n+ 1 vertices of a general simplex and move the simplex gradually
toward the optimum point during the iterative process. The following equations
can be used to generate the vertices of a regular simplex (equilateral triangle in
two-dimensional space) of size a in the n-dimensional space [6.10]:

Xi = X0 + pui +
n∑

j=1,j≠i

quj, i = 1, 2, . . . , n (6.46)

where
p = a

n
√

2
(
√

n + 1 + n − 1) and q = a

n
√

2
(
√

n + 1 − 1) (6.47)

where X0 is the initial base point and uj is the unit vector along the jth coordinate axis.
This method was originally given by Spendley et al. [6.10] and was developed later
by Nelder and Mead [6.11]. The movement of the simplex is achieved by using three
operations, known as reflection, contraction, and expansion.

6.7.1 Reflection

If Xh is the vertex corresponding to the highest value of the objective function among
the vertices of a simplex, we can expect the point Xr obtained by reflecting the point
Xh in the opposite face to have the smallest value. If this is the case, we can construct
a new simplex by rejecting the point Xh from the simplex and including the new point
Xr. This process is illustrated in Figure 6.10. In Figure 6.10a, the points X1, X2, and X3
form the original simplex, and the points X1, X2, and Xr form the new one. Similarly,
in Figure 6.10b, the original simplex is given by points X1, X2, X3, and X4, and the new
one by X1, X2, X3, and Xr. Again, we can construct a new simplex from the present one
by rejecting the vertex corresponding to the highest function value. Since the direction
of movement of the simplex is always away from the worst result, we will be moving
in a favorable direction. If the objective function does not have steep valleys, repetitive

3This simplex method should not be confused with the simplex method of linear programming.

�

� �

�

6.7 Simplex Method 299

X1

X0

Xr

Xr

X2

X1

X3

X2

X0

X3 = Xh

X4 = Xh

Figure 6.10 Reflection.

application of the reflection process leads to a zigzag path in the general direction of the
minimum as shown in Figure 6.11. Mathematically, the reflected point Xr is given by

Xr = (1 + 𝛼)X0 − 𝛼Xh (6.48)

where Xh is the vertex corresponding to the maximum function value:

f (Xh) = max
i=1 to n+1

f (Xi), (6.49)

X0 is the centroid of all the points Xi except i = h:

X0 = 1
n

n+1∑
i = 1
i ≠ h

Xi (6.50)

x2

x1

Points 8 and 10
are mirror points
about 7–9

11

12
9

10

7

8

5

6

4
1

3 2

Figure 6.11 Progress of the reflection process.

�

� �

�

300 NLP II: Unconstrained Optimization

and 𝛼 > 0 is the reflection coefficient defined as

𝛼 =
distance between Xr and X0

distance between Xh and X0
(6.51)

Thus Xr will lie on the line joining Xh and X0, on the far side of X0 from Xh with
|Xr −X0| = 𝛼|Xh −X0|. If f(Xr) lies between f(Xh) and f(Xl), where Xl is the vertex
corresponding to the minimum function value,

f (Xl) = min
i=1 to n+1

f (Xi) (6.52)

Xh is replaced by Xr and a new simplex is started.
If we use only the reflection process for finding the minimum, we may encounter

certain difficulties in some cases. For example, if one of the simplexes (triangles in
two dimensions) straddles a valley as shown in Figure 6.12 and if the reflected point
Xr happens to have an objective function value equal to that of the point Xh, we will
enter into a closed cycle of operations. Thus if X2 is the worst point in the simplex
defined by the vertices X1, X2, and X3, the reflection process gives the new simplex
with vertices X1, X3, and Xr. Again, since Xr has the highest function value out of
the vertices X1, X3, and Xr, we obtain the old simplex itself by using the reflection
process. Thus the optimization process is stranded over the valley and there is no way
of moving toward the optimum point. This trouble can be overcome by making a rule
that no return can be made to points that have just been left.

Whenever such situation is encountered, we reject the vertex corresponding to the
second worst value instead of the vertex corresponding to the worst function value.
This method, in general, leads the process to continue toward the region of the desired
minimum. However, the final simplex may again straddle the minimum, or it may lie
within a distance of the order of its own size from the minimum. In such cases it may
not be possible to obtain a new simplex with vertices closer to the minimum compared
to those of the previous simplex, and the pattern may lead to a cyclic process, as shown
in Figure 6.13. In this example the successive simplexes formed from the simplex 123
are 234, 245, 456, 467, 478, 348, 234, 245, . . . ,4 which can be seen to be forming

x2

x1

X1

X r

X3

X 2 =
 X h

Figure 6.12 Reflection process not leading to a new simplex.

4Simplexes 456, 467, and 234 are formed by reflecting the second-worst point to avoid the difficulty men-
tioned earlier.

�

� �

�

6.7 Simplex Method 301

x2

x1

1

2

5
6

4

3(9)

7

8

Figure 6.13 Reflection process leading to a cyclic process.

a cyclic process. Whenever this type of cycling is observed, one can take the vertex
that is occurring in every simplex (point 4 in Figure 6.13) as the best approximation
to the optimum point. If more accuracy is desired, the simplex has to be contracted or
reduced in size, as indicated later.

6.7.2 Expansion

If a reflection process gives a point Xr for which f(Xr)< f(Xl) (i.e. if the reflection
produces a new minimum), one can generally expect to decrease the function value
further by moving along the direction pointing from X0 to Xr. Hence we expand Xr to
Xe using the relation

Xe = 𝛾Xr + (1 − 𝛾)X0 (6.53)

where 𝛾 is called the expansion coefficient, defined as

𝛼 =
distance between Xe and X0

distance between Xr and X0
> 1

If f(Xe)< f(Xl), we replace the point Xh by Xe and restart the process of reflection.
On the other hand, if f(Xe)> f(Xl), it means that the expansion process is not successful
and hence we replace point Xh by Xr and start the reflection process again.

6.7.3 Contraction

If the reflection process gives a point Xr for which f(Xr)> f(Xi) for all i except i = h,
and f(Xr)< f(Xh), we replace point Xh by Xr. Thus the new Xh will be Xr. In this case
we contract the simplex as follows:

Xc = 𝛽Xh + (1 − 𝛽)X0 (6.54)

�

� �

�

302 NLP II: Unconstrained Optimization

where 𝛽 is called the contraction coefficient (0≤ 𝛽 ≤ 1) and is defined as

𝛽 =
distance between Xe and X0

distance between Xh and X0

If f(Xr)> f(Xh), we still use Eq. (6.54) without changing the previous point Xh.
If the contraction process produces a point Xc for which f(Xc)<min[f(Xh), f(Xr)], we
replace the point Xh in X1, X2, . . . , Xn+1 by Xc and proceed with the reflection process
again. On the other hand, if f(Xc)≥min[f(Xh), f(Xr)], the contraction process will be
a failure, and in this case we replace all Xi by (Xi +Xl)/2 and restart the reflection
process.

The method is assumed to have converged whenever the standard deviation of the
function at the n+ 1 vertices of the current simplex is smaller than some prescribed
small quantity 𝜀, that is,

Q =

{
n+1∑
i=1

[f (Xi) − f (X0)]2

n + 1

}1∕2

≤ 𝜀 (6.55)

Example 6.7 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2. Take the points
defining the initial simplex as

X1 =
{

4.0
4.0

}
, X2 =

{
5.0
4.0

}
, and X3 =

{
4.0
5.0

}
and 𝛼 = 1.0, 𝛽 = 0.5, and 𝛾 = 2.0. For convergence, take the value of 𝜀 as 0.2.

SOLUTION

Iteration 1

Step 1: The function value at each of the vertices of the current simplex is given
by

f1 = f (X1) = 4.0 − 4.0 + 2(16.0) + 2(16.0) + 16.0 = 80.0

f2 = f (X2) = 5.0 − 4.0 + 2(25.0) + 2(20.0) + 16.0 = 107.0

f3 = f (X3) = 4.0 − 5.0 + 2(16.0) + 2(20.0) + 25.0 = 96.0

Therefore,

Xh = X2 =
{

5.0
4.0

}
, f (Xh) = 107.0

Xl = X1 =
{

4.0
4.0

}
, and f (Xl) = 80.0

Step 2: The centroid X0 is obtained as

X0 = 1
2
(X1 + X3) =

1
2

{
4.0 + 4.0
4.0 + 5.0

}
=
{

4.0
4.5

}
with f (X0) = 87.75

�

� �

�

6.7 Simplex Method 303

Step 3: The reflection point is found as

Xr = 2X0 − Xh =
{

8.0
9.0

}
−
{

5.0
4.0

}
=
{

3.0
5.0

}
Then

f (Xr) = 3.0 − 5.0 + 2(9.0) + 2(15.0) + 25.0 = 71.0

Step 4: As f(Xr)< f(Xl), we find Xe by expansion as

Xe = 2Xr − X0 =
{

6.0
10.0

}
−
{

4.0
4.5

}
=
{

2.0
5.5

}
Then

f (Xe) = 2.0 − 5.5 + 2(4.0) + 2(11.0) + 30.25 = 56.75

Step 5: Since f(Xe)< f(Xl), we replace Xh by Xe and obtain the vertices of the
new simplex as

X1 =
{

4.0
4.0

}
, X2 =

{
2.0
5.5

}
, and X3 =

{
4.0
5.0

}
Step 6: To test for convergence, we compute

Q =
[
(80.0 − 87.75)2 + (56.75 − 87.75)2 + (96.0 − 87.75)2

3

]1∕2

= 19.06

As this quantity is not smaller than 𝜀, we go to the next iteration.

Iteration 2

Step 1: As f(X1) = 80.0, f(X2) = 56.75, and f(X3) = 96.0,

Xh = X3 =
{

4.0
5.0

}
and Xl = X2 =

{
2.0
5.5

}
Step 2: The centroid is

X0 = 1
2
(X1 + X2) =

1
2

{
4.0 + 2.0
4.0 + 5.5

}
=
{

3.0
4.75

}
f (X0) = 67.31

Step 3:

Xr = 2X0 − Xh =
{

6.0
9.5

}
−
{

4.0
5.0

}
=
{

2.0
4.5

}
f (Xr) = 2.0 − 4.5 + 2(4.0) + 2(9.0) + 20.25 = 43.75

�

� �

�

304 NLP II: Unconstrained Optimization

Step 4: As f(Xr)< f(Xl), we find Xe as

Xe = 2Xr − X0 =
{

4.0
9.0

}
−
{

3.0
4.75

}
=
{

1.0
4.25

}
f (Xe) = 1.0 − 4.25 + 2(1.0) + 2(4.25) + 18.0625 = 25.3125

Step 5: As f(Xe)< f(Xl), we replace Xh by Xe and obtain the new vertices as

X1 =
{

4.0
4.0

}
, X2 =

{
2.0
5.5

}
, and X3 =

{
1.0

4.25

}
Step 6: For convergence, we compute Q as

Q =
[
(80.0 − 67.31)2 + (56.75 − 67.31)2 + (25.3125 − 67.31)2

3

]1∕2

= 26.1

Since Q>𝜀, we go to the next iteration.

This procedure can be continued until the specified convergence is satisfied. When
the convergence is satisfied, the centroid X0 of the latest simplex can be taken as the
optimum point.

Indirect Search (Descent) Methods

6.8 GRADIENT OF A FUNCTION

The gradient of a function is an n-component vector given by

∇f
n×1

=
⎧⎪⎨⎪⎩
𝜕f∕𝜕x1
𝜕f∕𝜕x2

⋮
𝜕f∕𝜕xn

⎫⎪⎬⎪⎭ (6.56)

The gradient has a very important property. If we move along the gradient direc-
tion from any point in n-dimensional space, the function value increases at the fastest
rate. Hence the gradient direction is called the direction of steepest ascent. Unfortu-
nately, the direction of steepest ascent is a local property and not a global one. This is
illustrated in Figure 6.14, where the gradient vectors ∇f evaluated at points 1, 2, 3, and
4 lies along the directions 11′, 22′, 33′, and 44′, respectively. Thus the function value
increases at the fastest rate in the direction 11′ at point 1, but not at point 2. Similarly,
the function value increases at the fastest rate in direction 22′(33′) at point 2 (3), but
not at point 3 (4). In other words, the direction of steepest ascent generally varies from
point to point, and if we make infinitely small moves along the direction of steepest
ascent, the path will be a curved line like the curve 1–2–3–4 in Figure 6.14.

Since the gradient vector represents the direction of steepest ascent, the negative
of the gradient vector denotes the direction of steepest descent. Thus any method that
makes use of the gradient vector can be expected to give the minimum point faster
than one that does not make use of the gradient vector. All the descent methods make
use of the gradient vector, either directly or indirectly, in finding the search directions.

�

� �

�

6.8 Gradient of a Function 305

x1

x2

1

2

3

4

4ʹ
3ʹ

2ʹ

1ʹ

Figure 6.14 Steepest ascent directions.

Before considering the descent methods of minimization, we prove that the gradient
vector represents the direction of steepest ascent.

Theorem 6.3 The gradient vector represents the direction of steepest ascent.

Proof: Consider an arbitrary point X in the n-dimensional space. Let f denote the
value of the objective function at the point X. Consider a neighboring point X+ dX
with

dX =
⎧⎪⎨⎪⎩

dx1
dx2
⋮

dxn

⎫⎪⎬⎪⎭ (6.57)

where dx1, dx2, . . . , dxn represent the components of the vector dX. The magnitude
of the vector dX, ds, is given by

dXTdX = (ds)2 =
n∑

i=1

(dxi)2 (6.58)

If f+ df denotes the value of the objective function at X+ dX, the change in f, df,
associated with dX can be expressed as

df =
n∑

i=1

𝜕f

𝜕xi
dxi = ∇f TdX (6.59)

If u denotes the unit vector along the direction dX and ds the length of dX, we
can write

dX = u ds (6.60)

�

� �

�

306 NLP II: Unconstrained Optimization

The rate of change of the function with respect to the step length ds is given by
Eq. (6.59) as

df

ds
=

n∑
i=1

𝜕f

𝜕xi

dxi

ds
= ∇f T dX

ds
= ∇f Tu (6.61)

The value of df/ds will be different for different directions and we are interested
in finding the particular step dX along which the value of df/ds will be maximum. This
will give the direction of steepest ascent.5 By using the definition of the dot product,
Eq. (6.61) can be rewritten as

df

ds
= ‖∇f‖ ‖u‖ cos 𝜃 (6.62)

where ||∇f|| and ||u|| denote the lengths of the vectors ∇f and u, respectively, and 𝜃
indicates the angle between the vectors ∇f and u. It can be seen that df/ds will be
maximum when 𝜃 = 0∘ and minimum when 𝜃 = 180∘. This indicates that the function
value increases at a maximum rate in the direction of the gradient (i.e. when u is
along ∇f).

Theorem 6.4 The maximum rate of change of f at any point X is equal to the mag-
nitude of the gradient vector at the same point.

Proof: The rate of change of the function f with respect to the step length s along a
direction u is given by Eq. (6.62). Since df/ds is maximum when 𝜃 = 0∘ and u is a unit
vector, Eq. (6.62) gives (

df

ds

)|||||max

= ‖∇f‖
which proves the theorem.

6.8.1 Evaluation of the Gradient

The evaluation of the gradient requires the computation of the partial derivatives 𝜕f/𝜕xi,
i = 1, 2, . . . , n. There are three situations where the evaluation of the gradient poses
certain problems:

1. The function is differentiable at all the points, but the calculation of the com-
ponents of the gradient, 𝜕f/𝜕xi, is either impractical or impossible.

2. The expressions for the partial derivatives 𝜕f/𝜕xi can be derived, but they require
large computational time for evaluation.

3. The gradient ∇f is not defined at all the points.

In the first case, we can use the forward finite-difference formula

𝜕f

𝜕xi

||||Xm

≃
f (Xm + Δxiui) − f (Xm)

Δxi
, i = 1, 2, . . . , n (6.63)

to approximate the partial derivative 𝜕f/𝜕xi at Xm. If the function value at the base
point Xm is known, this formula requires one additional function evaluation to

5In general, if df/ds = ∇fT u> 0 along a vector dX, it is called a direction of ascent, and if df/ds< 0, it is
called a direction of descent.

�

� �

�

6.8 Gradient of a Function 307

find (𝜕f/𝜕xi)|Xm. Thus it requires n additional function evaluations to evaluate the
approximate gradient ∇f|Xm. For better results we can use the central finite difference
formula to find the approximate partial derivative 𝜕f/𝜕xi|Xm:

𝜕f

𝜕xi

||||Xm

≃
f (Xm + Δxtui) − f (Xm − Δxiui)

2Δxi
, i = 1, 2, . . . , n (6.64)

This formula requires two additional function evaluations for each of the partial
derivatives. In Eqs. (6.63) and (6.64), Δxi is a small scalar quantity and ui is a vector
of order n whose ith component has a value of 1, and all other components have a
value of zero. In practical computations, the value of Δxi has to be chosen with some
care. If Δxi is too small, the difference between the values of the function evaluated
at (Xm +Δxiui) and (Xm −Δxiui) may be very small and numerical round-off error
may predominate. On the other hand, if Δxi is too large, the truncation error may
predominate in the calculation of the gradient.

In the second case also, the use of finite-difference formulas is preferred whenever
the exact gradient evaluation requires more computational time than the one involved
in using Eq. (6.63) or (6.64).

In the third case, we cannot use the finite-difference formulas since the gradient is
not defined at all the points. For example, consider the function shown in Figure 6.15.
If Eq. (6.64) is used to evaluate the derivative df/ds at Xm, we obtain a value of 𝛼1 for a
step size Δx1 and a value of 𝛼2 for a step size Δx2. Since, in reality, the derivative does
not exist at the point Xm, use of finite-difference formulas might lead to a complete
breakdown of the minimization process. In such cases the minimization can be done
only by one of the direct search techniques discussed earlier.

6.8.2 Rate of Change of a Function Along a Direction

In most optimization techniques, we are interested in finding the rate of change of a
function with respect to a parameter 𝜆 along a specified direction, Si, away from a
point Xi. Any point in the specified direction away from the given point Xi can be
expressed as X = Xi + 𝜆Si. Our interest is to find the rate of change of the function
along the direction Si (characterized by the parameter 𝜆), that is,

df

d𝜆
=

n∑
j=1

𝜕f

𝜕xj

𝜕xj

𝜕𝜆
(6.65)

xm
x

f

α1
α2

Δx2 Δx2

Δx1

Figure 6.15 Gradient not defined at xm.

�

� �

�

308 NLP II: Unconstrained Optimization

where xj is the jth component of X. But

𝜕xj

𝜕𝜆
= 𝜕

𝜕𝜆
(xij + 𝜆sij) = sij (6.66)

where xij and sij are the jth components of Xi and Si, respectively. Hence

df

d𝜆
=

n∑
j=1

𝜕f

𝜕xj
sij = ∇f TSi (6.67)

If 𝜆* minimizes f in the direction Si, we have

df

d𝜆

||||𝜆=𝜆∗ = ∇f |T
𝜆∗Si = 0 (6.68)

at the point Xi + 𝜆*Si.

6.9 STEEPEST DESCENT (CAUCHY) METHOD

The use of the negative of the gradient vector as a direction for minimization was first
made by Cauchy in 1847 [6.12]. In this method we start from an initial trial point X1
and iteratively move along the steepest descent directions until the optimum point is
found. The steepest descent method can be summarized by the following steps:

1. Start with an arbitrary initial point X1. Set the iteration number as i = 1.
2. Find the search direction Si as

Si = −∇fi = −∇f (Xi) (6.69)

3. Determine the optimal step length 𝜆∗i in the direction Si and set

Xi+1 = Xi + 𝜆∗i Si = Xi − 𝜆∗i ∇fi (6.70)

4. Test the new point, Xi+1, for optimality. If Xi+1 is optimum, stop the process.
Otherwise, go to step 5.

5. Set the new iteration number i = i + 1 and go to step 2.

The method of steepest descent may appear to be the best unconstrained mini-
mization technique since each one-dimensional search starts in the “best” direction.
However, owing to the fact that the steepest descent direction is a local property, the
method is not really effective in most problems.

Example 6.8 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 starting from the

point X1 =
{

0
0

}
.

SOLUTION

Iteration 1

The gradient of f is given by

∇f =
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
=
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}
∇f1 = ∇f (X1) =

{
1

−1

}

�

� �

�

6.9 Steepest Descent (CAuchy) Method 309

Therefore,

S1 = −∇f1 =
{
−1

1

}
To find X2, we need to find the optimal step length 𝜆∗1. For this, we minimize

f (X1 + 𝜆1S1) = f (−𝜆1, 𝜆1) = 𝜆
2
1 − 2𝜆1 with respect to 𝜆1. Since df/d𝜆1 = 0 at 𝜆∗1 = 1,

we obtain

X2 = X1 + 𝜆∗1S1 =
{

0
0

}
+ 1

{
−1

1

}
=
{
−1

1

}

As ∇f2 = ∇f (X2) =
{
−1
−1

}
≠
{

0
0

}
, X2 is not optimum.

Iteration 2

S2 = −∇f2 =
{

1
1

}
To minimize

f (X2 + 𝜆2S2) = f (−1 + 𝜆2, 1 + 𝜆2)

= 5𝜆2
2 − 2𝜆2 − 1

we set df/d𝜆2 = 0. This gives 𝜆∗2 = 1
5

and hence

X3 = X2 + 𝜆∗2S2 =
{
−1

1

}
+ 1

5

{
1
1

}
=
{
−0.8

1.2

}

Since the components of the gradient at X3, ∇f3 =
{

0.2
−0.2

}
, are not zero, we

proceed to the next iteration.

Iteration 3

S3 = −∇f3 =
{
−0.2

0.2

}
As

f (X3 + λ3S3) = f (−0.8 − 0.2λ3, 1.2 + 0.2λ3)

= 0.04λ2
3 − 0.08λ3 − 1.20,

df

dλ3
= 0 at λ∗3 = 1.0

Therefore,

X4 = X3 + λ∗3S3 =
{
−0.8
1.2

}
+ 1.0

{
−0.2

0.2

}
=
{
−1.0

1.4

}
The gradient at X4 is given by

∇f4 =
{
−0.20
−0.20

}

�

� �

�

310 NLP II: Unconstrained Optimization

Since ∇f4 ≠ {0
0}, X4 is not optimum and hence we have to proceed to the next

iteration. This process has to be continued until the optimum point, X∗ = {−1.0
1.5 }, is

found.
Convergence Criteria: The following criteria can be used to terminate the iterative

process.

1. When the change in function value in two consecutive iterations is small:

|||| f (Xi+1) − f (Xi)
f (Xi)

|||| ≤ 𝜀1 (6.71)

2. When the partial derivatives (components of the gradient) of f are small:|||| 𝜕f

𝜕xi

|||| ≤ 𝜀2, i = 1, 2, . . . , n (6.72)

3. When the change in the design vector in two consecutive iterations is small:

|Xi+1 − Xi| ≤ 𝜀3 (6.73)

6.10 CONJUGATE GRADIENT (FLETCHER–REEVES) METHOD

The convergence characteristics of the steepest descent method can be improved
greatly by modifying it into a conjugate gradient method (which can be considered as
a conjugate directions method involving the use of the gradient of the function). We
saw (in Section 6.6) that any minimization method that makes use of the conjugate
directions is quadratically convergent. This property of quadratic convergence is very
useful because it ensures that the method will minimize a quadratic function in n
steps or less. Since any general function can be approximated reasonably well by a
quadratic near the optimum point, any quadratically convergent method is expected
to find the optimum point in a finite number of iterations.

We have seen that Powell’s conjugate direction method requires n single-variable
minimizations per iteration and sets up a new conjugate direction at the end of each
iteration. Thus it requires, in general, n2 single-variable minimizations to find the
minimum of a quadratic function. On the other hand, if we can evaluate the gradi-
ents of the objective function, we can set up a new conjugate direction after every
one-dimensional minimization, and hence we can achieve faster convergence. The
construction of conjugate directions and development of the Fletcher–Reeves method
are discussed in this section.

6.10.1 Development of the Fletcher–Reeves Method

The Fletcher–Reeves method is developed by modifying the steepest descent method
to make it quadratically convergent. Starting from an arbitrary point X1, the quadratic
function

f (X) = 1
2
XT[A]X + BTX + C (6.74)

can be minimized by searching along the search direction S1 = −∇f1 (steepest descent
direction) using the step length (see Problem 6.40):

λ∗1 = −
ST

1

ST
1

∇f1
AS1

(6.75)

�

� �

�

6.10 Conjugate Gradient Method 311

The second search direction S2 is found as a linear combination of S1 and−∇f2:

S2 = −∇f2 + 𝛽2S1 (6.76)

where the constant 𝛽2 can be determined by making S1 and S2 conjugate with respect
to [A]. This leads to (see Problem 6.41):

𝛽2 = −
∇f T

2 ∇f2

∇f T
1 S1

=
∇f T

2 ∇f2

∇f T
1 f1

(6.77)

This process can be continued to obtain the general formula for the ith search
direction as

Si = −∇fi + 𝛽iSi−1 (6.78)

where

𝛽i =
∇f T

i ∇fi

∇f T
i−1∇fi−1

(6.79)

Thus the Fletcher–Reeves algorithm can be stated as follows.

6.10.2 Fletcher–Reeves Method

The iterative procedure of Fletcher–Reeves method can be stated as follows:

1. Start with an arbitrary initial point X1.
2. Set the first search direction S1 =−∇f(X1) = −∇f1.
3. Find the point X2 according to the relation

X2 = X1 + λ∗1S1 (6.80)

where λ∗1 is the optimal step length in the direction S1. Set i = 2 and go to the
next step.

4. Find ∇fi = ∇f(Xi), and set

Si = −∇fi +
|∇fi|2|∇fi−1|2 Si−1 (6.81)

5. Compute the optimum step length λ∗i in the direction Si, and find the new point

Xi+1 = Xi + λ∗i Si (6.82)

6. Test for the optimality of the point Xi+1. If Xi+1 is optimum, stop the process.
Otherwise, set the value of i = i + 1 and go to step 4.

Remarks
1. The Fletcher–Reeves method was originally proposed by Hestenes and Stiefel

[6.14] as a method for solving systems of linear equations derived from the sta-
tionary conditions of a quadratic. Since the directions Si used in this method
are A-conjugate, the process should converge in n cycles or less for a quadratic
function. However, for ill-conditioned quadratics (whose contours are highly
eccentric and distorted), the method may require much more than n cycles for
convergence. The reason for this has been found to be the cumulative effect of

�

� �

�

312 NLP II: Unconstrained Optimization

rounding errors. Since Si is given by Eq. (6.81), any error resulting from the
inaccuracies involved in the determination of λ∗i , and from the round-off error
involved in accumulating the successive |∇fi|

2Si−1/|∇fi−1|2 terms, is carried for-
ward through the vector Si. Thus the search directions Si will be progressively
contaminated by these errors. Hence it is necessary, in practice, to restart the
method periodically after every, say, m steps by taking the new search direction
as the steepest descent direction. That is, after every m steps, Sm+1 is set equal
to −∇fm+1 instead of the usual form. Fletcher and Reeves have recommended
a value of m = n + 1, where n is the number of design variables.

2. Despite the limitations indicated above, the Fletcher–Reeves method is vastly
superior to the steepest descent method and the pattern search methods, but
it turns out to be rather less efficient than the Newton and the quasi-Newton
(variable metric) methods discussed in the latter sections.

Example 6.9 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 starting from the
point X1 = {0

0}.

SOLUTION

Iteration 1

∇f =
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
=
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}
∇f1 = ∇f (X1) =

{
1

−1

}
The search direction is taken as S1 = −∇f1 = {−1

1 }. To find the optimal step length
λ∗1 along S1, we minimize f(X1 + 𝜆1S1) with respect to 𝜆1. Here

f (X1 + λ1S1) = f (−λ1,+λ1) = λ2
1 − 2λ1

df

dλ1
= 0 at λ∗1 = 1

Therefore,

X2 = X1 + λ∗1S1 =
{

0
0

}
+ 1

{
−1

1

}
=
{
−1

1

}

Iteration 2

Since ∇f2 = ∇f (X2) = {−1
−1}, Eq. (6.81) gives the next search direction as

S2 = −∇f2 +
|∇f2|2|∇f1|2 S1

where |∇f1|2 = 2 and |∇f2|2 = 2

Therefore,

S2 = −
{
−1
−1

}
+
(2

2

){−1
1

}
=
{

0
+2

}

�

� �

�

6.11 Newton’s Method 313

To find λ∗2, we minimize

f (X2 + λ2S2) = f (−1, 1 + 2λ2)

= −1 − (1 + 2λ2) + 2 − 2(1 + 2λ2) + (1 + 2λ2)2

= 4λ2
2 − 2λ2 − 1

with respect to 𝜆2. As df/d𝜆2 = 8𝜆2 − 2 = 0 at λ∗2 = 1
4
, we obtain

X3 = X2 + λ∗2S2 =
{
−1

1

}
+ 1

4

{
0
2

}
=
{

−1
1.5

}
Thus the optimum point is reached in two iterations. Even if we do not know this

point to be optimum, we will not be able to move from this point in the next iteration.
This can be verified as follows.

Iteration 3

Now

∇f3 = ∇f (X3) =
{

0
0

}
, |∇f2|2 = 2, and |∇f3|2 = 0.

Thus

S3 = −∇f3 + (|∇f3|2|∇f2|2)S2 = −
{

0
0

}
+
(0

2

){0
0

}
=
{

0
0

}
This shows that there is no search direction to reduce f further, and hence X3 is

optimum.

6.11 NEWTON’S METHOD

Newton’s method presented in Section 5.12.1 can be extended for the minimization of
multivariable functions. For this, consider the quadratic approximation of the function
f(X) at X = Xi using the Taylor’s series expansion

f (X) = f (Xi) + ∇f T
i (X − Xi) +

1
2
(X − Xi)T[Ji](X − Xi) (6.83)

where [Ji] = [J]|Xi is the matrix of second partial derivatives (Hessian matrix) of f
evaluated at the point Xi. By setting the partial derivatives of Eq. (6.83) equal to zero
for the minimum of f(X), we obtain

𝜕f (X)
𝜕xj

= 0, j = 1, 2, . . . , n (6.84)

Equations (6.84) and (6.83) give

∇f = ∇fi + [Ji](X − Xi) = 𝟎 (6.85)

If [Ji] is nonsingular, Eq. (6.85) can be solved to obtain an improved approxima-
tion (X = Xi+1) as

Xi+1 = Xi − [Ji]−1 ∇fi (6.86)

�

� �

�

314 NLP II: Unconstrained Optimization

Since higher-order terms have been neglected in Eq. (6.83), Eq. (6.86) is to be
used iteratively to find the optimum solution X*.

The sequence of points X1, X2, . . . , Xi+1 can be shown to converge to the actual
solution X* from any initial point X1 sufficiently close to the solution X*, provided
that [J1] is nonsingular. It can be seen that Newton’s method uses the second partial
derivatives of the objective function (in the form of the matrix [Ji]) and hence is a
second-order method.

Example 6.10 Show that the Newton’s method finds the minimum of a quadratic
function in one iteration.

SOLUTION Let the quadratic function be given by

f (X) = 1
2
XT[A]X + BTX + C

The minimum of f(X) is given by

∇f = [A]X + B = 𝟎

or
X∗ = −[A]−1B

The iterative step of Eq. (6.86) gives

Xi+1 = Xi − [A]−1([A]Xi + B) (E1)

where Xi is the starting point for the ith iteration. Thus Eq. (E1) gives the exact solution

Xi+1 = X∗ = −[A]−1B

Figure 6.16 illustrates this process.

Example 6.11 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 by taking the start-
ing point as X1 =

{
0
0

}
.

X1

X*

S = –(A)–1∇f1

Figure 6.16 Minimization of a quadratic function in one step.

�

� �

�

6.11 Newton’s Method 315

SOLUTION To find X2 according to Eq. (6.86), we require [J1]−1, where

[J1] =

⎡⎢⎢⎢⎢⎣
𝜕

2f

𝜕x2
1

𝜕
2f

𝜕x1𝜕x2

𝜕
2f

𝜕x2𝜕x1

𝜕
2f

𝜕x2
2

⎤⎥⎥⎥⎥⎦
X1

=
[

4 2
2 2

]

Therefore,

[J1]−1 = 1
4

[
+2 −2
−2 4

]
=
⎡⎢⎢⎣

1
2

− 1
2

− 1
2

1

⎤⎥⎥⎦
As

g1 =
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
X1

=
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}
(0,0)

=
{

1
−1

}
Eq. (6.86) gives

X2 = X1 − [J1]−1g1 =
{

0
0

}
−
⎡⎢⎢⎣

1
2

− 1
2

− 1
2

1

⎤⎥⎥⎦
{

1
−1

}
=

{
−1

3
2

}

To see whether or not X2 is the optimum point, we evaluate

g2 =
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
X2

=
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}
(−1,3∕2)

=
{

0
0

}
As g2 = 0, X2 is the optimum point. Thus the method has converged in one itera-

tion for this quadratic function.
If f(X) is a nonquadratic function, Newton’s method may sometimes diverge, and

it may converge to saddle points and relative maxima. This problem can be avoided
by modifying Eq. (6.86) as

Xi+1 = Xi + λ∗i Si = Xi − λ∗i [J1]−1∇fi (6.87)

where λ∗i is the minimizing step length in the direction Si = −[Ji]
−1∇fi. The mod-

ification indicated by Eq. (6.87) has a number of advantages. First, it will find the
minimum in lesser number of steps compared to the original method. Second, it finds
the minimum point in all cases, whereas the original method may not converge in
some cases. Third, it usually avoids convergence to a saddle point or a maximum.
With all these advantages, this method appears to be the most powerful minimization
method. Despite these advantages, the method is not very useful in practice, due to the
following features of the method:

1. It requires the storing of the n × n matrix [Ji].
2. It becomes very difficult and sometimes impossible to compute the elements

of the matrix [Ji].
3. It requires the inversion of the matrix [Ji] at each step.
4. It requires the evaluation of the quantity [Ji]

−1∇fi at each step.

These features make the method impractical for problems involving a complicated
objective function with a large number of variables.

�

� �

�

316 NLP II: Unconstrained Optimization

6.12 MARQUARDT METHOD

The steepest descent method reduces the function value when the design vector Xi
is away from the optimum point X*. The Newton method, on the other hand, con-
verges fast when the design vector Xi is close to the optimum point X*. The Marquardt
method [6.15] attempts to take advantage of both the steepest descent and Newton
methods. This method modifies the diagonal elements of the Hessian matrix, [Ji], as

[J̃i] = [Ji] + 𝛼i[I] (6.88)

where [I] is an identity matrix and 𝛼i is a positive constant that ensures the positive
definiteness of [J̃i] when [Ji] is not positive definite. It can be noted that when 𝛼i is
sufficiently large (on the order of 104), the term 𝛼i[I] dominates [Ji] and the inverse of
the matrix [Ji] becomes

[J̃i]−1 = [[Ji] + 𝛼i[I]]−1 ≈ [𝛼i[I]]−1 = 1
𝛼i
[I] (6.89)

Thus if the search direction Si is computed as

Si = −[J̃i]−1∇fi (6.90)

Si becomes a steepest descent direction for large values of 𝛼i. In the Marquardt method,
the value of 𝛼i is taken to be large at the beginning and then reduced to zero gradually
as the iterative process progresses. Thus as the value of 𝛼i decreases from a large
value to zero, the characteristics of the search method change from those of a steepest
descent method to those of the Newton method. The iterative process of a modified
version of Marquardt method can be described as follows.

1. Start with an arbitrary initial point X1 and constants 𝛼1 (on the order of 104),
c1(0< c1 < 1), c2(c2 > 1), and 𝜀 (on the order of 10−2). Set the iteration number
as i = 1.

2. Compute the gradient of the function, ∇fi = ∇f(Xi).
3. Test for optimality of the point Xi. If ||∇fi|| = ||∇f(Xi)||≤ 𝜀, Xi is optimum and

hence stop the process. Otherwise, go to step 4.
4. Find the new vector Xi+1 as

Xi+1 = Xi + Si = Xi − [[Ji]] + 𝛼i[I]]−1 ∇fi (6.91)

5. Compare the values of fi+1 and fi. If fi+1 < fi, go to, step 6. If fi+1 ≥ fi, go to step
7.

6. Set 𝛼i+1 = c1𝛼i, i = i + 1, and go to step 2.
7. Set 𝛼i = c2𝛼i and go to step 4.

An advantage of this method is the absence of the step size 𝜆i along the search
direction Si. In fact, the algorithm above can be modified by introducing an optimal
step length in Eq. (6.91) as

Xi+1 = Xi + λ∗i Si = Xi − λ∗i [[Ji] + 𝛼i[I]]−1∇fi (6.92)

where λ∗i is found using any of the one-dimensional search methods described in
Chapter 5.

�

� �

�

6.13 Quasi-Newton Methods 317

Example 6.12 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 from the starting
point X1 =

{
0
0

}
using Marquardt method with 𝛼1 = 104, c1 =

1
4
, c2 = 2, and 𝜀 = 10−2.

SOLUTION

Iteration 1 (i= 1)

Here f1 = f(X1) = 0.0 and

∇f1 =

⎧⎪⎪⎨⎪⎪⎩
𝜕f

𝜕x1

𝜕f

𝜕x2

⎫⎪⎪⎬⎪⎪⎭(0,0)

=
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}
(0,0)

=
{

1
−1

}

Since ||∇f1|| = 1.4142 >𝜀, we compute

[J1] =

⎡⎢⎢⎢⎢⎣
𝜕

2f

𝜕x2
1

𝜕
2f

𝜕x1x2

𝜕
2

𝜕x1x2

𝜕
2f

𝜕x2
2

⎤⎥⎥⎥⎥⎦
(0,0)

=
[

4 2
2 2

]

X2 = X1 − [[J1] + 𝛼1[I]]−1∇f1

=
{

0
0

}
−
[

4 + 104 2
2 2 + 104

]−1{
1

−1

}
=
{
−0.9998

1.0000

}
10−4

As f2 = f(X2) = −1.9997× 10−4
< f1, we set 𝛼2 = c1𝛼1 = 2500, i = 2, and proceed

to the next iteration.

Iteration 2 (i = 2)

The gradient vector corresponding to X2 is given by ∇f2 =
{

0.9998
−1.0000

}
,

||∇f2|| = 1.4141 >𝜀, and hence we compute

X3 = X2 − [[J2] + 𝛼2[I]]−1∇f2

=
{
−0.9998 × 10−4

1.0000 × 10−4

}
−
[

2504 2
2 2502

]−1{
0.9998

−1.0000

}
=
{
−4.9958 × 10−4

5.0000 × 10−4

}
Since f3 = f(X3)=−0.9993× 10−3

< f2, we set 𝛼3 = c1𝛼2 = 625, i= 3, and proceed
to the next iteration. The iterative process is to be continued until the convergence
criterion, ||∇fi|| <𝜀, is satisfied.

6.13 QUASI-NEWTON METHODS

The basic iterative process used in the Newton’s method is given by Eq. (6.86):

Xi+1 = Xi − [Ji]−1∇f (Xi) (6.93)

�

� �

�

318 NLP II: Unconstrained Optimization

where the Hessian matrix [Ji] is composed of the second partial derivatives of f and
varies with the design vector Xi for a nonquadratic (general nonlinear) objective func-
tion f. The basic idea behind the quasi-Newton or variable metric methods is to approx-
imate either [Ji] by another matrix [Ai] or [Ji]

−1 by another matrix [Bi], using only
the first partial derivatives of f. If [Ji]

−1 is approximated by [Bi], Eq. (6.93) can be
expressed as

Xi+1 = Xi − λ∗i [Bi]∇f (Xi) (6.94)

where λ∗i can be considered as the optimal step length along the direction

Si = −[Bi]∇f (Xi) (6.95)

It can be seen that the steepest descent direction method can be obtained as a
special case of Eq. (6.95) by setting [Bi] = [I].

6.13.1 Computation of [Bi]

To implement Eq. (6.94), an approximate inverse of the Hessian matrix [Bi]≡ [Ai]
−1, is

to be computed. For this, we first expand the gradient of f about an arbitrary reference
point, X0, using Taylor’s series as

∇f (X) ≈ ∇f (X0) + [J0](X − X0) (6.96)

If we pick two points Xi and Xi+1 and use [Ai] to approximate [J0], Eq. (6.96) can
be rewritten as

∇fi+1 = ∇f (X0) + [Ai](Xi+1 − X0) (6.97)

∇fi = ∇f (X0) + [Ai](Xi − X0) (6.98)

Subtracting Eq. (6.98) from (6.97) yields

[Ai]di = gi (6.99)

where

di = Xi+1 − Xi (6.100)

gi = ∇fi+1 − ∇fi (6.101)

The solution of Eq. (6.99) for di can be written as

di = [Bi]gi (6.102)

where [Bi] = [Ai]
−1 denotes an approximation to the inverse of the Hessian matrix,

[J0]−1. It can be seen that Eq. (6.102) represents a system of n equations in n2 unknown
elements of the matrix [Bi]. Thus for n> 1, the choice of [Bi] is not unique and one
would like to choose [Bi] that is closest to [J0]−1, in some sense. Numerous techniques
have been suggested in the literature for the computation of [Bi] as the iterative process
progresses (i.e. for the computation of [Bi+1] once [Bi] is known). A major concern
is that in addition to satisfying Eq. (6.102), the symmetry and positive definiteness of
the matrix [Bi] is to be maintained; that is, if [Bi] is symmetric and positive definite,
[Bi+1] must remain symmetric and positive definite.

�

� �

�

6.13 Quasi-Newton Methods 319

6.13.2 Rank 1 Updates

The general formula for updating the matrix [Bi] can be written as

[Bi+1] = [Bi] + [ΔBi] (6.103)

where [ΔBi] can be considered to be the update (or correction) matrix added to [Bi].
Theoretically, the matrix [ΔBi] can have its rank as high as n. However, in practice,
most updates, [ΔBi], are only of rank 1 or 2. To derive a rank 1 update, we simply
choose a scaled outer product of a vector z for [ΔBi] as

[ΔBi] = czzT (6.104)

where the constant c and the n-component vector z are to be determined.
Equations (6.103) and (6.104) lead to

[Bi+1] = [Bi] + czzT (6.105)

By forcing Eq. (6.105) to satisfy the quasi-Newton condition, Eq. (6.102),

di = [Bi+1]gi (6.106)

we obtain
di = ([Bi] + czzT)gi = [Bi]gi + cz(zTgi) (6.107)

Since (zT gi) in Eq. (6.107) is a scalar, we can rewrite Eq. (6.107) as

cz =
di − [Bi]gi

zTgi

(6.108)

Thus a simple choice for z and c would be

z = di − [Bi]gi (6.109)

c = 1
zTgi

(6.110)

This leads to the unique rank 1 update formula for [Bi+1]:

[Bi+1] = [Bi] + [ΔBi] ≡ [Bi] +
(di − [Bi]gi)(di − [Bi]gi)T

(di − [Bi]gi)Tgi

(6.111)

This formula has been attributed to Broyden [6.16]. To implement Eq. (6.111), an
initial symmetric positive definite matrix is selected for [B1] at the start of the algo-
rithm, and the next point X2 is computed using Eq. (6.94). Then the new matrix [B2]
is computed using Eq. (6.111) and the new point X3 is determined from Eq. (6.94).
This iterative process is continued until convergence is achieved. If [Bi] is symmet-
ric, Eq. (6.111) ensures that [Bi+1] is also symmetric. However, there is no guarantee
that [Bi+1] remains positive definite even if [Bi] is positive definite. This might lead
to a breakdown of the procedure, especially when used for the optimization of non-
quadratic functions. It can be verified easily that the columns of the matrix [ΔBi] given
by Eq. (6.111) are multiples of each other. Thus the updating matrix has only one
independent column and hence the rank of the matrix will be 1. This is the reason
why Eq. (6.111) is considered to be a rank 1 updating formula. Although the Broy-
den formula, Eq. (6.111), is not robust, it has the property of quadratic convergence
[6.17]. The rank 2 update formulas which are given next guarantee both symmetry and
positive definiteness of the matrix [Bi+1] and are more robust in minimizing general
nonlinear functions, hence are preferred in practical applications.

�

� �

�

320 NLP II: Unconstrained Optimization

6.13.3 Rank 2 Updates

In rank 2 updates we choose the update matrix [ΔBi] as the sum of two rank 1 updates
as

[ΔBi] = c1z1zT
1 + c2z2zT

2 (6.112)

where the constants c1 and c2 and the n-component vectors z1 and z2 are to be deter-
mined. Equations (6.103) and (6.112) lead to

[Bi+1] = [Bi] + c1z1zT
1 + c2z2zT

2 (6.113)

By forcing Eq. (6.113) to satisfy the quasi-Newton condition, Eq. (6.106), we
obtain

di = [Bi]gi + c1z1(zT
1 gi) + c2z2(zT

2 gi) (6.114)

where (zT
1 gi) and (zT

2 gi) can be identified as scalars. Although the vectors z1 and z2 in
Eq. (6.114) are not unique, the following choices can be made to satisfy Eq. (6.114):

z1 = di (6.115)

z2 = [Bi]gi (6.116)

c1 = 1
zT

1 gi

(6.117)

c2 = − 1
zT

2 gi

(6.118)

Thus the rank 2 update formula can be expressed as

[Bi+1] = [Bi] + [ΔBi] ≡ [Bi] +
did

T
i

dT
i gi

−
([Bi]gi)([Bi]gi)T

([Bi]gi)Tgi
(6.119)

This equation is known as the Davidon–Fletcher–Powell (DFP) formula
[6.20, 6.21]. Since

Xi+1 = Xi + λ∗i Si (6.120)

where Si is the search direction, di = Xi+1 −Xi can be rewritten as

di = λ∗i Si (6.121)

Thus Eq. (6.119) can be expressed as

[Bi+1] = [Bi] +
λ∗i SiS

T
i

ST
i gi

−
[Bi]gig

T
i [Bi]

gT
i [Bi]gi

(6.122)

Remarks

1. Equations (6.111) and (6.119) are known as inverse update formulas since
these equations approximate the inverse of the Hessian matrix of f.

2. It is possible to derive a family of direct update formulas in which approxi-
mations to the Hessian matrix itself are considered. For this we express the
quasi-Newton condition as (see Eq. (6.99))

gi = [Ai]di (6.123)

The procedure used in deriving Eqs. (6.111) and (6.119) can be followed
by using [Ai], di, and gi in place of [Bi], gi, and di, respectively. This leads

�

� �

�

6.14 DFP Method 321

to the rank 2 update formula, which is similar to Eq. (6.119), known as the
Broydon–Fletcher–Goldfarb–Shanno (BFGS) formula [6.22–6.25]:

[Ai+1] = [Ai] +
gig

T
i

gT
i di

−
([Ai]di)([Ai]di)T

([Ai]di)Tdi

(6.124)

In practical computations, Eq. (6.124) is rewritten more conveniently in terms
of [Bi], as

[Bi+1] = [Bi] +
did

T
i

dT
i gi

(
1 +

gT
i [Bi]gi

dT
i gi

)
−

([Bi]gid
T
i

dT
i gi

−
dig

T
i [Bi]

dT
i gi

(6.125)

3. The DFP and the BFGS formulas belong to a family of rank 2 updates known
as Huang’s family of updates [6.18], which can be expressed for updating the
inverse of the Hessian matrix as

[Bi+1] = 𝜌i

(
[Bi] −

[Bi]gig
T
i [Bi]

gT
i [Bi]gi

+ 𝜃iyiy
T
i

)
+

did
T
i

dT
i gi

(6.126)

where

yi = (gT
i [Bi]gi)1∕2

(
di

dT
i gi

−
[Bi]gi

gT
i [Bi]gi

)
(6.127)

and 𝜌i and 𝜃i are constant parameters. It has been shown [6.18] that Eq. (6.126)
maintains the symmetry and positive definiteness of [Bi+1] if [Bi] is symmet-
ric and positive definite. Different choices of 𝜌i and 𝜃i in Eq. (6.126) lead to
different algorithms. For example, when 𝜌i = 1 and 𝜃i = 0, Eq. (6.126) gives
the DFP formula, Eq. (6.119). When 𝜌i = 1 and 𝜃i = 1, Eq. (6.126) yields the
BFGS formula, Eq. (6.125).

4. It has been shown that the BFGS method exhibits superlinear convergence near
X* [6.17].

5. Numerical experience indicates that the BFGS method is the best uncon-
strained variable metric method and is less influenced by errors in finding λ∗i
compared to the DFP method.

6. The methods discussed in this section are also known as secant methods since
Eqs. (6.99) and (6.102) can be considered as secant equations (see Section
5.12).

The DFP and BFGS iterative methods are described in detail in the following
sections.

6.14 DAVIDON–FLETCHER–POWELL METHOD

The iterative procedure of the DFP method can be described as follows:

1. Start with an initial point X1 and a n× n positive definite symmetric matrix [B1]
to approximate the inverse of the Hessian matrix of f. Usually, [B1] is taken as
the identity matrix [I]. Set the iteration number as i = 1.

2. Compute the gradient of the function, ∇fi, at point Xi, and set

Si = −[Bi]∇fi (6.128)

�

� �

�

322 NLP II: Unconstrained Optimization

3. Find the optimal step length λ∗i in the direction Si and set

Xi+1 = Xi + λ∗i Si (6.129)

4. Test the new point Xi+1 for optimality. If Xi+1 is optimal, terminate the iterative
process. Otherwise, go to step 5.

5. Update the matrix [Bi] using Eq. (6.119) as

[Bi+1] = [Bi] + [Mi] + [Ni] (6.130)

where

[Mi] = λ∗i
SiS

T
i

ST
i gi

(6.131)

[Ni] = −
([Bi]gi)([Bi]gi)T

gT
i [Bi]gi

(6.132)

gi = ∇f (Xi+1) − ∇f (Xi) = ∇fi+1 − ∇fi (6.133)

6. Set the new iteration number as i = i + 1, and go to step 2.

Note: The matrix [Bi+1], given by Eq. (6.130), remains positive definite only if λ∗i
is found accurately. Thus if λ∗i is not found accurately in any iteration, the matrix [Bi]
should not be updated. There are several alternatives in such a case. One possibility is
to compute a better value of λ∗i by using more number of refits in the one-dimensional
minimization procedure (until the product ST

i ∇fi+1 becomes sufficiently small). How-
ever, this involves more computational effort. Another possibility is to specify a max-
imum number of refits in the one-dimensional minimization method and to skip the
updating of [Bi] if λ∗i could not be found accurately in the specified number of refits.
The last possibility is to continue updating the matrix [Bi] using the approximate val-
ues of λ∗i found, but restart the whole procedure after certain number of iterations, that
is, restart with i = 1 in step 2 of the method.

Example 6.13 Show that the DFP method is a conjugate gradient method.

SOLUTION Consider the quadratic function

f (X) = 1
2
XT[A]X + BTX + C (E1)

for which the gradient is given by

∇f = [A]X + B (E2)

Equations (6.133) and (E2) give

gi = ∇fi+1 − ∇fi = [A](Xi+1 − Xi) (E3)

Since
Xi+1 = Xi + λ∗i Si (E4)

Eq. (E3) becomes
gi = λ∗i [A]Si (E5)

�

� �

�

6.14 DFP Method 323

or
[A]Si =

1
λ∗i

gi (E6)

Premultiplication of Eq. (E6) by [Bi+1] leads to

[Bi+1][A]Si =
1
λ∗i

([Bi] + [Mi] + [Ni])gi (E7)

Equations (6.131) and (E5) yield

[Mi]gi = λ∗i
SiS

T
i gi

ST
i gi

= λ∗i Si (E8)

Equation (6.132) can be used to obtain

[Ni]gi = −
([Bi]gi)(gT

i [Bi]Tgi)
gT

i [Bi]gi

= −[Bi]gi (E9)

since [Bi] is symmetric. By substituting Eqs. (E8) and (E9) into Eq. (E7), we obtain

[Bi+1][A]Si =
1
λ∗i

([Bi]gi + λ∗i Si − [Bi]gi) = Si (E10)

The quantity ST
i+1[A]Si can be written as

ST
i+1[A]Si = −([Bi+1]∇fi+1)T[A]Si

= −∇f T
i+1[Bi+1][A]Si = −∇f T

i+1Si = 0 (E11)

since λ∗i is the minimizing step in the direction Si. Equation (E11) proves that the
successive directions generated in the DFP method are [A]-conjugate and hence the
method is a conjugate gradient method.

Example 6.14 Minimize f (x1, x2) = 100(x2
1 − x2)2 + (1 − x1)2 taking X1 = {−2

−2} as
the starting point. Use cubic interpolation method for one-dimensional minimization.

SOLUTION Since this method requires the gradient of f, we find that

∇f =
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
=
{

400x1(x2
1 − x2) − 2(1 − x1)

−200(x2
1 − x2)

}

Iteration 1

We take

[B1] =
[

1 0
0 1

]
At X1 =

{−2
−2

}
, ∇f1 = ∇f (X1) =

{−4806
−1200

}
and f1 = 3609. Therefore,

S1 = −[B1]∇f1 =
{

4806
1200

}

�

� �

�

324 NLP II: Unconstrained Optimization

By normalizing, we obtain

S1 = 1
[(4806)2 + (1200)2]1∕2

{
4806
1200

}
=
{

0.970
0.244

}
To find λ∗i , we minimize

f (X1 + λ1S1) = f (−2 + 0.970λ1,−2 + 0.244λ1)

= 100(6 − 4.124λ1 + 0.938λ2
1)

2 + (3 − 0.97λ1)2 (6.134)

with respect to 𝜆1. Eq. (E1) gives

df

dλ1
= 200(6 − 4.124λ1 + 0.938λ2

1)(1.876λ1 − 4.124) − 1.94(3 − 0.97λ1)

Since the solution of the equation df/d𝜆1 = 0 cannot be obtained in a simple man-
ner, we use the cubic interpolation method for finding λ∗i .

Cubic Interpolation Method (First Fitting)

Stage 1: As the search direction S1 is normalized already, we go to stage 2.
Stage 2: To establish lower and upper bounds on the optimal step size λ∗1, we have

to find two points A and B at which the slope df/d𝜆1 has different signs. We
take A = 0 and choose an initial step size of t0 = 0.25 to find B.
At 𝜆1 = A = 0:

fA = f (λ1 = A = 0) = 3609

f ′A =
df

dλ1

||||λ1=A=0

= −4956.64

At 𝜆1 = t0 = 0.25:

f = 2535.62

df

dλ1
= −3680.82

As df/d𝜆1 is negative, we accelerate the search by taking 𝜆1 = 4t0 = 1.00.
At 𝜆1 = 1.00:

f = 795.98

df

dλ1
= −1269.18

Since df/d𝜆1 is still negative, we take 𝜆1 = 2.00.
At 𝜆1 = 2.00:

f = 227.32

df

dλ1
= −113.953

�

� �

�

6.14 DFP Method 325

Although df/d𝜆1 is still negative, it appears to have come close to zero and
hence we take the next value of 𝜆1 as 2.50.
At 𝜆1 = 2.50:

f = 241.51

df

dλ1
= 174.684 = positive

Since df/d𝜆1 is negative at 𝜆1 = 2.0 and positive at 𝜆1 = 2.5, we take A = 2.0
(instead of zero for faster convergence) and B = 2.5. Therefore,

A = 2.0, fA = 227.32, f ′A = −113.95

B = 2.5, fB = 241.51, f ′B = 174.68

Stage 3: To find the optimal step length λ̃∗1 using Eq. (5.54), we compute

Z = 3(227.32 − 241.51)
2.5 − 2.0

− 113.95 + 174.68 = −24.41

Q = [(24.41)2 + (113.95)(174.68)]1∕2 = 143.2

Therefore,

λ̃∗i = 2.0 + −113.95 − 24.41 + 143.2
−113.95 + 174.68 − 48.82

(2.5 − 2.0)

= 2.2

Stage 4: To find whether λ̃∗1 is close to λ∗1, we test the value of df/d𝜆1.

df

dλ1

||||̃λ∗1 = −0.818

Also,
f (λ1 = λ̃∗1) = 216.1

Since df/d𝜆1 is not close to zero at λ̃∗1, we use a refitting technique.

Second Fitting: Now we take A = λ̃∗1 since df/d𝜆1 is negative at λ̃∗1 and B = 2.5.
Thus

A = 2.2, fA = 216.10, f ′A = −0.818

B = 2.5, fB = 241.51, f ′B = 174.68

With these values we find that

Z = 3(216.1 − 241.51)
2.5 − 2.2

− 2.818 + 174.68 = −80.238

Q = [(80.238)2 + (0.818)(174.68)]1∕2 = 81.1

λ̃∗1 = 2.2 + −0.818 − 80.238 + 81.1
−0.818 + 174.68 − 160.476

(2.5 − 2.2) = 2.201

�

� �

�

326 NLP II: Unconstrained Optimization

To test for convergence, we evaluate df/d𝜆 at λ̃∗1. Since df∕dλ|λ1=̃λ∗1
= −0.211, it

can be assumed to be sufficiently close to zero and hence we take λ∗1 ≃ λ̃∗1 = 2.201.
This gives

X2 = X1 + λ∗1S1 =

{
−2 + 0.970λ∗1
−2 + 0.244λ∗1

}
=
{

0.135
−1.463

}
Testing X2 for convergence: To test whether the D-F-P method has converged, we

compute the gradient of f at X2:

∇f2 =
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
X2

=
{

78.29
−296.24

}
As the components of this vector are not close to zero, X2 is not optimum and

hence the procedure has to be continued until the optimum point is found.

Example 6.15 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 from the starting
point X1 =

{
0
0

}
using the DFP method with

[B1] =
[

1 0
0 1

]
𝜀 = 0.01

SOLUTION

Iteration 1 (i = 1)

Here

∇f1 = ∇f (X1) =
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}|||||(0,0) =
{

1
−1

}
and hence

S1 = −[B1]∇f1 = −
[

1 0
0 1

]{
1

−1

}
=
{
−1

1

}
To find the minimizing step length λ∗1 along S1, we minimize

f (X1 + λ1S1) = f

({
0
0

}
+ λ1

{
−1

1

})
= f (−λ1, λ1) = λ2

1 − 2λ1

with respect to 𝜆1. Since df/d𝜆1 = 0 at λ∗1 = 1, we obtain

X2 = X1 + λ∗1S1 =
{

0
0

}
+ 1

{
−1

1

}
=
{
−1

1

}
Since ∇f2 = ∇f(X2) = {−1

−1} and ||∇f2|| = 1.4142 >𝜀, we proceed to update the
matrix [Bi] by computing

g1 = ∇f2 − ∇f1 =
{
−1
−1

}
−
{

1
−1

}
=
{
−2

0

}
ST

1 g1 = {−1 1}
{
−2

0

}
= 2

�

� �

�

6.15 BFGS Method 327

S1ST
1 =

{
−1

1

}
{−1 1} =

[
1 −1

−1 1

]
[B1]g1 =

[
1 0
0 1

]{
−2

0

}
=
{
−2

0

}
([B1]g1)T =

{
−2

0

}T

= {−2 0}

gT
1 [B1]g1 = {−2 0}

[
1 0
0 1

]{
−2

0

}
= {−2 0}

{
−2

0

}
= 4

[M1] = λ∗1
S1ST

1

ST
1 g1

= 1
(

1
2

)[1 −1
−1 1

]
=

[
1
2

− 1
2

− 1
2

1
2

]

[N1] = −
([B1]g1)([B1]g1)T

gT
1 [B1]g1

= −

{
−2

0

}
{−2 0}

4
= − 1

4

[
4 0
0 0

]
= −

[
1 0
0 0

]

[B2] = [B1] + [M1] + [N1] =
[

1 0
0 1

]
+
⎡⎢⎢⎣

1
2

− 1
2

− 1
2

1
2

⎤⎥⎥⎦ +
[
−1 0

0 0

]
=
[

0.5 −0.5
−0.5 1.5

]

Iteration 2 (i= 2)

The next search direction is determined as

S2 = −[B2]∇f2 = −
[

0.5 −0.5
−0.5 1.5

]{
−1
−1

}
=
{

0
1

}
To find the minimizing step length λ∗2 along S2, we minimize

f (X2 + λ2S2) = f

({
−1

1

}
+ λ2

{
0
1

})
= f

({
−1

1 + λ2

})
= −1 − (1 + λ2) + 2(−1)2 + 2(−1)(1 + λ2) + (1 + λ2)2

= λ2
2 − λ2 − 1

with respect to 𝜆2. Since df/d𝜆2 = 0 at λ∗2 =
1
2
, we obtain

X3 = X2 + λ∗2 =
{
−1

1

}
+ 1

2

{
0
1

}
=
{

−1
1.5

}
This point can be identified to be optimum since

∇f3 =
{

0
0

}
and ‖∇f3‖ = 0 < 𝜀

6.15 BROYDEN–FLETCHER–GOLDFARB–SHANNO METHOD

As stated earlier, a major difference between the DFP and BFGS methods is that in
the BFGS method, the Hessian matrix is updated iteratively rather than the inverse of
the Hessian matrix. The BFGS method can be described by the following steps.

�

� �

�

328 NLP II: Unconstrained Optimization

1. Start with an initial point X1 and a n× n positive definite symmetric matrix [B1]
as an initial estimate of the inverse of the Hessian matrix of f. In the absence
of additional information, [B1] is taken as the identity matrix [I]. Compute the
gradient vector ∇f1 = ∇f(X1) and set the iteration number as i = 1.

2. Compute the gradient of the function, ∇fi, at point Xi, and set

Si = −[Bi]∇fi (6.134)

3. Find the optimal step length λ∗i in the direction Si and set

Xi+1 = Xi + λ∗i Si (6.135)

4. Test the point Xi+1 for optimality. If ||∇fi+1||≤ 𝜀, where 𝜀 is a small quantity,
take X* ≈ Xi+1 and stop the process. Otherwise, go to step 5.

5. Update the Hessian matrix as

[Bi+1] = [Bi] +

(
1 +

gT
i [Bi]gi

dT
i gi

)
did

T
i

dT
i gi

−
dig

T
i [Bi]

dT
i gi

−
[Bi]gid

T
i

dT
i gi

(6.136)

where

di = Xi+1 − Xi = λ∗i Si (6.137)

gi = ∇fi+1 − ∇fi = ∇f (Xi+1) − ∇f (Xi) (6.138)

6. Set the new iteration number as i = i + 1 and go to step 2.

Remarks

1. The BFGS method can be considered as a quasi-Newton, conjugate gradient,
and variable metric method.

2. Since the inverse of the Hessian matrix is approximated, the BFGS method can
be called an indirect update method.

3. If the step lengths λ∗i are found accurately, the matrix, [Bi], retains its positive
definiteness as the value of i increases. However, in practical application, the
matrix [Bi] might become indefinite or even singular if λ∗i are not found accu-
rately. As such, periodical resetting of the matrix [Bi] to the identity matrix [I]
is desirable. However, numerical experience indicates that the BFGS method
is less influenced by errors in λ∗i than is the DFP method.

4. It has been shown that the BFGS method exhibits superlinear convergence near
X* [19].

Example 6.16 Minimize f (x1, x2) = x1 − x2 + 2x2
1 + 2x1x2 + x2

2 from the starting
point X1 =

{
0
0

}
using the BFGS method with

[B1] =
[

1 0
0 1

]
𝜀 = 0.01.

SOLUTION

Iteration 1 (i= 1)

Here

∇f1 = ∇f (X1) =
{

1 + 4x1 + 2x2
−1 + 2x1 + 2x2

}|||||(0,0) =
{

1
−1

}

�

� �

�

6.15 BFGS Method 329

and hence

S1 = −[B1]∇f1 = −
[

1 0
0 1

]{
1

−1

}
=
{
−1

1

}
To find the minimizing step length λ∗i along S1, we minimize

f (X1 + λ1S1) = f

({
0
0

}
+ λ1

{
−1

1

})
= f (−λ1, λ1) = λ2

1 − 2λ1

with respect to 𝜆1. Since df/d𝜆1 = 0 at λ∗i = 1, we obtain

X2 = X1 + λ∗1S1 =
{

0
0

}
+ 1

{
−1

1

}
=
{
−1

1

}

Since ∇f2 = ∇f (X2) =
{
−1
−1

}
and ||∇f2|| = 1.4142 >𝜀, we proceed to update the

matrix [Bi] by computing

g1 = ∇f2 − ∇f1 =
{
−1
−1

}
−
{

1
−1

}
=
{
−2

0

}
d1 = λ∗1S1 = 1

{
−1

1

}
=
{
−1

1

}
d1dT

1 =
{
−1

1

}{
−1 1

}
=
[

1 −1
−1 1

]
dT

1 g1 =
{
−1 1

}{−2
0

}
= 2

d1gT
1 =

{
−1

1

}{
−2 0

}
=
[

2 0
−2 0

]
g1dT

1 =
{
−2

0

}{
−1 1

}
=
[

2 −2
0 0

]
gT

1 [B1]g1 =
{
−2 0

} [1 0
0 1

]{
−2

0

}
=
{
−2 0

}{−2
0

}
= 4

d1gT
1 [B1] =

[
2 0

−2 0

] [
1 0
0 1

]
=
[

2 0
−2 0

]
[B1]g1dT

1 =
[

1 0
0 1

] [
2 −2
0 0

]
=
[

2 −2
0 0

]
Equation (6.136) gives

[B2] ∣ =
[

1 0
0 1

]
+
(

1 + 4
2

)
1
2

[
1 −1

−1 1

]
− 1

2

[
2 0

−2 0

]
− 1

2

[
2 −2
0 0

]

=
[

1 0
0 1

]
+
⎡⎢⎢⎣

3
2

− 3
2

− 3
2

3
2

⎤⎥⎥⎦ −
[

1 0
−1 0

]
−
[

1 −1
0 0

]
=
⎡⎢⎢⎣

1
2

− 1
2

− 1
2

5
2

⎤⎥⎥⎦

�

� �

�

330 NLP II: Unconstrained Optimization

Iteration 2 (i = 2)

The next search direction is determined as

S2 = −[B2]∇f2 = −
⎡⎢⎢⎣

1
2

− 1
2

− 1
2

5
2

⎤⎥⎥⎦
{
−1
−1

}
=
{

0
2

}

To find the minimizing step length λ∗2 along S2, we minimize

f (X2 + λ2S2) = f

({
−1

1

}
+ λ2

{
0
2

})
= f (−1, 1 + 2λ2) = 4λ2

2 − 2λ2 − 1

with respect to 𝜆2. Since df/d𝜆2 = 0 at λ∗2 = 1
4
, we obtain

X3 = X2 + λ∗2S2 =
{
−1

1

}
+ 1

4

{
0
2

}
=
{
−1

3
2

}
This point can be identified to be optimum since

∇f3 =
{

0
0

}
and ||∇f3|| = 0 < 𝜀

6.16 TEST FUNCTIONS

The efficiency of an optimization algorithm is studied using a set of standard func-
tions. Several functions, involving different number of variables, representing a vari-
ety of complexities have been used as test functions. Almost all the test functions
presented in the literature are nonlinear least squares; that is, each function can be
represented as

f (x1, x2, . . . , xn) =
m∑

i=1

fi(x1, x2, . . . , xn)2 (6.139)

where n denotes the number of variables and m indicates the number of functions
(fi) that define the least-squares problem. The purpose of testing the functions is to
show how well the algorithm works compared to other algorithms. Usually, each test
function is minimized from a standard starting point. The total number of function
evaluations required to find the optimum solution is usually taken as a measure of the
efficiency of the algorithm. References [6.29–6.32] present a comparative study of
the various unconstrained optimization techniques. Some of the commonly used test
functions are given below.

1. Rosenbrock’s parabolic valley [6.8]:

f (x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2 (6.140)

X1 =
{
−1.2

1.0

}
, X∗ =

{
1
1

}
f1 = 24.0, f ∗ = 0.0

�

� �

�

6.16 Test Functions 331

2. A quadratic function:

f (x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 (6.141)

X1 =
{

0
0

}
, X∗ =

{
1
3

}
f1 = 7.40, f ∗ = 0.0

3. Powell’s quartic function [6.7]:

f (x1, x2, x3, x4) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4

+ 10(x1 − x4)4

XT
1 = {x1 x2 x3 x4}1 = {3 − 1 0 1}, X∗T = {0 0 0 0}

f1 = 215.0, f ∗ = 0.0 (6.142)

4. Fletcher and Powell’s helical valley [6.21]:

f (x1, x2, x3) = 100

{
[x3 − 10𝜃(x1, x2)]2 + [

√
x2

1 + x2
2 − 1]2

}
+ x2

3 (6.143)

where

2𝜋𝜃(x1, x2) =
⎧⎪⎨⎪⎩

arctan
x2

x1
if x1 > 0

𝜋 + arctan
x2

x1
if x1 < 0

X1 =
⎧⎪⎨⎪⎩
−1

0

0

⎫⎪⎬⎪⎭ , X∗ =
⎧⎪⎨⎪⎩

1

0

0

⎫⎪⎬⎪⎭
f1 = 25, 000.0, f ∗= 0.0

5. A nonlinear function of three variables [6.7]:

f (x1, x2, x3) =
1

1 + (x1 − x2)2
+ sin

(
1
2
𝜋x2x3

)
+ exp

[
−
(

x1 + x3

x2
− 2

)2
]

(6.144)

X1 =
⎧⎪⎨⎪⎩

0

1

2

⎫⎪⎬⎪⎭ , X∗ =
⎧⎪⎨⎪⎩

1

1

1

⎫⎪⎬⎪⎭
f1 = 1.5 f ∗ = fmax = 3.0

6. Freudenstein and Roth function [6.27]:

f (x1, x2) = {−13 + x1 + [(5 − x2)x2 − 2]x2}2

+ {−29 + x1 + [(x2 + 1)x2 − 14]x2}2 (6.145)

�

� �

�

332 NLP II: Unconstrained Optimization

X1 =
{

0.5
−2

}
, X∗ =

{
5
4

}
, X∗

alternate =
{

11.41 . . .
−0.8968 . . .

}
f1 = 400.5, f ∗ = 0.0, f ∗alternate = 48.9842 . . .

7. Powell’s badly scaled function [6.28]:

f (x1, x2) = (10,000x1x2 − 1)2 + [exp(−x1) + exp(−x2) − 1.0001]2 (6.146)

X1 =
{

0
1

}
, X∗ =

{
1.098 . . . × 10−5

9.106 . . .

}
f1 = 1.1354, f ∗ = 0.0

8. Brown’s badly scaled function [6.29]:

f (x1, x2) = (x1 − 106)2 + (x2 − 2 × 10−6)2 + (x1x2 − 2)2 (6.147)

X1 =
{

1
1

}
, X∗ =

{
106

2 × 10−6

}
f1 ≈ 1012

, f ∗ = 0.0

9. Beale’s function [6.29]:

f (x1, x2) = [1.5 − x1(1 − x2)]2 + [2.25 − x1(1 − x2
2)]

2

+ [2.625 − x1(1 − x3
2)]

2 (6.148)

X1 =
{

1
1

}
, X∗ =

{
3
0.5

}
f1 ≈ 14.203125, f ∗ = 0.0

10. Wood’s function [6.30]:

f (x1, x2, x3, x4) = [10(x2 − x2
1)]

2 + (1 − x1)2 + 90(x4 − x2
3)

2

+ (1 − x3)2 + 10(x2 + x4 − 2)2 + 0.1(x2 − x4) (6.149)

X1 =
⎧⎪⎨⎪⎩
−3
−1
−3
−1

⎫⎪⎬⎪⎭ , X∗ =
⎧⎪⎨⎪⎩

1
1
1
1

⎫⎪⎬⎪⎭
f1 = 19192.0, f ∗ = 0.0

6.17 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of multivariable unconstrained opti-
mization problem, the Rosenbrock’s parabolic valley function given by Eq. (6.140), is
given in Example 17.6.

�

� �

�

References and Bibliography 333

REFERENCES AND BIBLIOGRAPHY

6.1 Rao, S.S. (2018). The Finite Element Method in Engineering, 6e. Oxford: Elsevier-
Butterworth-Heinemann.

6.2 Edgar, T.F. and Himmelblau, D.M. (1988). Optimization of Chemical Processes.
New York: McGraw-Hill.

6.3 Fox, R.L. (1971). Optimization Methods for Engineering Design. Reading, MA:
Addison-Wesley.

6.4 Biles, W.E. and Swain, J.J. (1980). Optimization and Industrial Experimentation.
New York: Wiley.

6.5 Hicks, C.R. (1993). Fundamental Concepts in the Design of Experiments. Fort Worth,
TX: Saunders College Publishing.

6.6 Hooke, R. and Jeeves, T.A. (1961). Direct search solution of numerical and statistical
problems. Journal of the ACM 8 (2): 212–229.

6.7 Powell, M.J.D. (1964). An efficient method for finding the minimum of a function
of several variables without calculating derivatives. The Computer Journal 7 (4):
303–307.

6.8 Rosenbrock, H.H. (1960). An automatic method for finding the greatest or least value
of a function. The Computer Journal 3 (3): 175–184.

6.9 Rao, S.S. (1984). Optimization: Theory and Applications, 2e. New Delhi: Wiley Eastern.

6.10 Spendley, W., Hext, G.R., and Himsworth, F.R. (1962). Sequential application of sim-
plex designs in optimization and evolutionary operation. Technometrics 4: 441.

6.11 Nelder, J.A. and Mead, R. (1965). A simplex method for function minimization. The
Computer Journal 7: 308.

6.12 Cauchy, A.L. (1847). Méthode générale pour la résolution des systèmes d’équations
simultanées. Comptes Rendus de l’Academie des Sciences, Paris 25: 536–538.

6.13 Fletcher, R. and Reeves, C.M. (1964). Function minimization by conjugate gradients.
The Computer Journal 7 (2): 149–154.

6.14 Hestenes, M.R. and Stiefel, E. (1952). Methods of Conjugate Gradients for Solving Lin-
ear Systems, Report 1659, National Bureau of Standards, Washington, DC.

6.15 Marquardt, D. (1963). An algorithm for least squares estimation of nonlinear parameters.
SIAM Journal on Applied Mathematics 11 (2): 431–441.

6.16 Broyden, C.G. (1967). Quasi-Newton methods and their application to function mini-
mization. Mathematics of Computation 21: 368.

6.17 Broyden, C.G., Dennis, J.E., and More, J.J. (1975). On the local and superlinear con-
vergence of quasi-Newton methods. Journal of the Institute of Mathematics and Its
Applications 12: 223.

6.18 Huang, H.Y. (1970). Unified approach to quadratically convergent algorithms for func-
tion minimization. Journal of Optimization Theory and Applications 5: 405–423.

6.19 Dennis, J.E. Jr. and More, J.J. (1977). Quasi-Newton methods, motivation and theory.
SIAM Review 19 (1): 46–89.

6.20 Davidon, W.C. (1959). Variable Metric Method of Minimization, Report ANL-5990,
Argonne National Laboratory, Argonne, IL.

6.21 Fletcher, R. and Powell, M.J.D. (1963). A rapidly convergent descent method for mini-
mization. The Computer Journal 6 (2): 163–168.

6.22 Broyden, G.G. (1970). The convergence of a class of double-rank minimization algo-
rithms, Parts I and II. Journal of the Institute of Mathematics and Its Applications 6, pp.:
76–90, 222–231.

6.23 Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Jour-
nal 13: 317–322.

6.24 Goldfarb, D. (1970). A family of variable metric methods derived by variational means.
Mathematics of Computation 24: 23–26.

�

� �

�

334 NLP II: Unconstrained Optimization

6.25 Shanno, D.F. (1970). Conditioning of quasi-Newton methods for function minimization.
Mathematics of Computation 24: 647–656.

6.26 Powell, M.J.D. (1962). An iterative method for finding stationary values of a function
of several variables. The Computer Journal 5: 147–151.

6.27 Freudenstein, F. and Roth, B. (1963). Numerical solution of systems of nonlinear
equations. Journal of the ACM 10 (4): 550–556.

6.28 Powell, M.J.D. (1970). A hybrid method for nonlinear equations. In: Numerical Methods
for Nonlinear Algebraic Equations (ed. P. Rabinowitz), 87–114. New York: Gordon &
Breach.

6.29 More, J.J., Garbow, B.S., and Hillstrom, K.E. (1981). Testing unconstrained optimiza-
tion software. ACM Transactions on Mathematical Software 7 (1): 17–41.

6.30 Colville, A.R. (1968). A Comparative Study of Nonlinear Programming Codes, Report
320-2949, IBM New York Scientific Center.

6.31 Eason, E.D. and Fenton, R.G. (1974). A comparison of numerical optimization methods
for engineering design. ASME Journal of Engineering Design 96: 196–200.

6.32 Sargent, R.W.H. and Sebastian, D.J. (1972). Numerical experience with algorithms for
unconstrained minimization. In: Numerical Methods for Nonlinear Optimization (ed.
F.A. Lootsma), 45–113. London: Academic Press.

6.33 Shanno, D.F. (1983). Recent advances in gradient based unconstrained optimization
techniques for large problems. ASME Journal of Mechanisms, Transmissions, and
Automation in Design 105: 155–159.

6.34 Rao, S.S. (2017). Mechanical Vibrations, 6e. Hoboken, NJ: Pearson Education.

6.35 Haftka, R.T. and Gürdal, Z. (1992). Elements of Structural Optimization, 3e. Dordrecht,
The Netherlands: Kluwer Academic.

6.36 Kowalik, J. and Osborne, M.R. (1968). Methods for Unconstrained Optimization Prob-
lems. New York: American Elsevier.

REVIEW QUESTIONS

6.1 State the necessary and sufficient conditions for the unconstrained minimum of a
function.

6.2 Give three reasons why the study of unconstrained minimization methods is important.

6.3 What is the major difference between zeroth-, first-, and second-order methods?

6.4 What are the characteristics of a direct search method?

6.5 What is a descent method?

6.6 Define each term:

(a) Pattern directions

(b) Conjugate directions

(c) Simplex

(d) Gradient of a function

(e) Hessian matrix of a function

6.7 State the iterative approach used in unconstrained optimization.

6.8 What is quadratic convergence?

6.9 What is the difference between linear and superlinear convergence?

6.10 Define the condition number of a square matrix.

6.11 Why is the scaling of variables important?

�

� �

�

Review Questions 335

6.12 What is the difference between random jumping and random walk methods?

6.13 Under what conditions are the processes of reflection, expansion, and contraction used
in the simplex method?

6.14 When is the grid search method preferred in minimizing an unconstrained function?

6.15 Why is a quadratically convergent method considered to be superior for the minimization
of a nonlinear function?

6.16 Why is Powell’s method called a pattern search method?

6.17 What are the roles of univariate and pattern moves in the Powell’s method?

6.18 What is univariate method?

6.19 Indicate a situation where a central difference formula is not as accurate as a forward
difference formula.

6.20 Why is a central difference formula more expensive than a forward or backward differ-
ence formula in finding the gradient of a function?

6.21 What is the role of one-dimensional minimization methods in solving an unconstrained
minimization problem?

6.22 State possible convergence criteria that can be used in direct search methods.

6.23 Why is the steepest descent method not efficient in practice, although the directions used
are the best directions?

6.24 What are rank 1 and rank 2 updates?

6.25 How are the search directions generated in the Fletcher–Reeves method?

6.26 Give examples of methods that require n2, n, and 1 one-dimensional minimizations for
minimizing a quadratic in n variables.

6.27 What is the reason for possible divergence of Newton’s method?

6.28 Why is a conjugate directions method preferred in solving a general nonlinear
problem?

6.29 What is the difference between Newton and quasi-Newton methods?

6.30 What is the basic difference between DFP and BFGS methods?

6.31 Why are the search directions reset to the steepest descent directions periodically in the
DFP method?

6.32 What is a metric? Why is the DFP method considered as a variable metric method?

6.33 Answer true or false:

(a) A conjugate gradient method can be called a conjugate directions method.

(b) A conjugate directions method can be called a conjugate gradient method.

(c) In the DFP method, the Hessian matrix is sequentially updated directly.

(d) In the BFGS method, the inverse of the Hessian matrix is sequentially updated.

(e) The Newton method requires the inversion of an n × n matrix in each iteration.

(f) The DFP method requires the inversion of an n × n matrix in each iteration.

(g) The steepest descent directions are the best possible directions.

(h) The central difference formula always gives a more accurate value of the gradient
than does the forward or backward difference formula.

(i) Powell’s method is a conjugate directions method.

(j) The univariate method is a conjugate directions method.

�

� �

�

336 NLP II: Unconstrained Optimization

PROBLEMS

6.1 A bar is subjected to an axial load, P0, as shown in Figure 6.17. By using a
one-finite-element model, the axial displacement, u(x), can be expressed as [6.1]

u(x) = {N1(x) N2(x)}
{

u1
u2

}
where Ni(x) are called the shape functions:

N1(x) = 1 − x
l
, N2(x) =

x
l

and u1 and u2 are the end displacements of the bar. The deflection of the bar at point Q
can be found by minimizing the potential energy of the bar (f), which can be expressed as

f = 1
2
∫ l

0 EA
(
𝜕u
𝜕x

)2
dx − P0u2

where E is Young’s modulus and A is the cross-sectional area of the bar. Formulate the
optimization problem in terms of the variables u1 and u2 for the case P0l/EA = 1.

6.2 The natural frequencies of the tapered cantilever beam (𝜔) shown in Figure 6.18, based
on the Rayleigh-Ritz method, can be found by minimizing the function [6.34]:

f (c1, c2) =
Eh3

3l2

(
c2

1

4
+ c2

2

10
+ c1c2

5

)
𝜌hl
(

c2
1

30
+ c2

2

280
+ 2c1c2

105

)
with respect to c1 and c2, where f = 𝜔2, E is Young’s modulus, and 𝜌 is the density. Plot
the graph of 3f𝜌l3/Eh2 in (c1, c2) space and identify the values of 𝜔1 and 𝜔2.

1 x

l

u1

u(x)
Q

2 u2
P0

Figure 6.17 Bar subjected to an axial load.

1

h

l

Figure 6.18 Tapered cantilever beam.

�

� �

�

Problems 337

x3

m3

m2

m1

k3

k2

k1

x2

x1

ki = k;
mi = m;

i = 1, 2, 3

Figure 6.19 Three-degree-of-freedom spring–mass system.

6.3 The Rayleigh’s quotient corresponding to the three-degree-of-freedom spring–mass sys-
tem shown in Figure 6.19 is given by [6.34]

R(X) = XT [K]X
XT [M]X

where

[K] = k
⎡⎢⎢⎣

2 −1 0
−1 2 −1

0 −1 1

⎤⎥⎥⎦ , [M] =
⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ , X =
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭
It is known that the fundamental natural frequency of vibration of the system can be
found by minimizing R(X). Derive the expression of R(X) in terms of x1, x2, and x3 and
suggest a suitable method for minimizing the function R(X).

6.4 The steady-state temperatures at points 1 and 2 of the one-dimensional fin (x1 and x2)
shown in Figure 6.20 correspond to the minimum of the function [6.1]:

f (x1, x2) = 0.6382x2
1 + 0.3191x2

2 − 0.2809x1x2

−67.906x1 − 14.290x2

Plot the function f in the (x1, x2) space and identify the steady-state temperatures of points
1 and 2 of the fin.

6.5 Figure 6.21 shows two bodies, A and B, connected by four linear springs. The springs are
at their natural positions when there is no force applied to the bodies. The displacements
x1 and x2 of the bodies under any applied force can be found by minimizing the potential
energy of the system. Find the displacements of the bodies when forces of 1000 and
2000 lb are applied to bodies A and B, respectively, using Newton’s method. Use the
starting vector, X1 =

{
0
0

}
.

�

� �

�

338 NLP II: Unconstrained Optimization

140°C

5 cm 5 cm

1 2x1 x2

2 cm dia. k = 70 W/cm – °C

T∞ = 40°C

Figure 6.20 Straight fin.

x1 x2

400 lb/in.

300 lb/in.

200 lb/in. 100 lb/in.

1000 lb. 2000 lb.A

B

Figure 6.21 Two bodies connected by springs.

Hint:

Potential energy of the system

= strain energy of springs − potential of applied loads

where the strain energy of a spring of stiffness k and end displacements x1 and x2 is given
by 1

2
k(x2 − x1)2 and the potential of the applied force, Fi, is given by xiFi.

6.6 The potential energy of the two-bar truss shown in Figure 6.22 under the applied load P
is given by

f (x1, x2) =
EA
s

(l
2s

)2

x2
1 +

EA
s

(h
s

)2

x2
2 − Px1 cos 𝜃 − Px2 sin 𝜃

where E is Young’s modulus, A the cross-sectional area of each member, l the span of
the truss, s the length of each member, h the depth of the truss, 𝜃 the angle at which load
is applied, x1 the horizontal displacement of free node, and x2 the vertical displacement
of the free node.

(a) Simplify the expression of f for the data E = 207× 109 Pa, A = 10−5 m2, l = 1.5 m,
h = 4 m, P = 10 000 N, and 𝜃 = 30∘.

(b) Find the steepest descent direction, S1, of f at the trial vector X1 =
{

0
0

}
.

(c) Derive the one-dimensional minimization problem, f(𝜆), at X1 along the direction
S1.

(d) Find the optimal step length 𝜆* using the calculus method and find the new design
vector X2.

�

� �

�

Problems 339

s sh

l

x2

x1

P

θ

Figure 6.22 Two-bar truss.

6.7 Three carts, interconnected by springs, are subjected to the loads P1, P2, and P3 as shown
in Figure 6.23. The displacements of the carts can be found by minimizing the potential
energy of the system (f):

f (X) = 1
2
XT[K]X − XTP

where

[K] =
⎡⎢⎢⎣
k1 + k4 + k5 −k4 −k5

−k4 k2 + k4 + k6 −k6
−k5 −k6 k3 + k5 + k6 + k7 + k8

⎤⎥⎥⎦
P =

⎧⎪⎨⎪⎩
P1

P2

P3

⎫⎪⎬⎪⎭ and X =
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭
Derive the function f(x1, x2, x3) for the following data: k1 = 5000 N/m, k2 = 1500 N/m,
k3 = 2000 N/m, k4 = 1000 N/m, k5 = 2500 N/m, k6 = 500 N/m, k7 = 3000 N/m,
k8 = 3500 N/m, P1 = 1000 N, P2 = 2000 N, and P3 = 3000 N. Complete one iteration of
Newton’s method and find the equilibrium configuration of the carts. Use X1 = {0 0 0}T.

x1

k3

k6

k7

P3P2P1

k8

k6k4

k2

k1

k5

x2
x3

Cart 2 Cart 3
Cart 1

Figure 6.23 Three carts interconnected by springs.

�

� �

�

340 NLP II: Unconstrained Optimization

6.8 Plot the contours of the following function over the region (−5≤ x1 ≤ 5, −3≤ x2 ≤ 6)
and identify the optimum point:

f (x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

6.9 Plot the contours of the following function in the two dimensional (x1, x2) space over the
region (−4≤ x1 ≤ 4, −3≤ x2 ≤ 6) and identify the optimum point:

f (x1, x2) = 2(x2 − x2
1)

2 + (1 − x1)2

6.10 Consider the problem

f (x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2

Plot the contours of f over the region (−4≤ x1 ≤ 4, −3≤ x2 ≤ 6) and identify the optimum
point.

6.11 It is required to find the solution of a system of linear algebraic equations given by
[A]X = b, where [A] is a known n× n symmetric positive-definite matrix and b is an
n-component vector of known constants. Develop a scheme for solving the problem as
an unconstrained minimization problem.

6.12 Solve the following equations using the steepest descent method (two iterations only)
with the starting point, X1 = {0 0 0}:

2x1 + x2 = 4, x1 + 2x2 + x3 = 8, x2 + 3x3 = 11

6.13 An electric power of 100 MW generated at a hydroelectric power plant is to be transmitted
400 km to a stepdown transformer for distribution at 11 kV. The power dissipated due to
the resistance of conductors is i2c−1, where i is the line current in amperes and c is the
conductance in mhos. The resistance loss, based on the cost of power delivered, can be
expressed as 0.15i2c−1 dollars. The power transmitted (k) is related to the transmission
line voltage at the power plant (e) by the relation k =

√
3ei, where e is in kilovolts. The

cost of conductors is given by 2c millions of dollars, and the investment in equipment
needed to accommodate the voltage e is given by 500e dollars. Find the values of e and
c to minimize the total cost of transmission using Newton’s method (one iteration only).

6.14 Find a suitable transformation of variables to reduce the condition number of the Hessian
matrix of the following function to one:

f = 2x2
1 + 16x2

2 − 2x1x2 − x1 − 6x2 − 5

6.15 Find a suitable transformation or scaling of variables to reduce the condition number of
the Hessian matrix of the following function to one:

f = 4x2
1 + 3x2

2 − 5x1x2 − 8x1 + 10

6.16 Determine whether the following vectors serve as conjugate directions for minimizing
the function f = 2x2

1 + 16x2
2 − 2x1x2 − x1 − 6x2 − 5.

(a) S1 =
{

15
−1

}
, S2 =

{
1
1

}
(b) S1 =

{
−1
15

}
, S2 =

{
1
1

}

�

� �

�

Problems 341

6.17 Consider the problem:

Minimize f = x1 − x2 + 2x2
1 + 2x1x2 + x2

2

Find the solution of this problem in the range −10≤ xi ≤ 10, i = 1, 2, using the random
jumping method. Use a maximum of 10 000 function evaluations.

6.18 Consider the problem:

Minimize f = 6x2
1 − 6x1x2 + 2x2

2 − x1 − 2x2

Find the minimum of this function in the range −5≤ xi ≤ 5, i = 1, 2, using the random
walk method with direction exploitation.

6.19 Find the condition number of each matrix.

(a) [A] =
[

1 2
1.0001 2

]
(b) [B] =

[
3.9 1.6
6.8 2.9

]
6.20 Perform two iterations of the Newton’s method to minimize the function

f (x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2

from the starting point {−1.2
1.0 }.

6.21 Perform two iterations of univariate method to minimize the function given in
Problem 6.20 from the stated starting vector.

6.22 Perform four iterations of Powell’s method to minimize the function given in
Problem 6.20 from the stated starting point.

6.23 Perform two iterations of the steepest descent method to minimize the function given in
Problem 6.20 from the stated starting point.

6.24 Perform two iterations of the Fletcher–Reeves method to minimize the function given in
Problem 6.20 from the stated starting point.

6.25 Perform two iterations of the DFP method to minimize the function given in Problem 6.20
from the stated starting vector.

6.26 Perform two iterations of the BFGS method to minimize the function given in Prob-
lem 6.20 from the indicated starting point.

6.27 Perform two iterations of the Marquardt’s method to minimize the function given in
Problem 6.20 from the stated starting point.

6.28 Prove that the search directions used in the Fletcher–Reeves method are [A]-conjugate
while minimizing the function

f (x1, x2) = x2
1 + 4x2

2

6.29 Generate a regular simplex of size 4 in a two-dimensional space using each base point:

(a)
{

4
−3

}
(b)

{
1
1

}
(c)
{
−1
−2

}
6.30 Find the coordinates of the vertices of a simplex in a three-dimensional space such that

the distance between vertices is 0.3 and one vertex is given by (2, −1, −8).

�

� �

�

342 NLP II: Unconstrained Optimization

6.31 Generate a regular simplex of size 3 in a three-dimensional space using each base point.

(a)

⎧⎪⎨⎪⎩
0
0
0

⎫⎪⎬⎪⎭ (b)

⎧⎪⎨⎪⎩
4
3
2

⎫⎪⎬⎪⎭ (c)

⎧⎪⎨⎪⎩
1

−2
3

⎫⎪⎬⎪⎭
6.32 Find a vector S2 that is conjugate to the vector

S1 =
⎧⎪⎨⎪⎩

2

−3

6

⎫⎪⎬⎪⎭
with respect to the matrix:

[A] =
⎡⎢⎢⎣
1 2 3
2 5 6
3 6 9

⎤⎥⎥⎦
6.33 Compare the gradients of the function f (X) = 100(x2 − x2

1)
2 + (1 − x1)2 at X =

{
0.5
0.5

}
given by the following methods:

(a) Analytical differentiation

(b) Central difference method

(c) Forward difference method

(d) Backward difference method

Use a perturbation of 0.005 for x1 and x2 in the finite-difference methods.

6.34 It is required to evaluate the gradient of the function

f (x1, x2) = 100(x2 − x2
1)

2 + (1 − x1)2

at point X = {0.5
0.5} using a finite-difference scheme. Determine the step size Δx to be

used to limit the error in any of the components, 𝜕f/𝜕xi, to 1% of the exact value, in the
following methods:

(a) Central difference method

(b) Forward difference method

(c) Backward difference method

6.35 Consider the minimization of the function

f = 1

x2
1 + x2

2 + 2

Perform one iteration of Newton’s method from the starting point X1 =
{

4
0

}
using

Eq. (6.86). How much improvement is achieved with X2?

6.36 Consider the problem:

Minimize f = 2(x1 − x2
1)

2 + (1 − x1)2

If a base simplex is defined by the vertices

X1 =
{

0
0

}
, X2 =

{
1
0

}
, X3 =

{
0
1

}
find a sequence of four improved vectors using reflection, expansion, and/or contraction.

�

� �

�

Problems 343

6.37 Consider the problem:

Minimize f = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

If a base simplex is defined by the vertices

X1 =
{
−2
−2

}
, X2 =

{
−3

0

}
, X3 =

{
−1
−1

}
find a sequence of four improved vectors using reflection, expansion, and/or contraction.

6.38 Consider the problem:
f = 100(x2 − x2

1)
2 + (1 − x1)2

Find the solution of the problem using grid search with a step size Δxi = 0.1 in the range
−3≤ xi ≤ 3, i = 1, 2.

6.39 Show that the property of quadratic convergence of conjugate directions is independent
of the order in which the one-dimensional minimizations are performed by considering
the minimization of

f = 6x2
1 + 2x2

2 − 6x1x2 − x1 − 2x2

using the conjugate directions S1 =
{

1
2

}
and S2 =

{
1
0

}
and the starting point X1 =

{
0
0

}
.

6.40 Show that the optimal step length λ∗i that minimizes f(X) along the search direction
Si = −∇fi is given by Eq. (6.75).

6.41 Show that 𝛽2 in Eq. (6.76) is given by Eq. (6.77).

6.42 Minimize f = 2x2
1 + x2

2 from the starting point (1, 2) using the univariate method (two
iterations only).

6.43 Minimize f = 2x2
1 + x2

2 by using the steepest descent method with the starting point (1, 2)
(two iterations only).

6.44 Minimize f = x2
1 + 3x2

2 + 6x2
3 by the Newton’s method using the starting point as

(2, −1, 1).

6.45 Minimize f = 4x2
1 + 3x2

2 − 5x1x2 − 8x1 starting from point (0, 0) using Powell’s method.
Perform four iterations.

6.46 Minimize f (x1, x2) = x4
1 − 2x2

1x2 + x2
1 + x2

2 + 2x1 + 1 by the simplex method. Perform
two steps of reflection, expansion, and/or contraction.

6.47 Solve the following system of equations using Newton’s method of unconstrained mini-
mization with the starting point

X1 =
⎧⎪⎨⎪⎩

0

0

0

⎫⎪⎬⎪⎭
2x1 − x2 + x3 = −1, x1 + 2x2 = 0, 3x1 + x2 + 2x3 = 3

6.48 It is desired to solve the following set of equations using an unconstrained optimization
method:

x2 + y2 = 2, 10x2 − 10y − 5x + 1 = 0

Formulate the corresponding problem and complete two iterations of optimization using
the DFP method starting from X1 =

{
0
0

}
.

6.49 Solve Problem 6.48 using the BFGS method (two iterations only).

�

� �

�

344 NLP II: Unconstrained Optimization

6.50 The following nonlinear equations are to be solved using an unconstrained optimization
method:

2xy = 3, x2 − y = 2

Complete two one-dimensional minimization steps using the univariate method starting
from the origin.

6.51 Consider the two equations

7x3 − 10x − y = 1, 8y3 − 11y + x = 1

Formulate the problem as an unconstrained optimization problem and complete two steps
of the Fletcher–Reeves method starting from the origin.

6.52 Solve the equations 5x1 + 3x2 = 1 and 4x1 − 7x2 = 76 using the BFGS method with the
starting point (0, 0).

6.53 Indicate the number of one-dimensional steps required for the minimization of the func-
tion f = x2

1 + x2
2 − 2x1 − 4x2 + 5 according to each scheme:

(a) Steepest descent method

(b) Fletcher–Reeves method

(c) DFP method

(d) Newton’s method

(e) Powell’s method

(f) Random search method

(g) BFGS method

(h) Univariate method

6.54 Same as Problem 6.53 for the following function:

f = (x2 − x2
1)

2 + (1 − x1)2

6.55 Verify whether the following search directions are [A]-conjugate while minimizing the
function

f = x1 − x2 + 2x2
1 + 2x1x2 + x2

2

(a) S1 =
{
−1

1

}
, S2 =

{
0
1

}
(b) S1 =

{
−1

1

}
, S2 =

{
1
0

}
6.56 Solve the equations x1 + 2x2 + 3x3 = 14, x1 − x2 + x3 = 1, and 3x1 − 2x2 + x3 = 2

using Marquardt’s method of unconstrained minimization. Use the starting point
X1 = {0, 0, 0}T.

6.57 Apply the simplex method to minimize the function f given in Problem 6.20. Use the
point (−1.2, 1.0) as the base point to generate an initial regular simplex of size 2 and go
through three steps of reflection, expansion, and/or contraction.

6.58 Write a computer program to implement Powell’s method using the golden section
method of one-dimensional search.

6.59 Write a computer program to implement the Davidon–Fletcher–Powell method using the
cubic interpolation method of one-dimensional search. Use a finite-difference scheme to
evaluate the gradient of the objective function.

�

� �

�

Problems 345

6.60 Write a computer program to implement the BFGS method using the cubic interpolation
method of one-dimensional minimization. Use a finite-difference scheme to evaluate the
gradient of the objective function.

6.61 Write a computer program to implement the steepest descent method of unconstrained
minimization with the direct root method of one-dimensional search.

6.62 Write a computer program to implement the Marquardt method coupled with the direct
root method of one-dimensional search.

6.63 Find the minimum of the quadratic function given by Eq. (6.141) starting from the solu-
tion X1 = {0, 0}T using MATLAB.

6.64 Find the minimum of the Powell’s quartic function given by Eq. (6.142) starting from
the solution X1 = {3, −1, 0, 1}T using MATLAB.

6.65 Find the minimum of the Fletcher and Powell’s helical valley function given by
Eq. (6.143) starting from the solution X1 = {−1, 0, 0}T using MATLAB.

6.66 Find the minimum of the nonlinear function given by Eq. (6.144) starting from the solu-
tion X1 = {0, 1, 2}T using MATLAB.

6.67 Find the minimum of the Wood’s function given by Eq. (6.149) starting from the solution
X1 = {−3, −1, −3, −1}T using MATLAB.

�

� �

�

�

� �

�

7

Nonlinear Programming III:
Constrained Optimization
Techniques

7.1 INTRODUCTION

This chapter deals with techniques that are applicable to the solution of the constrained
optimization problem:

Find X which minimizes f (X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

hk(X) = 0, k = 1, 2, . . . , p (7.1)

There are many techniques available for the solution of a constrained nonlinear pro-
gramming problem. All the methods can be classified into two broad categories: direct
methods and indirect methods, as shown in Table 7.1. In the direct methods, the con-
straints are handled in an explicit manner, whereas in most of the indirect methods, the
constrained problem is solved as a sequence of unconstrained minimization problems.
We discuss in this chapter all the methods indicated in Table 7.1.

7.2 CHARACTERISTICS OF A CONSTRAINED PROBLEM

In the presence of constraints, an optimization problem may have the following fea-
tures [7.1, 7.51]:

1. The constraints may have no effect on the optimum point; that is, the constrained
minimum is the same as the unconstrained minimum as shown in Figure 7.1. In
this case the minimum point X* can be found by making use of the necessary
and sufficient conditions

∇f |X∗ = 𝟎 (7.2)

JX∗ =
[
𝜕

2f

𝜕xi𝜕xj

]
X∗

= positive definite (7.3)

However, to use these conditions, one must be certain that the constraints are not
going to have any effect on the minimum. For simple optimization problems like

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

347

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

348 NLP III: Constrained Optimization Techniques

Table 7.1 Constrained Optimization Techniques.

Direct methods Indirect methods

Random search methods Transformation of variables technique
Heuristic search methods Sequential unconstrained minimization

techniquesComplex method
Objective and constraint approximation

methods
Interior penalty function method
Exterior penalty function method

Sequential linear programming method Augmented Lagrange multiplier method
Sequential quadratic programming method

Methods of feasible directions
Zoutendijk’s method
Rosen’s gradient projection method

Generalized reduced gradient method

0

0

1

2

3

4

4 – x1 – x2 = 0

2 – x1 + x2 = 0

1 2 3 4 5

x1

f = 0.0625

f = 1.44

f = 0.50

x2

fopt = 0, Xopt (1, 2)

Figure 7.1 Constrained and unconstrained minima are the same (linear constraints).

the one shown in Figure 7.1, it may be possible to determine beforehand whether
or not the constraints have an influence on the minimum point. However, in most
practical problems, even if we have a situation as shown in Figure 7.1, it will
be extremely difficult to identify it. Thus, one has to proceed with the general
assumption that the constraints have some influence on the optimum point.

2. The optimum (unique) solution occurs on a constraint boundary as shown in
Figure 7.2. In this case the Kuhn–Tucker necessary conditions indicate that the
negative of the gradient must be expressible as a positive linear combination of
the gradients of the active constraints.

3. If the objective function has two or more unconstrained local minima, the con-
strained problem may have multiple minima as shown in Figure 7.3.

4. In some cases, even if the objective function has a single unconstrained
minimum, the constraints may introduce multiple local minima as shown in
Figure 7.4.

�

� �

�

7.2 Characteristics of a Constrained Problem 349

x2

x1

gi = 0

∇f

–∇f

–∇f = λ∇gi, λ > 0

∇gi

Xopt

Figure 7.2 Constrained minimum occurring on a nonlinear constraint.

f = 11
f = 19

4

2

0

–2

–4

2 4 6 8

6

8

x2

x1

B

A
C

Xopt
(2)

Xopt
(1)

Figure 7.3 Relative minima introduced by objective function.

�

� �

�

350 NLP III: Constrained Optimization Techniques

Xopt
(2)

Xopt
(1)

D A

C

B

f3 f2 f1

x2

x1

Figure 7.4 Relative minima introduced by constraints.

A constrained optimization technique must be able to locate the minimum in all the
situations outlined above.

Direct Methods

7.3 RANDOM SEARCH METHODS

The random search methods described for unconstrained minimization (Section 6.2)
can be used, with minor modifications, to solve a constrained optimization problem.
The basic procedure can be described by the following steps:

1. Generate a trial design vector using one random number for each design
variable.

2. Verify whether the constraints are satisfied at the trial design vector. Usually,
the equality constraints are considered satisfied whenever their magnitudes lie
within a specified tolerance. If any constraint is violated, continue generating
new trial vectors until a trial vector that satisfies all the constraints is found.

3. If all the constraints are satisfied, retain the current trial vector as the best design
if it gives a reduced objective function value compared to the previous best
available design. Otherwise, discard the current feasible trial vector and proceed
to step 1 to generate a new trial design vector.

4. The best design available at the end of generating a specified maximum number
of trial design vectors is taken as the solution of the constrained optimization
problem.

It can be seen that several modifications can be made to the basic procedure indicated
above. For example, after finding a feasible trial design vector, a feasible direction can
be generated (using random numbers) and a one-dimensional search can be conducted
along the feasible direction to find an improved feasible design vector.

�

� �

�

7.4 Complex Method 351

Another procedure involves constructing an unconstrained function, F(X), by
adding penalty for violating any constraint as (as described in Section 7.12):

F(X) = f (X) + a
m∑

j=1

[Gj(X)]2 + b
p∑

k=1

[Hk(X)]2 (7.4)

where

[Gj(X)]2 = [max(0, gj(X))]2 (7.5)

[Hk(X)]2 = h2
k(X) (7.6)

indicate the squares of violations of inequality and equality constraints, respectively,
and a and b are constants. Equation (7.4) indicates that while minimizing the objective
function f (X), a positive penalty is added whenever a constraint is violated, the penalty
being proportional to the square of the amount of violation. The values of the constants
a and b can be adjusted to change the contributions of the penalty terms relative to the
magnitude of the objective function.

Note that the random search methods are not efficient compared to the other meth-
ods described in this chapter. However, they are very simple to program and usually
are reliable in finding a nearly optimal solution with a sufficiently large number of
trial vectors. Also, these methods can find near global optimal solution even when the
feasible region is nonconvex.

7.4 COMPLEX METHOD

In 1965, Box extended the simplex method of unconstrained minimization (discussed
in Section 6.7) to solve constrained minimization problems of the type [7.2]:

Minimize f (X) (7.7a)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (7.7b)

x(l)i ≤ xi ≤ x(u)i , i = 1, 2, . . . , n (7.7c)

In general, the satisfaction of the side constraints (lower and upper bounds on the
variables xi) may not correspond to the satisfaction of the constraints gj(X)≤ 0. This
method cannot handle nonlinear equality constraints. The formation of a sequence of
geometric figures each having k = n+ 1 vertices in an n-dimensional space (called
the simplex) is the basic idea in the simplex method. In the complex method also, a
sequence of geometric figures each having k≥ n+ 1 vertices is formed to find the con-
strained minimum point. The method assumes that an initial feasible point X1 (which
satisfies all the m constraints) is available.

Iterative Procedure

1. Find k≥ n+ 1 points, each of which satisfies all m constraints. In actual prac-
tice, we start with only one feasible point X1, and the remaining k− 1 points
are found one at a time by the use of random numbers generated in the range
0–1, as

xi,j = x(l)i + ri,j(x
(u)
i − x(l)i), i = 1, 2, . . . , n, j = 2, 3, . . . , k (7.8)

�

� �

�

352 NLP III: Constrained Optimization Techniques

where xi,j is the ith component of the point Xj, and ri,j is a random number lying
in the interval (0, 1). It is to be noted that the points X2, X3, . . . , Xk generated
according to Eq. (7.8) satisfy the side constraints, Eq. (7.7c) but may not satisfy
the constraints given by Eq. (7.7b).

As soon as a new point Xj is generated (j = 2, 3, . . . , k), we find whether
it satisfies all the constraints, Eq. (7.7b). If Xj violates any of the constraints
stated in Eq. (7.7b), the trial point Xj is moved halfway toward the centroid
of the remaining, already accepted points (where the given initial point X1 is
included). The centroid X0 of already accepted points is given by

X0 = 1
j − 1

j−1∑
l=1

Xl (7.9)

If the trial point Xj so found still violates some of the constraints, Eq. (7.7b),
the process of moving halfway in toward the centroid X0 is continued until a
feasible point Xj is found. Ultimately, we will be able to find a feasible point
Xj by this procedure provided that the feasible region is convex. By proceeding
in this way, we will ultimately be able to find the required feasible points X2,
X3, . . . , Xk.

2. The objective function is evaluated at each of the k points (vertices). If the
vertex Xh corresponds to the largest function value, the process of reflection is
used to find a new point Xr as

Xr = (1 + 𝛼)X0 − 𝛼Xh (7.10)

where 𝛼 ≥ 1 (to start with) and X0 is the centroid of all vertices except Xh:

X0 = 1
k − 1

k∑
l = 1
l ≠ k

Xl (7.11)

3. Since the problem is a constrained one, the point Xr has to be tested for fea-
sibility. If the point Xr is feasible and f (Xr)< f (Xh), the point Xh is replaced
by Xr, and we go to step 2. If f (Xr)≥ f (Xh), a new trial point Xr is found by
reducing the value of 𝛼 in Eq. (7.10) by a factor of 2 and is tested for the satis-
faction of the relation f (Xr)< f (Xh). If f (Xr)≥ f (Xh), the procedure of finding
a new point Xr with a reduced value of 𝛼 is repeated again. This procedure is
repeated, if necessary, until the value of 𝛼 becomes smaller than a prescribed
small quantity 𝜀, say, 10−6. If an improved point Xr, with f (Xr)< f (Xh), cannot
be obtained even with that small value of 𝛼, the point Xr is discarded and the
entire procedure of reflection is restarted by using the point Xp (which has the
second-highest function value) instead of Xh.

4. If at any stage, the reflected point Xr (found in step 3) violates any of the con-
straints (Eq. (7.7b)), it is moved halfway in toward the centroid until it becomes
feasible, that is,

(Xr)new = 1
2
(X0 + Xr) (7.12)

This method will progress toward the optimum point so long as the complex
has not collapsed into its centroid.

�

� �

�

7.5 Sequential Linear Programming 353

5. Each time the worst point Xh of the current complex is replaced by a new
point, the complex gets modified and we have to test for the convergence of
the process. We assume convergence of the process whenever the following
two conditions are satisfied:

(a) The complex shrinks to a specified small size (i.e. the distance between
any two vertices among X1, X2, . . . , Xk becomes smaller than a prescribed
small quantity, 𝜀1.

(b) The standard deviation of the function value becomes sufficiently small
(i.e. when {

1
k

k∑
j=1

[f (X) − f (Xj)]2
}1∕2

≤ 𝜀2 (7.13)

where X is the centroid of all the k vertices of the current complex, and 𝜀2 > 0
is a specified small number).

Discussion. This method does not require the derivatives of f (X) and gj (X) to
find the minimum point, and hence it is computationally very simple. The method
is very simple from programming point of view and does not require a large computer
storage.

1. A value of 1.3 for the initial value of 𝛼 in Eq. (7.10) has been found to be
satisfactory by Box.

2. Box recommended a value of k≃ 2n (although a lesser value can be chosen if n
is greater than, say, 5). If k is not sufficiently large, the complex tends to collapse
and flatten along the first constraint boundary encountered.

3. From the procedure above, it can be observed that the complex rolls over and
over, normally expanding. However, if a boundary is encountered, the complex
contracts and flattens itself. It can then roll along this constraint boundary and
leave it if the contours change. The complex can also accommodate more than
one boundary and can turn corners.

4. If the feasible region is nonconvex, there is no guarantee that the centroid of all
feasible points is also feasible. If the centroid is not feasible, we cannot apply
the procedure above to find the new points Xr.

5. The method becomes inefficient rapidly as the number of variables increases.
6. It cannot be used to solve problems having equality constraints.
7. This method requires an initial point X1 that is feasible. This is not a major

restriction. If an initial feasible point is not readily available, the method
described in Section 7.13 can be used to find a feasible point X1.

7.5 SEQUENTIAL LINEAR PROGRAMMING

In the sequential linear programming (SLP) method, the solution of the original non-
linear programming problem is found by solving a series of linear programming (LP)
problems. Each LP problem is generated by approximating the nonlinear objective
and constraint functions using first-order Taylor series expansions about the current
design vector, Xi. The resulting LP problem is solved using the simplex method to find
the new design vector Xi+1. If Xi+1 does not satisfy the stated convergence criteria, the

�

� �

�

354 NLP III: Constrained Optimization Techniques

problem is relinearized about the point Xi+1 and the procedure is continued until the
optimum solution X* is found.

If the problem is a convex programming problem, the linearized constraints
always lie entirely outside the feasible region. Hence the optimum solution of the
approximating LP problem, which lies at a vertex of the new feasible region, will lie
outside the original feasible region. However, by relinearizing the problem about the
new point and repeating the process, we can achieve convergence to the solution of the
original problem in few iterations. The SLP method, also known as the cutting plane
method, was originally presented by Cheney and Goldstein [7.3] and Kelly [7.4].

Algorithm. The SLP algorithm can be stated as follows:

1. Start with an initial point X1 and set the iteration number as i = 1. The point X1
need not be feasible.

2. Linearize the objective and constraint functions about the point Xi as

f (X) ≈ f (Xi) + ∇f (Xi)T(X − Xi) (7.14)

gj(X) ≈ gj(Xi) + ∇gj(Xi)T(X − Xi) (7.15)

hk(X) ≈ hk(Xi) + ∇hk(Xi)T(X − Xi) (7.16)

3. Formulate the approximating linear programming problem as1

Minimize f (Xi) + ∇f T
i (X − Xi)

subject to

gj(Xi) + ∇gj(Xi)T (X − Xi) ≤ 0, j = 1, 2, . . . ,m

hk(Xi) + ∇hk(Xi)T (X − Xi) = 0, k = 1, 2, . . . , p (7.18)

4. Solve the approximating LP problem to obtain the solution vector Xi+1.
5. Evaluate the original constraints at Xi+1; that is, find

gj(Xi+1), j = 1, 2, . . . ,m and hk(Xi+1), k = 1, 2, . . . , p

If gj (Xi+1)≤ 𝜀 for j = 1, 2, . . . , m, and |hk (Xi+1)|≤ 𝜀, k = 1, 2, . . . , p, where 𝜀 is
a prescribed small positive tolerance, all the original constraints can be assumed
to have been satisfied. Hence stop the procedure by taking

Xopt ≃ Xi+1

1Notice that the LP problem stated in Eq. (7.18) may sometimes have an unbounded solution. This can be
avoided by formulating the first approximating LP problem by considering only the following constraints:

li ≤ xi ≤ ui, i = 1, 2, . . . , n. (7.17)

In Eq. (7.17), li and ui represent the lower and upper bounds on xi, respectively. The values of li and ui
depend on the problem under consideration, and their values have to be chosen such that the optimum
solution of the original problem does not fall outside the range indicated by Eq. (7.17).

�

� �

�

7.5 Sequential Linear Programming 355

If gj (Xi+1)> 𝜀 for some j, or |hk(Xi+1)|> 𝜀 for some k, find the most violated
constraint, for example, as

gk(Xi+1) = max
j
[gj(Xi+1)] (7.19)

Relinearize the constraint gk (X)≤ 0 about the point Xi+1 as

gk(X) ≃ gk(Xi+1) + ∇gk(Xi+1)T(X − Xi+1) ≤ 0 (7.20)

and add this as the (m+ 1)th inequality constraint to the previous LP problem.
6. Set the new iteration number as i = i+ 1, the total number of constraints in the

new approximating LP problem as m+ 1 inequalities and p equalities, and go
to step 4.

The SLP method has several advantages:

1. It is an efficient technique for solving convex programming problems with
nearly linear objective and constraint functions.

2. Each of the approximating problems will be a LP problem and hence can be
solved quite efficiently. Moreover, any two consecutive approximating LP prob-
lems differ by only one constraint, and hence the dual simplex method can
be used to solve the sequence of approximating LP problems much more effi-
ciently.2

3. The method can easily be extended to solve integer programming problems. In
this case, one integer LP problem has to be solved in each stage.

Geometric Interpretation of the Method. The SLP method can be illustrated with
the help of a one-variable problem:

Minimize f (x) = c1x

subject to
g(x) ≤ 0 (7.21)

where c1 is a constant and g (x) is a nonlinear function of x. Let the feasible region
and the contour of the objective function be as shown in Figure 7.5. To avoid any
possibility of unbounded solution, let us first take the constraints on x as c≤ x≤ d,
where c and d represent the lower and upper bounds on x. With these constraints, we
formulate the LP problem:

Minimize f (x) = c1x

subject to
c ≤ x ≤ d (7.22)

The optimum solution of this approximating LP problem can be seen to be x* = c. Next,
we linearize the constraint g (x) about point c and add it to the previous constraint set.
Thus, the new LP problem becomes

Minimize f (x) = c1x (7.23a)

2The dual simplex method was discussed in Section 4.3.

�

� �

�

356 NLP III: Constrained Optimization Techniques

0
a b

x

f (x) = c1x

g(x) = 0

g(x) < 0

g(x) > 0

f decreases

Figure 7.5 Graphical representation of the problem stated by Eq. (7.21).

subject to
c ≤ x ≤ d (7.23b)

g(c) +
dg

dx
(c)(x − c) ≤ 0 (7.23c)

The feasible region of x, according to the constraints (7.23b) and (7.23c), is given by
e≤ x≤ d (Figure 7.6). The optimum solution of the approximating LP problem given
by Eq. (7.23a, b, c) can be seen to be x* = e. Next, we linearize the constraint g (x)≤ 0
about the current solution x* = e and add it to the previous constraint set to obtain the
next approximating LP problem as

Minimize f (x) = c1x (7.24a)

subject to
c ≤ x ≤ d (7.24b)

g(c) +
dg

dx
(c)(x − c) ≤ 0 (7.24c)

g(e) +
dg

dx
(e)(x − e) ≤ 0 (7.24d)

The permissible range of x, according to the constraints (7.24b)–(7.24d), can be seen
to be f≤ x≤ d from Figure 7.7. The optimum solution of the LP problem of Eq. (7.24a)
can be obtained as x* = f.

We then linearize g (x)≤ 0 about the present point x* = f and add it to the previous
constraint set (Eq. (7.24)) to define a new approximating LP problem. This procedure
must to be continued until the optimum solution is found to the desired level of accu-
racy. As can be seen from Figures 7.6 and 7.7, the optimum of all the approximating
LP problems (e.g. points c, e, f, . . .) lie outside the feasible region and converge toward
the true optimum point, x = a. The process is assumed to have converged whenever
the solution of an approximating problem satisfies the original constraint within some
specified tolerance level as

g(x∗k) ≤ 𝜀

�

� �

�

7.5 Sequential Linear Programming 357

Linearization of g(x) about
the point x = c:

g(c) + (c) (x – c)
dg
dx

A

A

g(x) < 0
g(x) = 0

bac
0

e d
x

f(x) = c1x

Figure 7.6 Linearization of constraint about c.

where 𝜀 is a small positive number and x∗k is the optimum solution of the kth approx-
imating LP problem. It can be seen that the lines (hyperplanes in a general problem)
defined by g(x∗k) + dg∕dx(x∗k)(x − x∗k) cut off a portion of the existing feasible region.
Hence this method is called the cutting plane method.

Example 7.1
Minimize f (x1, x2) = x1 − x2

subject to
g1(x1, x2) = 3x2

1 − 2x1x2 + x2
2 − 1 ≤ 0

using the cutting plane method. Take the convergence limit in step 5 as 𝜀 = 0.02.
Note: This example was originally given by Kelly [7.4]. Since the constraint

boundary represents an ellipse, the problem is a convex programming problem. From
graphical representation, the optimum solution of the problem can be identified as
x∗1 = 0, x∗2 = 0, and fmin = −1.

SOLUTION

Steps 1, 2, 3: Although we can start the solution from any initial point X1, to avoid
the possible unbounded solution, we first take the bounds on x1 and x2
as −2≤ x1 ≤ 2 and− 2≤ x2 ≤ 2 and solve the following LP problem:

Minimize f = x1 − x2

subject to
−2 ≤ x1 ≤ 2

−2 ≤ x2 ≤ 2 (E1)

�

� �

�

358 NLP III: Constrained Optimization Techniques

A

A

B

B

a b d
x

0

Linearization of g(x) about
the point x = c:

Linearization of g(x) about
the point x = e:

g(c) + (c) .(x – c)
dg
dx

g(e) + (e) .(x – e)
dg
dx

g(x) = 0

f(x) = c1x

O1 = c

O2 = e
f = O3

Figure 7.7 Linearization of constraint about e.

The solution of this problem can be obtained as

X =
[
−2
2

]
with f (X) = −4

Step 4: Since we have solved one LP problem, we can take

Xi+1 = X2 =
{
−2
2

}
Step 5: Since g1(X2) = 23>𝜀, we linearize g1(X) about point X2 as

g1(X) ≃ g1(X2) + ∇g1(X2)T(X − X2) ≤ 0 (E2)

As

g1(X2) = 23,
𝜕g1

𝜕x1

||||X2

= (6x1 − 2x2)
|||||X2

= −16

𝜕g1

𝜕x2

||||X2

= (−2x1 + 2x2)
|||||X2

= 8

�

� �

�

7.5 Sequential Linear Programming 359

Equation (E2) becomes

g1(X) ≃ −16x1 + 8x2 − 25 ≤ 0

By adding this constraint to the previous LP problem, the new LP prob-
lem becomes

Minimize f = x1 − x2

subject to

−2 ≤ x1 ≤ 2

−2 ≤ x2 ≤ 2

−16x1 + 8x2 − 25 ≤ 0 (E3)

Step 6: Set the iteration number as i = 2 and go to step 4.
Step 4: Solve the approximating LP problem stated in Eq. (E3) and obtain the

solution

X3 =
[
−0.5625

2.0

]
with f3 = f (X3) = −2.5625

This procedure is continued until the specified convergence criterion,
g1(Xi)≤ 𝜀, in step 5 is satisfied. The computational results are summa-
rized in Table 7.2.

Table 7.2 Results for Example 7.1.

Iteration
number,
i

New linearized
constraint
considered

Solution of the
approximating LP

problem
Xi+1 f (Xi+1) g1 (Xi+1)

1 −2≤ x1 ≤ 2 and −2≤ x2 ≤ 2 (−2.0, 2.0) −4.00000 23.00000
2 −16.0x1 + 8.0x2 − 25.0≤ 0 (−0.56250, 2.00000) −2.56250 6.19922
3 −7.375x1 + 5.125x2

− 8.19922≤ 0
(0.27870, 2.00000) −1.72193 2.11978

4 −2.33157x1 + 3.44386x2
− 4.11958≤ 0

(−0.52970, 0.83759) −1.36730 1.43067

5 −4.85341x1 + 2.73459x2
− 3.43067≤ 0

(−0.05314, 1.16024) −1.21338 0.47793

6 −2.63930x1 + 2.42675x2
− 2.47792≤ 0

(0.42655, 1.48490) −1.05845 0.48419

7 −0.41071x1 + 2.11690x2
− 2.48420≤ 0

(0.17058, 1.20660) −1.03603 0.13154

8 −1.38975x1 + 2.07205x2
− 2.13155≤ 0

(0.01829, 1.04098) −1.02269 0.04656

9 −1.97223x1 + 2.04538x2
− 2.04657≤ 0

(−0.16626, 0.84027) −1.00653 0.06838

10 −2.67809x1 + 2.01305x2
− 2.06838≤ 0

(−0.07348, 0.92972) −1.00321 0.01723

�

� �

�

360 NLP III: Constrained Optimization Techniques

7.6 BASIC APPROACH IN THE METHODS OF FEASIBLE
DIRECTIONS

In the methods of feasible directions, basically we choose a starting point satisfying
all the constraints and move to a better point according to the iterative scheme

Xi+1 = Xi + λSi (7.25)

where Xi is the starting point for the ith iteration, Si the direction of movement, 𝜆
the distance of movement (step length), and Xi+1 the final point obtained at the end
of the ith iteration. The value of 𝜆 is always chosen so that Xi+1 lies in the feasible
region. The search direction Si is found such that (1) a small move in that direction
violates no constraint, and (2) the value of the objective function can be reduced in
that direction. The new point Xi+1 is taken as the starting point for the next itera-
tion and the entire procedure is repeated several times until a point is obtained such
that no direction satisfying both properties 1 and 2 can be found. In general, such a
point denotes the constrained local minimum of the problem. This local minimum
need not be a global one unless the problem is a convex programming problem. A
direction satisfying property 1 is called feasible while a direction satisfying both prop-
erties 1 and 2 is called a usable feasible direction. This is the reason that these meth-
ods are known as methods of feasible directions. There are many ways of choosing
usable feasible directions, and hence there are many different methods of feasible
directions. As seen in Chapter 2, a direction S is feasible at a point Xi if it satisfies
the relation

d
d𝜆

gj(Xi + 𝜆S)
||||𝜆=0

= ST∇gj(Xi) ≤ 0 (7.26)

where the equality sign holds true only if a constraint is linear or strictly concave, as
shown in Figure 2.8. A vector S will be a usable feasible direction if it satisfies the
relations

d
d𝜆

f (Xi + 𝜆S)
||||𝜆=0

= ST∇f (Xi) < 0 (7.27)

d
d𝜆

gj(Xi + 𝜆S)
||||𝜆=0

= ST∇gj(Xi) ≤ 0 (7.28)

It is possible to reduce the value of the objective function at least by a small amount
by taking a step length 𝜆> 0 along such a direction.

The detailed iterative procedure of the methods of feasible directions will be
considered in terms of two well-known methods: Zoutendijk’s method of feasible
directions and Rosen’s gradient projection method.

7.7 ZOUTENDIJK’S METHOD OF FEASIBLE DIRECTIONS

In Zoutendijk’s method of feasible directions, the usable feasible direction is taken
as the negative of the gradient direction if the initial point of the iteration lies in the
interior (not on the boundary) of the feasible region. However, if the initial point lies
on the boundary of the feasible region, some constraints will be active and the usable
feasible direction is found so as to satisfy Eqs. (7.27) and (7.28). The iterative proce-
dure of Zoutendijk’s method can be stated as follows (only inequality constraints are
considered in Eq. (7.1), for simplicity).

�

� �

�

7.7 Zoutendijk’s Method of Feasible Directions 361

Algorithm

1. Start with an initial feasible point X1 and small numbers 𝜀1, 𝜀2, and 𝜀3 to test
the convergence of the method. Evaluate f (X1) and gj(X1), j = 1, 2, . . . , m. Set
the iteration number as i = 1.

2. If gj(Xi)< 0, j = 1, 2, . . . , m (i.e. Xi is an interior feasible point), set the current
search direction as

Si = −∇f (Xi) (7.29)

Normalize Si in a suitable manner and go to step 5. If at least one gj(Xi) = 0,
go to step 3.

3. Find a usable feasible direction S by solving the direction-finding problem:

Minimize − 𝛼 (7.30a)

subject to

ST∇gj(Xi) + 𝜃j𝛼 ≤ 0, j = 1, 2, . . . , p (7.30b)

ST∇f + 𝛼 ≤ 0 (7.30c)

−1 ≤ si ≤ 1, i = 1, 2, . . . , n (7.30d)

where si is the ith component of S, the first p constraints have been assumed to
be active at the point Xi (the constraints can always be renumbered to satisfy
this requirement), and the values of all 𝜃j can be taken as unity. Here 𝛼 can be
taken as an additional design variable.

4. If the value of 𝛼* found in step 3 is very nearly equal to zero, that is, if 𝛼* ≤ 𝜀1,
terminate the computation by taking Xopt ≃Xi. If 𝛼*

>𝜀1, go to step 5 by taking
Si = S.

5. Find a suitable step length 𝜆i along the direction Si and obtain a new point Xi+1
as

Xi+1 = Xi + 𝜆iSi (7.31)

The methods of finding the step length 𝜆i will be considered later.
6. Evaluate the objective function f (Xi+1).
7. Test for the convergence of the method. If

|||| f (Xi) − f (Xi+1)
f (Xi)

|||| ≤ 𝜀2 and ‖Xi − Xi+1‖ ≤ 𝜀3 (7.32)

terminate the iteration by taking Xopt ≃Xi+1. Otherwise, go to step 8.
8. Set the new iteration number as i = i+ 1, and repeat from step 2 onward.

There are several points to be considered in applying this algorithm. These are related
to (1) finding an appropriate usable feasible direction (S), (2) finding a suitable step
size along the direction S, and (3) speeding up the convergence of the process. All
these aspects are discussed below.

�

� �

�

362 NLP III: Constrained Optimization Techniques

7.7.1 Direction-Finding Problem

If the point Xi lies in the interior of the feasible region (i.e. gj(Xi)< 0 for j = 1, 2, . . . ,
m), the usable feasible direction is taken as

Si = −∇f (Xi) (7.33)

The problem becomes complicated if one or more of the constraints are critically sat-
isfied at Xi, that is, when some of the gj (Xi) = 0. One simple way to find a usable
feasible direction at a point Xi at which some of the constraints are active is to generate
a random vector and verify whether it satisfies Eqs. (7.27) and (7.28). This approach
is a crude one but is very simple and easy to program. The relations to be checked for
each random vector are also simple, and hence it will not require much computer time.
However, a more systematic procedure is generally adopted to find a usable feasible
direction in practice. Since there will be, in general, several directions that satisfy Eqs.
(7.27) and (7.28), one would naturally be tempted to choose the “best” possible usable
feasible direction at Xi.

Thus, we seek to find a feasible direction that, in addition to decreasing the value
of f, also points away from the boundaries of the active nonlinear constraints. Such a
direction can be found by solving the following optimization problem. Given the point
Xi, find the vector S and the scalar 𝛼 that maximize 𝛼 subject to the constraints

ST∇gj(Xi) + 𝜃j𝛼 ≤ 0, j ∈ J (7.34)

ST∇f (Xi) + 𝛼 ≤ 0 (7.35)

where J represents the set of active constraints and S is normalized by one of the
following relations:

STS =
n∑

i=1

s2
i = 1 (7.36)

−1 ≤ si ≤ 1, i = 1, 2, . . . , n (7.37)

ST∇f (Xi) ≤ 1 (7.38)

In this problem, 𝜃j are arbitrary positive scalar constants, and for simplicity, we can
take all 𝜃j = 1. Any solution of this problem with 𝛼 > 0 is a usable feasible direction.
The maximum value of 𝛼 gives the best direction (S) that makes the value of ST∇fi
negative and the values of ST∇gj (Xi) as negative as possible simultaneously. In other
words, the maximum value of 𝛼 makes the direction S steer away from the active
nonlinear constraint boundaries. It can easily be seen that by giving different values for
different 𝜃j, we can give more importance to certain constraint boundaries compared
to others. Equations (7.36)–(7.38) represent the normalization of the vector S so as to
ensure that the maximum of 𝛼 will be a finite quantity. If the normalization condition
is not included, the maximum of 𝛼 may be made to approach ∞ without violating the
constraints (Eqs. (7.34) and (7.35)).

Notice that the objective function 𝛼, and the constraint Eqs. (7.34) and (7.35) are
linear in terms of the variables s1, s2, . . . , sn, 𝛼. The normalization constraint will
also be linear if we use either Eqs. (7.37) or (7.38). However, if we use Eq. (7.36)
for normalization, it will be a quadratic function. Thus, the direction-finding problem
can be posed as a linear programming problem by using either Eqs. (7.37) or (7.38)
for normalization. Even otherwise, the problem will be a LP problem except for one
quadratic constraint. It was shown by Zoutendijk [7.5] that this problem can be handled

�

� �

�

7.7 Zoutendijk’s Method of Feasible Directions 363

by a modified version of linear programming. Thus. the direction-finding problem
can be solved with reasonable efficiency. We use Eq. (7.37) in our presentation. The
direction-finding problem can be stated more explicitly as

Minimize − 𝛼

subject to

s1
𝜕g1

𝜕x1
+ s2

𝜕g1

𝜕x2
+⋯ + sn

𝜕g1

𝜕xn
+ 𝜃1𝛼 ≤ 0

s1
𝜕g2

𝜕x1
+ s2

𝜕g2

𝜕x2
+⋯ + sn

𝜕g2

𝜕xn
+ 𝜃2𝛼 ≤ 0

⋮

s1

𝜕gp

𝜕x1
+ s2

𝜕gp

𝜕x2
+⋯ + sn

𝜕gp

𝜕xn
+ 𝜃p𝛼 ≤ 0

s1
𝜕f

𝜕x1
+ s2

𝜕f

𝜕x2
+⋯ + sn

𝜕f

𝜕xn
+ 𝛼 ≤ 0

s1 − 1 ≤ 0

s2 − 1 ≤ 0

⋮

sn − 1 ≤ 0

−1 − s1 ≤ 0

−1 − s2 ≤ 0

⋮

−1 − sn ≤ 0 (7.39)

where p is the number of active constraints and the partial derivatives 𝜕g1/𝜕x1, 𝜕g1/𝜕x2,
. . . , 𝜕gp/𝜕xn, 𝜕f/𝜕x1, . . . , 𝜕f/𝜕xn have been evaluated at point Xi. Since the components
of the search direction, si, i = 1–n, can take any value between −1 and 1, we define
new variables ti as ti = si + 1, i = 1–n, so that the variables will always be nonnegative.
With this change of variables, the problem above can be restated as a standard linear
programming problem as follows:

Find (t1, t2, . . . , tn, 𝛼, y1, y2, . . . , yp+n+1) which

minimizes − 𝛼

subject to

t1
𝜕g1

𝜕x1
+ t2

𝜕g1

𝜕x2
+⋯ + tn

𝜕g1

𝜕xn
+ 𝜃1𝛼 + y1 =

n∑
i=1

𝜕g1

𝜕xi

t1
𝜕g2

𝜕x1
+ t2

𝜕g2

𝜕x2
+⋯ + tn

𝜕g2

𝜕xn
+ 𝜃2𝛼 + y2 =

n∑
i=1

𝜕g2

𝜕xi

⋮

t1
𝜕gp

𝜕x1
+ t2

𝜕gp

𝜕x2
+⋯ + tn

𝜕gp

𝜕xn
+ 𝜃p𝛼 + yp =

n∑
i=1

𝜕gp

𝜕xi
(7.40)

�

� �

�

364 NLP III: Constrained Optimization Techniques

t1
𝜕f

𝜕x1
+ t2

𝜕f

𝜕x2
+⋯ + tn

𝜕f

𝜕xn
+ 𝛼 + yp+1 =

n∑
i=1

𝜕f

𝜕xi

t1 + yp+2 = 2

t2 + yp+3 = 2

⋮

tn + yp+n+1 = 2

t1 ≥ 0

t2 ≥ 0

⋮

tn ≥ 0

𝛼 ≥ 0

where y1, y2, . . . , yp+n+1 are the nonnegative slack variables. The simplex method
discussed in Chapter 3 can be used to solve the direction-finding problem stated in
Eq. (7.40). This problem can also be solved by more sophisticated methods that treat
the upper bounds on ti in a special manner instead of treating them as constraints [7.6].
If the solution of the direction-finding problem gives a value of 𝛼*

> 0, f (X) can be
improved by moving along the usable feasible direction

S =
⎧⎪⎨⎪⎩

s1
s2
⋮
sn

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

t∗1 − 1
t∗2 − 1
⋮

t∗n − 1

⎫⎪⎬⎪⎭
If, however, 𝛼* = 0, it can be shown that the Kuhn–Tucker optimality conditions are
satisfied at Xi and hence point Xi can be taken as the optimal solution.

7.7.2 Determination of Step Length

After finding a usable feasible direction Si at any point Xi, we have to determine a
suitable step length 𝜆i to obtain the next point Xi+1 as

Xi+1 = Xi + 𝜆iSi (7.41)

There are several ways of computing the step length. One of the methods is to deter-
mine an optimal step length (𝜆i) that minimizes f (Xi + 𝜆Si) such that the new point
Xi+1 given by Eq. (7.41) lies in the feasible region. Another method is to choose the
step length (𝜆i) by trial and error so that it satisfies the relations

f (Xi + 𝜆iSi) ≤ f (Xi)

gj(Xi + 𝜆iSi) ≤ 0, j = 1, 2, . . . ,m (7.42)

Method 1. The optimal step length, 𝜆i, can be found by any of the one-dimensional
minimization methods described in Chapter 5. The only drawback with these methods
is that the constraints will not be considered while finding 𝜆i. Thus the new point
Xi+1 = Xi + 𝜆iSi may lie either in the interior of the feasible region (Figure 7.8a),
or on the boundary of the feasible region (Figure 7.8b), or in the infeasible region
(Figure 7.8c).

�

� �

�

7.7 Zoutendijk’s Method of Feasible Directions 365

(a)

(c)

(b)

Direction in
which the
function value
decreases

Direction in
which
function value
decreases

Xi Xi

Xi

Xi + 1

Xi + 1

Xi + 1

Si

Si

Si

A
A

A

Figure 7.8 Effect of taking optimal step length.

If the point Xi+1 lies in the interior of the feasible region, there are no active
constraints and hence we proceed to the next iteration by setting the new usable
feasible direction as Si+1 = −∇f (Xi+1) (i.e. we go to step 2 of the algorithm). On
the other hand, if Xi+1 lies on the boundary of the feasible region, we generate a
new usable feasible direction S = Si+1 by solving a new direction-finding problem
(i.e. we go to step 3 of the algorithm). One practical difficulty has to be noted at
this stage. To detect that point Xi+1 is lying on the constraint boundary, we have
to find whether one or more gj(Xi+1) are zero. Since the computations are done
numerically, will we say that the constraint gj is active if gj(Xi+1) = 10−2, 10−3,
10−8, and so on? We immediately notice that a small margin 𝜀 has to be specified
to detect an active constraint. Thus we can accept a point X to be lying on the
constraint boundary if |gj(X)|≤ 𝜀 where 𝜀 is a prescribed small number. If point Xi+1
lies in the infeasible region, the step length has to be reduced (corrected) so that
the resulting point lies in the feasible region only. It is to be noted that an initial
trial step size (𝜀1) has to be specified to initiate the one-dimensional minimization
process.

�

� �

�

366 NLP III: Constrained Optimization Techniques

Method 2. Even if we do not want to find the optimal step length, some sort of
a trial-and-error method has to be adopted to find the step length 𝜆i so as to satisfy
the relations (7.42). One possible method is to choose an arbitrary step length 𝜀 and
compute the values of

f̃ = f (Xi + 𝜀Si) and g̃j = gj(Xi + 𝜀Si)

Depending on the values of f̃ and g̃j, we may need to adjust the value of 𝜀 until we
improve the objective function value without violating the constraints.

Initial Trial Step Length. It can be seen that in whatever way we want to find the step
size 𝜆i, we need to specify an initial trial step length 𝜀. The value of 𝜀 can be chosen
in several ways. Some of the possibilities are given below.

1. The average of the final step lengths 𝜆i obtained in the last few iterations can
be used as the initial trial step length 𝜀 for the next step. Although this method
is often satisfactory, it has a number of disadvantages:

(a) This method cannot be adopted for the first iteration.
(b) This method cannot take care of the rate of variation of f (X) in different

directions.
(c) This method is quite insensitive to rapid changes in the step length that

take place generally as the optimum point is approached.

2. At each stage, an initial step length 𝜀 is calculated so as to reduce the objective
function value by a given percentage. For doing this, we can approximate the
behavior of the function f (𝜆) to be linear in 𝜆. Thus if

f (Xi) = f (𝜆 = 0) = f1 (7.43)

df

d𝜆
(Xi) =

df

d𝜆
(Xi + 𝜆Si)

||||𝜆=0
= ST∇fi = f ′1 (7.44)

are known to us, the linear approximation of f (𝜆) is given by

f (𝜆) ≃ f1 + f ′1𝜆

To obtain a reduction of 𝛿% in the objective function value compared to |f1|, the
step length 𝜆 = 𝜀 is given by

f1 + f ′1 𝜀 = f1 −
𝛿

100
∣ f1 ∣

that is,

𝜀 = − 𝛿

100

| f1|
f ′1

(7.45)

It is to be noted that the value of 𝜀 will always be positive since f ′1 given in
Eq. (7.44) is always negative. This method yields good results if the percentage
reduction (𝛿) is restricted to small values on the order of 1–5.

�

� �

�

7.7 Zoutendijk’s Method of Feasible Directions 367

7.7.3 Termination Criteria

In steps 4 and 5 of the algorithm, the optimization procedure is assumed to have con-
verged whenever the maximum value of 𝛼(𝛼*) becomes approximately zero and the
results of the current iteration satisfy the relations stated in Eq. (7.32). In addition,
one can always test the Kuhn–Tucker necessary conditions before terminating the
procedure.

However, we can show that if the Kuhn–Tucker conditions are satisfied, the value
of 𝛼* will become zero. The Kuhn–Tucker conditions are given by

∇f +
p∑

j=1

𝜆j∇gj = 0 (7.46)

𝜆j > 0, = 1, 2, . . . , p (7.47)

where the first p constraints are assumed to be the active constraints. Equation (7.46)
gives

ST∇f = −
p∑

j=1

𝜆jS
T∇gj > 0 (7.48)

if S is a usable feasible direction. Thus, if the Kuhn–Tucker conditions are satisfied
at a point Xi, we will not be able to find any search direction S that satisfies the strict
inequalities in the relations

ST∇gj ≤ 0, j = 1, 2, . . . , p

ST∇f ≤ 0 (7.49)

However, these relations can be satisfied with strict equality sign by taking the trivial
solution S = 0, which means that the value of 𝛼* in the direction-finding problem,
Eq. (7.39), is zero. Some modifications and accelerating techniques have been sug-
gested to improve the convergence of the algorithm presented in this section and the
details can be found in Refs. [7.7] and [7.8].

Example 7.2
Minimize f (x1, x2) = x2

1 + x2
2 − 4x1 − 4x2 + 8

subject to
g1(x1, x2) = x1 + 2x2 − 4 ≤ 0

with the starting point X1 =
{

0
0

}
. Take 𝜀1 = 0.001, 𝜀2 = 0.001, and 𝜀3 = 0.01.

SOLUTION

Step 1: At X1 =
{

0
0

}
:

f (X1) = 8 and g1(X1) = −4

Iteration 1

Step 2: Since g1(X1)< 0, we take the search direction as

S1 = −∇f (X1) = −
{
𝜕f∕𝜕x1
𝜕f∕𝜕x2

}
X1

=
{

4
4

}
This can be normalized to obtain S1 =

{
1
1

}
.

�

� �

�

368 NLP III: Constrained Optimization Techniques

Step 5: To find the new point X2, we have to find a suitable step length along S1. For
this, we choose to minimize f (X1 + 𝜆S1) with respect to 𝜆. Here

f (X1 + 𝜆S1) = f (0 + 𝜆, 0 + 𝜆) = 2𝜆2 − 8𝜆 + 8

df

d𝜆
= 0 at 𝜆 = 2

Thus, the new point is given by X2 = {2
2} and g1(X2) = 2. As the constraint

is violated, the step size has to be corrected.
As g′1 = g1|𝜆=0 = −4 and g′′1 = g1|𝜆=2 = 2, linear interpolation gives the new
step length as

�̃� = −
g′1

g′′1 − g′1
𝜆 = 4

3

This gives g1|𝜆=�̃� = 0 and hence X2 =

{ 4
3
4
3

}
.

Step 6: f(X2) = 8
9
.

Step 7: Here

|||| f (X1) − f (X2)
f (X1)

|||| =
||||||
8 − 8

9

8

|||||| = 8
9
> 𝜀2

‖X1 − X2‖ =
[(

0 − 4
3

)2

+
(

0 − 4
3

)2
]1∕2

= 1.887 > 𝜀2

and hence the convergence criteria are not satisfied.

Iteration 2

Step 2: As g1 = 0 at X2, we proceed to find a usable feasible direction.
Step 3: The direction-finding problem can be stated as (Eq. (7.40)):

Minimize f = −𝛼

subject to

t1 + 2t2 + 𝛼 + y1 = 3

−4
3

t1 −
4
3

t2 + 𝛼 + y2 = −8
3

t1 + y3 = 2

t2 + y4 = 2

t1 ≥ 0

t2 ≥ 0

𝛼 ≥ 0

where y1 to y4 are the nonnegative slack variables. Since an initial basic feasi-
ble solution is not readily available, we introduce an artificial variable y5 ≥ 0

�

� �

�

7.8 Rosen’s Gradient Projection Method 369

into the second constraint equation. By adding the infeasibility form w = y5,
the LP problem can be solved to obtain the solution:

t∗1 = 2, t∗2 = 3
10
, 𝛼

∗ = 4
10
, y∗4 = 17

10
, y∗1 = y∗2 = y∗3 = 0

−fmin = −𝛼∗ = − 4
10

As 𝛼*> 0, the usable feasible direction is given by

S =
{

s1
s2

}
=

{
t∗1 − 1
t∗2 − 1

}
=

{
1.0

−0.7

}
Step 4: Since 𝛼*>𝜀1, we go to the next step.

Step 5: We must move along the direction S2 =
{

1.0
−0.7

}
from the point

X2 =
{

1.333
1.333

}
. To find the minimizing step length, we minimize

f (X2 + λS2) = f (1.333 + λ, 1.333 − 0.7λ)

= 1.49λ2 − 0.4λ + 0.889

As df/d𝜆 = 2.98𝜆− 0.4 = 0 at 𝜆 = 0.134, the new point is given by

X3 = X2 + λS2 =
{

1.333
1.333

}
+ 0.134

{
1.0
−0.7

}
=

{
1.467
1.239

}
At this point, the constraint is satisfied since g1(X3) = −0.055. Since point
X3 lies in the interior of the feasible domain, we go to step 2.
The procedure is continued until the optimum point X* =

{
1.6
1.2

}
and fmin = 0.8

are obtained.

7.8 ROSEN’S GRADIENT PROJECTION METHOD

The gradient projection method of Rosen [7.9, 7.10] does not require the solution of an
auxiliary linear optimization problem to find the usable feasible direction. It uses the
projection of the negative of the objective function gradient onto the constraints that
are currently active. Although the method has been described by Rosen for a general
nonlinear programming problem, its effectiveness is confined primarily to problems
in which the constraints are all linear. Consider a problem with linear constraints:

Minimize f (X)

subject to

gj(X) =
n∑

i=1

aijxi − bj ≤ 0, j = 1, 2, . . . ,m (7.50)

Let the indices of the active constraints at any point be j1, j2, . . . , jp. The gradients of
the active constraints are given by

∇gj(X) =
⎧⎪⎨⎪⎩

a1j

a2j

⋮
anj

⎫⎪⎬⎪⎭ , j = j1, j2, . . . , jp (7.51)

�

� �

�

370 NLP III: Constrained Optimization Techniques

By defining a matrix N of order n× p as

N = [∇gj1∇gj2 . . .∇gjp] (7.52)

the direction-finding problem for obtaining a usable feasible direction S can be posed
as follows.

Find S which minimizes ST∇f (X) (7.53)

subject to

NTS = 0 (7.54)

STS − 1 = 0 (7.55)

where Eq. (7.55) denotes the normalization of the vector S. To solve this equality-
constrained problem, we construct the Lagrangian function as

L(S, λ, 𝛽) = ST∇f (X) + λTNTS + 𝛽(STS − 1) (7.56)

where

λ =
⎧⎪⎨⎪⎩
λ1
λ2
⋮
λp

⎫⎪⎬⎪⎭
is the vector of Lagrange multipliers associated with Eq. (7.54) and 𝛽 is the Lagrange
multiplier associated with Eq. (7.55). The necessary conditions for the minimum are
given by

𝜕L
𝜕S

= ∇f (X) + Nλ + 2𝛽S = 𝟎 (7.57)

𝜕L
𝜕𝜆

= NTS = 𝟎 (7.58)

𝜕L
𝜕𝛽

= STS − 1 = 0 (7.59)

Equation (7.57) gives

S = − 1
2𝛽

(∇f + Nλ) (7.60)

Substitution of Eq. (7.60) into Eq. (7.58) gives

NTS = − 1
2𝛽

(NT∇f + NTNλ) = 0 (7.61)

If S is normalized according to Eq. (7.59), 𝛽 will not be zero, and hence Eq. (7.61)
gives

NT∇f + NTN𝜆 = 𝟎 (7.62)

from which 𝝀 can be found as

𝛌 = −(NTN)−1NT∇f (7.63)

�

� �

�

7.8 Rosen’s Gradient Projection Method 371

This equation, when substituted in Eq. (7.60), gives

S = − 1
2𝛽

(I − N(NTN)−1NT)∇f = − 1
2𝛽

P∇f (7.64)

where
P = I − N(NTN)−1NT (7.65)

is called the projection matrix. Disregarding the scaling constant 2𝛽, we can say that
the matrix P projects the vector −∇f (X) onto the intersection of all the hyperplanes
perpendicular to the vectors

∇gj, j = j1, j2, . . . , jp

We assume that the constraints gj(X) are independent so that the columns of the matrix
N will be linearly independent, and hence NTN will be nonsingular and can be inverted.
The vector S can be normalized (without having to know the value of 𝛽 in Eq. (7.64))
as

S = −
P∇f‖P∇f‖ (7.66)

If Xi is the starting point for the ith iteration (at which gj1, gj2, . . . , gjp are critically
satisfied), we find Si from Eq. (7.66) as

Si = −
Pi∇f (Xi)‖Pi∇f (Xi)‖ (7.67)

where Pi indicates the projection matrix P evaluated at the point Xi. If Si ≠ 0, we start
from Xi and move along the direction Si to find a new point Xi+1 according to the
familiar relation

Xi+1 = Xi + λiSi (7.68)

where 𝜆i is the step length along the search direction Si. The computational details for
calculating 𝜆i will be considered later. However, if Si = 0, we have from Eqs. (7.64)
and (7.63),

−∇f (Xi) = Nλ = λ1∇gj1 + λ2∇gj2 +⋯ + λp∇gjp (7.69)

where
λ = −(NTN)−1NT∇f (Xi) (7.70)

Equation (7.69) denotes that the negative of the gradient of the objective function is
given by a linear combination of the gradients of the active constraints at Xi. Further,
if all 𝜆j, given by Eq. (7.63), are nonnegative, the Kuhn–Tucker conditions (Eqs. (7.46,
7.47)) will be satisfied and hence the procedure can be terminated.

However, if some 𝜆j are negative and Si = 0, Eq. (7.69) indicates that some con-
straint normals ∇gj make an obtuse angle with −∇f at Xi. This also means that the
constraints gj, for which 𝜆j are negative, are active at Xi but should not be considered
in finding a new search direction S that will be both feasible and usable. (If we con-
sider all of them, the search direction S comes out to be zero.) This is illustrated in
Figure 7.9, where the constraint normal ∇g1(Xi) should not be considered in finding
a usable feasible direction S at point Xi.

�

� �

�

372 NLP III: Constrained Optimization Techniques

g1 = 0

g4 = 0

Xi

(Si)new

Xi + 1Greater than 90°

∇g1(Xi)

∇g2(Xi)

∇g2(Xi + 1)
Xopt

∇g3(Xi + 1)

–∇fi

–∇fi + 1

Less than 90°

Less than 90°

g2 = 0

g3 = 0

f = 7

f = 8

f = 10

f = 9

Figure 7.9 Situation when Si = 0 and some 𝜆j are negative.

In actual practice we do not discard all the active constraints for which 𝜆j are
negative in forming the matrix N. Rather, we delete only one active constraint that
corresponds to the most negative value of 𝜆j. That is, the new N matrix is taken as

Nnew = [∇gj1∇gj2 ⋯∇gjq−1∇gjq+1∇gjq+2 ⋯∇gjp] (7.71)

where ∇gjq is dropped from N by assuming that 𝜆q is most negative among 𝜆j obtained
from Eq. (7.63). The new projection matrix is formed, by dropping the constraint gjq,
as

Pnew = (I − Nnew(NT
newNnew)−1NT

new) (7.72)

and the new search direction (Si)new as

(Si)new = −
Pnew∇f (Xi)‖Pnew∇f (Xi)‖ (7.73)

and this vector will be a nonzero vector in view of the new computations we have made.
The new approximation Xi+1 is found as usual by using Eq. (7.68). At the new point
Xi+1, a new constraint may become active (in Figure 7.9, the constraint g3 becomes
active at the new point Xi+1). In such a case, the new active constraint has to be added
to the set of active constraints to find the new projection matrix at Xi+1.

We shall now consider the computational details for computing the step length 𝜆i
in Eq. (7.68).

7.8.1 Determination of Step Length

The step length 𝜆i in Eq. (7.68) may be taken as the minimizing step length λ∗i along
the direction Si, that is,

�

� �

�

7.8 Rosen’s Gradient Projection Method 373

f (Xi + λ∗i Si) = min
λ

f (Xi + λSi) (7.74)

However, this minimizing step length λ∗i may give the point

Xi+1 = Xi + λ∗i Si

that lies outside the feasible region. Hence the following procedure is generally
adopted to find a suitable step length 𝜆i. Since the constraints gj(X) are linear, we
have

gj(λ) = gj(Xi + λSi) =
n∑

i=1

aij(xi + λsi) − bj

=
n∑

i=1

aijxi − bj + λ
n∑

i=1

aijsi

= gj(Xi) + λ
n∑

i=1

aijsi, j = 1, 2, . . . ,m (7.75)

where

Xi =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭ and Si =
⎧⎪⎨⎪⎩

s1
s2
⋮
sn

⎫⎪⎬⎪⎭ .
This equation shows that gj(𝜆) will also be a linear function of 𝜆. Thus, if a particular
constraint, say the kth, is not active at Xi, it can be made to become active at the point
Xi + 𝜆kSi by taking a step length 𝜆k where

gk(λk) = gk(Xi) + λk

n∑
i=1

aiksi = 0

that is,

λk = −
gk(Xi)∑n
i=1 aiksi

(7.76)

Since the kth constraint is not active at Xi, the value of gk(Xi) will be negative and
hence the sign of 𝜆k will be same as that of the quantity

(∑n
i=1 aiksi

)
. From Eq. (7.75)

we have
dgk

dλ
(λ) =

n∑
i=1

aiksi (7.77)

and hence the sign of 𝜆k depends on the rate of change of gk with respect to 𝜆. If
this rate of change is negative, we will be moving away from the kth constraint in the
positive direction of 𝜆. However, if the rate of change (dgk/d𝜆) is positive, we will be
violating the constraint gk if we take any step length 𝜆 larger than 𝜆k. Thus, to avoid
violation of any constraint, we must take the step length (𝜆M) as

λM = min
λk > 0 and k

is any integer among
1 to m other than

j1, j2, . . . , jp

(λk) (7.78)

�

� �

�

374 NLP III: Constrained Optimization Techniques

In some cases, the function f (𝜆) may have its minimum along the line Si in
between 𝜆= 0 and 𝜆= 𝜆M. Such a situation can be detected by calculating the value of

df

dλ
= ST

i ∇f (λ) at λ = λM

If the minimum value of 𝜆, λ∗i , lies in between 𝜆= 0 and 𝜆= 𝜆M, the quantity df/d𝜆(𝜆M)
will be positive. In such a case we can find the minimizing step length λ∗i by interpo-
lation or by using any of the techniques discussed in Chapter 5.

An important point to be noted is that if the step length is given by 𝜆i (not by
λ∗i), at least one more constraint will be active at Xi+1 than at Xi. These additional
constraints will have to be considered in generating the projection matrix at Xi+1. On
the other hand, if the step length is given by λ∗i , no new constraint will be active at
Xi+1, and hence the projection matrix at Xi+1 involves only those constraints that were
active at Xi.

Algorithm. The procedure involved in the application of the gradient projection
method can be described by the following steps:

1. Start with an initial point X1. The point X1 has to be feasible, that is,

gj(X1) ≤ 0, j = 1, 2, . . . ,m

2. Set the iteration number as i = 1.
3. If Xi is an interior feasible point (i.e. if gj(Xi)< 0 for j = 1, 2, . . . , m), set the

direction of search as Si = −∇f (Xi), normalize the search direction as

Si =
−∇f (Xi)‖∇f (Xi)‖

and go to step 5. However, if gj (Xi) = 0 for j = j1, j2, . . . , jp, go to step 4.
4. Calculate the projection matrix Pi as

Pi = I − Np(NT
p Np)−1NT

p

where
Np = [∇gj1(Xi)∇gj2(Xi) . . .∇gjp(Xi)]

and find the normalized search direction Si as

Si =
−Pi∇f (Xi)‖Pi∇f (Xi)‖

5. Test whether or not Si = 0. If Si ≠ 0, go to step 6. If Si = 0, compute the vector
𝝀 at Xi as

𝛌 = −(NT
p Np)−1NT

p∇f (Xi)

If all the components of the vector 𝝀 are nonnegative, take Xopt = Xi and stop
the iterative procedure. If some of the components of 𝝀 are negative, find the
component 𝜆q that has the most negative value and form the new matrix Np as

Np = [∇gj1∇gj2 ⋯∇gjq−1∇gjq+1 ⋯∇gjp]

and go to step 3.

�

� �

�

7.8 Rosen’s Gradient Projection Method 375

6. If Si ≠ 0, find the maximum step length 𝜆M that is permissible without violating
any of the constraints as 𝜆M = min(𝜆k), 𝜆k > 0 and k is any integer among 1 to m
other than j1, j2, . . . , jp. Also find the value of df/d𝜆(𝜆M) = ST

i ∇f (Xi + 𝜆MSi).
If df/d𝜆(𝜆M) is zero or negative, take the step length as 𝜆i = 𝜆M. On the other
hand, if df/d𝜆(𝜆M) is positive, find the minimizing step length λ∗i either by inter-
polation or by any of the methods discussed in Chapter 5, and take 𝜆i = λ∗i .

7. Find the new approximation to the minimum as

Xi+1 = Xi + λiSi

If 𝜆i = 𝜆M or if 𝜆M ≤ 𝜆*
i, some new constraints (one or more) become active at

Xi+1 and hence generate the new matrix Np to include the gradients of all active
constraints evaluated at Xi+1. Set the new iteration number as i = i+ 1, and go
to step 4. If 𝜆i = λ∗i and λ∗i <𝜆M, no new constraint will be active at Xi+1 and
hence the matrix Np remains unaltered. Set the new value of i as i = i+ 1, and
go to step 3.

Example 7.3
Minimize f (x1, x2) = x2

1 + x2
2 − 2x1 − 4x2

subject to

g1(x1, x2) = x1 + 4x2 − 5 ≤ 0

g2(x1, x2) = 2x1 + 3x2 − 6 ≤ 0

g3(x1, x2) = −x1 ≤ 0

g4(x1, x2) = −x2 ≤ 0

starting from the point X1 =
{

1.0
1.0

}
.

SOLUTION

Iteration i = 1

Step 3: Since gj(X1) = 0 for j = 1, we have p = 1 and j1 = 1.

Step 4: As N1 = [∇g1(X1)] = [14], the projection matrix is given by

P1 =
[

1 0
0 1

]
−

[
1
4

] [
[1 4]

[
1
4

]]−1 [
1 4

]
= 1

17

[
16 −4
−4 1

]
The search direction S1 is given by

S1 = − 1
17

[
16 −4
−4 1

]{
0
−2

}
=

⎧⎪⎨⎪⎩
− 8

17
2

17

⎫⎪⎬⎪⎭ =
{
−0.4707
0.1177

}

as

∇f (X1) =
{

2x1 − 2
2x2 − 4

}
x1

=
{

0
−2

}

�

� �

�

376 NLP III: Constrained Optimization Techniques

The normalized search direction can be obtained as

S1 = 1
[(−0.4707)2 + (0.1177)2]1∕2

{
−0.4707
0.1177

}
=

{
−0.9701
0.2425

}
Step 5: Since S1 ≠ 0, we go step 6.
Step 6: To find the step length 𝜆M, we set

X =
{

x1
x1

}
= X1 + λS

=
{

1.0 − 0.9701λ
1.0 + 0.2425λ

}
For j = 2:

g2(X) = (2.0 − 1.9402λ) + (3.0 + 0.7275λ) − 6.0 = 0 at λ = λ2

= −0.8245

For j = 3:

g3(X) = −(1.0 − 0.9701λ) = 0 at λ = λ3 = 1.03

For j = 4:

g4(X) = −(1.0 + 0.2425λ) = 0 at λ = λ4 = −4.124

Therefore,
λM = λ3 = 1.03

Also,

f (X) = f (λ) = (1.0 − 0.9701λ)2 + (1.0 + 0.2425λ)2

− 2(1.0 − 0.9701λ) − 4(1.0 + 0.2425λ)

= 0.9998λ2 − 0.4850λ − 4.0

df

dλ
= 1.9996λ − 0.4850

df

dλ
(λM) = 1.9996(1.03) − 0.4850 = 1.5746

As df/d𝜆(𝜆M)> 0, we compute the minimizing step length λ∗1 by setting
df/d𝜆 = 0. This gives

λ1 = λ∗1 = 0.4850
1.9996

= 0.2425

Step 7: We obtain the new point X2 as

X2 = X1 + λ1S1 =
{

1.0
1.0

}
+ 0.2425

{
−0.9701
0.2425

}
=

{
0.7647
1.0588

}
Since 𝜆1 = λ∗1 and λ∗1 <𝜆M, no new constraint has become active at X2 and
hence the matrix N1 remains unaltered.

�

� �

�

7.9 Generalized Reduced Gradient Method 377

Iteration i = 2

Step 3: Since g1(X2) = 0, we set p = 1, j1 = 1 and go to step 4.
Step 4:

N1 =
[

1
4

]
P2 = 1

17

[
16 −4
−4 1

]
Δf (X2) =

{
2x1 − 2
2x2 − 4

}
X2

=
{

1.5294 − 2.0
2.1176 − 4.0

}
=

{
−0.4706
−1.8824

}
S2 = −P2∇f (X2) =

1
17

[
16 −4
−4 1

]{
0.4706
1.8824

}
=

{
0.0
0.0

}
Step 5: Since S2 = 0, we compute the vector 𝝀 at X2 as

𝛌 = −(NT
1 N1)−1NT

1∇f (X2)

= − 1
17

[
1 4

]{−0.4706
−1.8824

}
= 0.4707 > 0

The nonnegative value of 𝜆 indicates that we have reached the optimum point
and hence that

Xopt = X2 =
{

0.7647
1.0588

}
with fopt = −4.059

7.9 GENERALIZED REDUCED GRADIENT METHOD

The generalized reduced gradient (GRG) method is an extension of the reduced gradi-
ent method that was presented originally for solving problems with linear constraints
only [7.11]. To see the details of the GRG method, consider the nonlinear program-
ming problem:

Minimize f (X) (7.79)

subject to
hj(X) ≤ 0, j = 1, 2, . . . ,m (7.80)

lk(X) = 0, k = 1, 2, . . . , l (7.81)

x(l)i ≤ xi ≤ x(u)i , i = 1, 2, . . . , n (7.82)

By adding a nonnegative slack variable to each of the inequality constraints in
Eq. (7.80), the problem can be stated as

Minimize f (X) (7.83)

subject to
hj(X) + xn+j = 0, j = 1, 2, . . . ,m (7.84)

hk(X) = 0, k = 1, 2, . . . , l (7.85)

�

� �

�

378 NLP III: Constrained Optimization Techniques

x(l)i ≤ xi ≤ x(u)i , i = 1, 2, . . . , n (7.86)

xn+j ≥ 0, j = 1, 2, . . . ,m (7.87)

with n+m variables (x1, x2, . . . , xn, xn+1, . . . , xn+m). The problem can be rewritten in
a general form as:

Minimize f (X) (7.88)

subject to

gj(X) = 0, j = 1, 2, . . . ,m + l (7.89)

x(l)i ≤ xi ≤ x(u)i , i = 1, 2, . . . , n + m (7.90)

where the lower and upper bounds on the slack variable, xi, are taken as 0 and a large
number (infinity), respectively (i = n+ 1, n+ 2, . . . , n+m).

The GRG method is based on the idea of elimination of variables using the equal-
ity constraints (see Section 2.4.1). Thus theoretically, one variable can be reduced
from the set xi (i = 1, 2, . . . , n+m) for each of the m+ l equality constraints given by
Eqs. (7.84) and (7.85). It is convenient to divide the n+m design variables arbitrarily
into two sets as

X =
{

Y
Z

}
(7.91)

Y =
⎧⎪⎨⎪⎩

y1
y2
⋮

yn−l

⎫⎪⎬⎪⎭ = design or independent variables (7.92)

Z =
⎧⎪⎨⎪⎩

z1
z2
⋮

zm+l

⎫⎪⎬⎪⎭ = state or dependent variables (7.93)

and where the design variables are completely independent and the state variables are
dependent on the design variables used to satisfy the constraints gj(X) = 0, j = 1, 2,
. . . , m+ l.

Consider the first variations of the objective and constraint functions:

df (X) =
n−l∑
i=1

𝜕f

𝜕yi
dyi +

m+l∑
i=1

𝜕f

𝜕zi
dzi = ∇T

YfdY + ∇T
Zf dZ

dgi(X) =
n−l∑
j=1

𝜕gi

𝜕yj
dyj +

m+l∑
j=1

𝜕gi

𝜕zj
dzj (7.94)

or

dg = [C]dY + [D]dZ (7.95)

�

� �

�

7.9 Generalized Reduced Gradient Method 379

where

∇Yf =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕f

𝜕y1

𝜕f

𝜕y2

⋮
𝜕f

𝜕yn−l

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(7.96)

∇Z f =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕f

𝜕z1

𝜕f

𝜕z2

⋮
𝜕f

𝜕zm+l

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(7.97)

[C] =

⎡⎢⎢⎢⎢⎢⎣

𝜕g1

𝜕y1
⋯

𝜕g1

𝜕yn−l

⋮ ⋮
𝜕gm+l

𝜕y1
⋯

𝜕gm+l

𝜕yn−l

⎤⎥⎥⎥⎥⎥⎦
(7.98)

[D] =

⎡⎢⎢⎢⎢⎢⎣

𝜕g1

𝜕z1
⋯

𝜕g1

𝜕zm+l

⋮ ⋮
𝜕gm+l

𝜕z1
⋯

𝜕gm+l

𝜕zm+l

⎤⎥⎥⎥⎥⎥⎦
(7.99)

dY =
⎧⎪⎨⎪⎩

dy1
dy2
⋮

dyn−l

⎫⎪⎬⎪⎭ (7.100)

dZ =
⎧⎪⎨⎪⎩

dz1
dz2
⋮

dzm+l

⎫⎪⎬⎪⎭ (7.101)

Assuming that the constraints are originally satisfied at the vector X, (g (X) = 0), any
change in the vector dX must correspond to dg = 0 to maintain feasibility at X+ dX.
Equation (7.95) can be solved to express dZ as

dZ = −[D]−1[C]dY (7.102)

The change in the objective function due to the change in X is given by Eq. (7.94),
which can be expressed, using Eq. (7.102), as

df (X) = (∇T
Yf − ∇T

Zf [D]−1[C])dY (7.103)

�

� �

�

380 NLP III: Constrained Optimization Techniques

or
df

dY
(X) = GR (7.104)

where
GR = ∇Yf − ([D]−1[C])T∇Zf (7.105)

is called the GRG. Geometrically, the reduced gradient can be described as a projection
of the original n-dimensional gradient onto the (n−m)-dimensional feasible region
described by the design variables.

We know that a necessary condition for the existence of a minimum of an uncon-
strained function is that the components of the gradient vanish. Similarly, a constrained
function assumes its minimum value when the appropriate components of the reduced
gradient are zero. This condition can be verified to be same as the Kuhn–Tucker con-
ditions to be satisfied at a relative minimum. In fact, the reduced gradient GR can be
used to generate a search direction S to reduce the value of the constrained objective
function similar to the gradient ∇f that can be used to generate a search direction S
for an unconstrained function. A suitable step length 𝜆 is to be chosen to minimize the
value of f along the search direction S. For any specific value of 𝜆, the dependent vari-
able vector Z is updated using Eq. (7.102). Noting that Eq. (7.102) is based on using
a linear approximation to the original nonlinear problem, we find that the constraints
may not be exactly equal to zero at 𝜆, that is, dg≠ 0. Hence when Y is held fixed, in
order to have

gi(X) + dgi(X) = 0, i = 1, 2, . . . ,m + l (7.106)

we must have
g(X) + dg(X) = 𝟎 (7.107)

Using Eq. (7.95) for dg in Eq. (7.107), we obtain

dZ = [D]−1(−g(X) − [C]dY) (7.108)

The value of dZ given by Eq. (7.108) is used to update the value of Z as

Zupdate = Zcurrent + dZ (7.109)

The constraints evaluated at the updated vector X, and the procedure (of finding dZ
using Eq. (7.108)) is repeated until dZ is sufficiently small. Note that Eq. (7.108) can
be considered as Newton’s method of solving simultaneous equations for dZ.

Algorithm

1. Specify the design and state variables. Start with an initial trial vector X. Iden-
tify the design and state variables (Y and Z) for the problem using the following
guidelines.

(a) The state variables are to be selected to avoid singularity of the matrix,
[D].

(b) Since the state variables are adjusted during the iterative process to main-
tain feasibility, any component of X that is equal to its lower or upper
bound initially is to be designated a design variable.

(c) Since the slack variables appear as linear terms in the (originally inequal-
ity) constraints, they should be designated as state variables. However, if
the initial value of any state variable is zero (its lower bound value), it
should be designated a design variable.

�

� �

�

7.9 Generalized Reduced Gradient Method 381

2. Compute the GRG. The GRG is determined using Eq. (7.105). The derivatives
involved in Eq. (7.105) can be evaluated numerically, if necessary.

3. Test for convergence. If all the components of the GRG are close to zero, the
method can be considered to have converged and the current vector X can be
taken as the optimum solution of the problem. For this, the following test can
be used: ‖GR‖ ≤ 𝜀

where 𝜀 is a small number. If this relation is not satisfied, we go to step 4.
4. Determine the search direction. The GRG can be used in a manner similar

to a gradient of an unconstrained objective function to generate a suitable
search direction, S. The techniques such as steepest descent, Fletcher–Reeves,
Davidon–Fletcher–Powell, or Broydon–Fletcher–Goldfarb–Shanno (BFGS)
methods can be used for this purpose. For example, if a steepest descent
method is used, the vector S is determined as

S = −GR (7.110)

5. Find the minimum along the search direction. Although any of the one-
dimensional minimization procedures discussed in Chapter 5 can be used to
find a local minimum of f along the search direction S, the following procedure
can be used conveniently.

(a) Find an estimate for 𝜆 as the distance to the nearest side constraint. When
design variables are considered, we have

λ =

⎧⎪⎪⎨⎪⎪⎩
y(u)i − (yi)old

si
if si > 0

y(l)i − (yi)old

si
if si < 0

(7.111)

where si is the ith component of S. Similarly, when state variables are
considered, we have, from Eq. (7.102),

dZ = −[D]−1[C]dY (7.112)

Using dY = 𝜆S, Eq. (7.112) gives the search direction for the variables Z
as

T = −[D]−1[C]S (7.113)

Thus

λ =

⎧⎪⎪⎨⎪⎪⎩
z(u)i − (zi)old

ti
if ti > 0

z(l)i − (zi)old

ti
if ti < 0

(7.114)

where ti is the ith component of T.

�

� �

�

382 NLP III: Constrained Optimization Techniques

(b) The minimum value of 𝜆 given by Eq. (7.111), 𝜆1, makes some design
variable attain its lower or upper bound. Similarly, the minimum value of
𝜆 given by Eq. (7.114), 𝜆2, will make some state variable attain its lower
or upper bound. The smaller of 𝜆1 or 𝜆2 can be used as an upper bound
on the value of 𝜆 for initializing a suitable one-dimensional minimization
procedure. The quadratic interpolation method can be used conveniently
for finding the optimal step length 𝜆*.

(c) Find the new vector Xnew:

Xnew =

{
Yold + dY
Zold + dZ

}
=

{
Yold + λ∗S
Zold + λ∗T

}
(7.115)

If the vector Xnew corresponding to 𝜆
* is found infeasible, then Ynew

is held constant and Znew is modified using Eq. (7.108) with dZ =
Znew −Zold. Finally, when convergence is achieved with Eq. (7.108), we
find that

Xnew =

{
Yold + ΔY

Zold + ΔZ

}
(7.116)

and go to step 1.

Example 7.4
Minimize f (x1, x2, x3) = (x1 − x2)2 + (x2 − x3)4

subject to

g1(X) = x1(1 + x2
2) + x4

3 − 3 = 0

−3 ≤ xi ≤ 3, i = 1, 2, 3

using the GRG method.

SOLUTION

Step 1: We choose arbitrarily the independent and dependent variables as

Y =
{

y1
y2

}
=

{
x1
x2

}
, Z = {z1} = {z3}

Let the starting vector be

X1 =
⎧⎪⎨⎪⎩
−2.6

2

2

⎫⎪⎬⎪⎭
with f (X1) = 21.16.

Step 2: Compute the GRG at X1. Noting that

𝜕f

𝜕x1
= 2(x1 − x2)

𝜕f

𝜕x2
= −2(x1 − x2) + 4(x2 − x3)3

�

� �

�

7.9 Generalized Reduced Gradient Method 383

𝜕f

𝜕x3
= −4(x2 − x3)3

𝜕g1

𝜕x1
= 1 + x2

2

𝜕g1

𝜕x2
= 2x1x2

𝜕g1

𝜕x3
= 4x3

3

we find, at X1,

∇Yf =
⎧⎪⎨⎪⎩
𝜕f

𝜕x1

𝜕f

𝜕x2

⎫⎪⎬⎪⎭
X1

=
{

2(−2.6 − 2)
−2(−2.6 − 2) + 4(2 − 2)3

}
=

{
−9.2
9.2

}

∇Zf =
{
𝜕f

𝜕x3

}
X1

= {−4(x2 − x3)3}X1
= 0

[C] =
[
𝜕g1

𝜕x1

𝜕g1

𝜕x2

]
X1

=
[
5 −10.4

]
[D] =

[
𝜕g1

𝜕x3

]
X1

= [32]

D−1 =
[1

32

]
, [D]−1[C] = 1

32

[
5 −10.4

]
=

[
0.15625 −0.325

]
GR = ∇Yf − [[D]−1[C]]T∇Zf

=
{
−9.2
9.2

}
−

{
0.15625
−0.325

}
(0) =

{
−9.2
9.2

}
Step 3: Since the components of GR are not zero, the point X1 is not optimum, and

hence we go to step 4.
Step 4: We use the steepest descent method and take the search direction as

S = −GR =
{

9.2
−9.2

}
Step 5: We find the optimal step length along S.

(a) Considering the design variables, we use Eq. (7.111) to obtain For
y1 = x1:

λ = 3 − (−2.6)
9.2

= 0.6087

For y2 = x2:

λ = −3 − (2)
−9.2

= 0.5435

Thus, the smaller value gives 𝜆1 = 0.5435. Equation (7.113) gives

T = −([D]−1[C])S = −(0.15625 − 0.325)
{

9.2
−9.2

}
= −4.4275

�

� �

�

384 NLP III: Constrained Optimization Techniques

and hence Eq. (7.114) leads to

For z1 = x3 : 𝜆 = −3−(2)
−4.4275

= 1.1293

Thus 𝜆2 = 1.1293.
(b) The upper bound on 𝜆 is given by the smaller of 𝜆1 and 𝜆2, which is

equal to 0.5435. By expressing

X =
{

Y + λS
Z + λT

}
we obtain

X =
⎧⎪⎨⎪⎩

x1
x2
x3

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
−2.6

2
2

⎫⎪⎬⎪⎭ + λ
⎧⎪⎨⎪⎩

9.2
−9.2

−4.4275

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
−2.6 + 9.2λ

2 − 9.2λ
2 − 4.4275λ

⎫⎪⎬⎪⎭
and hence

f (λ) = f (X) = (−2.6 + 9.2λ − 2 + 9.2λ)2

+ (2 − 9.2λ − 2 + 4.4275λ)4

= 518.7806λ4 + 338.56λ2 − 169.28λ + 21.16

df/d𝜆 = 0 gives

2075.1225λ3 + 677.12λ − 169.28 = 0

from which we find the root as 𝜆* ≈ 0.22. Since 𝜆* is less than the upper
bound value 0.5435, we use 𝜆*.

(c) The new vector Xnew is given by

Xnew =
{

Yold + dY
Zold + dZ

}

=
{

Yold + λ ∗ S
Zold + λ ∗ T

}
=

⎧⎪⎨⎪⎩
−2.6 + 0.22(9.2)
2 + 0.22(−9.2)

2 + 0.22(−4.4275)

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩
−0.576
−0.024
1.02595

⎫⎪⎬⎪⎭
with

dY =
{

2.024
−2.024

}
, dZ = {−0.97405}

Now, we need to check whether this vector is feasible. Since

g1(Xnew) = (−0.576)[1 + (−0.024)2] + (1.02595)4 − 3 = −2.4684 ≠ 0

the vector Xnew is infeasible. Hence we hold Ynew constant and modify
Znew using Newton’s method (Eq. (7.108)) as

dZ = [D]−1[−g(X) − [C]dY]

�

� �

�

7.9 Generalized Reduced Gradient Method 385

Since

[D] =
[
𝜕g1

𝜕z1

]
= [4x3

3] = [4(1.02595)3] = [4.319551]

g1(X) = {−2.4684}

[C] =
[
𝜕g1

𝜕y1

𝜕g1

𝜕y2

]
= {[2(−0.576 + 0.024)][−2(−0.576 + 0.024)

+ 4(−0.024 − 1.02595)3}]

= [−1.104 − 3.5258]

dZ = 1
4.319551

[2.4684 − {−1.104 − 3.5258}

×
{

2.024
−2.024

}]
= {−0.5633}

we have Znew =Zold + dZ= {2− 0.5633}= {1.4367}. The current Xnew
becomes

Xnew =
{

Yold + dY
Zold + dZ

}
=

⎧⎪⎨⎪⎩
−0.576

−0.024

1.4367

⎫⎪⎬⎪⎭
The constraint becomes

g1 = (−0.576)(1 − (−0.024)2) + (1.4367)4 − 3 = 0.6842 ≠ 0

Since this Xnew is infeasible, we need to apply Newton’s method
(Eq. (7.108)) at the current Xnew. In the present case, instead of
repeating Newton’s iteration, we can find the value of Znew = {x3}new
by satisfying the constraint as

g1(X) = (−0.576)[1 + (−0.024)2] + x4
3 − 3 = 0

or x3 = (2.4237)0.25 = 1.2477

This gives

Xnew =
⎧⎪⎨⎪⎩

−0.576

−0.024

1.2477

⎫⎪⎬⎪⎭ and

f (Xnew) = (−0.576 + 0.024)2 + (−0.024 − 1.2477)4 = 2.9201

Next, we go to step 1.

Step 1: We do not have to change the set of independent and dependent variables
and hence we go to the next step.

�

� �

�

386 NLP III: Constrained Optimization Techniques

Step 2: We compute the GRG at the current X using Eq. (7.105). Since

∇Yf =

⎧⎪⎪⎨⎪⎪⎩
𝜕f

𝜕x1

𝜕f

𝜕x2

⎫⎪⎪⎬⎪⎪⎭
=

{
2(−0.576 + 0.024)

−2(−0.576 + 0.024) + 4(−0.024 − 1.2477)3
}

=
{

−1.104
−7.1225

}
∇Z f =

{
𝜕f

𝜕z1

}
=

{
𝜕f

𝜕x3

}
= {−4(−0.024 − 1.2477)3} = {8.2265}

[C] =
[
𝜕g1

𝜕x1

𝜕g1

𝜕x2

]
= [(1 + (−0.024)2) 2(−0.576)(−0.024)]

= [1.000576 0.027648]

[D] =
[
𝜕g1

𝜕x3

]
= [4x3

3] = [4(1.2477)3] = [7.7694]

[D]−1[C] = 1
7.7694

[1.000576 0.027648] = [0.128784 0.003558]

GR = ∇Yf − [[D]−1[C]]T∇Z f

=
{

−1.104
−7.1225

}
−

{
0.128784
0.003558

}
(8.2265) =

{
−2.1634
−7.1518

}
Since GR ≠ 0, we need to proceed to the next step.

Note: It can be seen that the value of the objective function reduced from an initial
value of 21.16–2.9201 in one iteration.

7.10 SEQUENTIAL QUADRATIC PROGRAMMING

The sequential quadratic programming is one of the most recently developed and per-
haps one of the best methods of optimization. The method has a theoretical basis that
is related to (1) the solution of a set of nonlinear equations using Newton’s method,
and (2) the derivation of simultaneous nonlinear equations using Kuhn–Tucker con-
ditions to the Lagrangian of the constrained optimization problem. In this section we
present both the derivation of the equations and the solution procedure of the sequential
quadratic programming approach.

7.10.1 Derivation

Consider a nonlinear optimization problem with only equality constraints:

Find X which minimizes f (X)

subject to
hk(X) = 0, k = 1, 2, . . . , p (7.117)

The extension to include inequality constraints will be considered at a later stage. The
Lagrange function, L(X, 𝝀), corresponding to the problem of Eq. (7.117) is given by

L = f (X) +
p∑

k=1

λkhk(X) (7.118)

�

� �

�

7.10 Sequential Quadratic Programming 387

where 𝜆k is the Lagrange multiplier for the kth equality constraint. The Kuhn–Tucker
necessary conditions can be stated as

∇L = 𝟎 or ∇f +
p∑

k=1

λk∇hk = 𝟎 or ∇f + [A]Tλ = 𝟎 (7.119)

hk(X) = 0, k = 1, 2, . . . , p (7.120)

where [A] is an n× p matrix whose kth column denotes the gradient of the function
hk. Equations (7.119) and (7.120) represent a set of n+ p nonlinear equations in n+ p
unknowns (xi, i = 1, . . . , n and 𝜆k, k = 1, . . . , p). These nonlinear equations can be
solved using Newton’s method. For convenience, we rewrite Eqs. (7.119) and (7.120)
as

F(Y) = 𝟎 (7.121)

where

F =
{
∇L
h

}
(n+p)×1

, Y =
{

X
𝛌

}
(n+p)×1

, 0 =
{
𝟎
𝟎

}
(n+p)×1

(7.122)

According to Newton’s method, the solution of Eq. (7.121) can be found itera-
tively as (see Section 6.11)

Yj+1 = Yj + ΔYj (7.123)

with
[∇F]Tj ΔYj = −F(Yj) (7.124)

where Yj is the solution at the start of jth iteration andΔYj is the change in Yj necessary
to generate the improved solution, Yj+1, and [∇F]j = [∇F (Yj)] is the (n+ p)× (n+ p)
Jacobian matrix of the nonlinear equations whose ith column denotes the gradient
of the function Fi (Y) with respect to the vector Y. By substituting Eqs. (7.121) and
(7.122) into Eq. (7.124), we obtain[

[∇2L] [H]
[H]T [0]

]
j

{
ΔX
Δ𝛌

}
j

= −
{
∇L
h

}
j

(7.125)

ΔXj = Xj+1 − Xj (7.126)

Δ𝛌j = 𝛌j+1 − 𝛌j (7.127)

where [∇2L]n×n denotes the Hessian matrix of the Lagrange function. The first set of
equations in (7.125) can be written separately as

[∇2L]jΔXj + [H]j + [H]jΔλj = −ΔLj (7.128)

Using Eq. (7.127) for Δ𝝀j and Eq. (7.119) for ∇Lj, Eq. (7.128) can be expressed as

[∇2L]jΔXj + [H]j(λj+1 − λj) = −∇fj − [H]Tj λj (7.129)

which can be simplified to obtain

[∇2L]jΔXj + [H]jλj+1 = −∇fj (7.130)

�

� �

�

388 NLP III: Constrained Optimization Techniques

Equation (7.130) and the second set of equations in (7.125) can now be combined as[
[∇2L] [H]
[H]T [0]

]
j

{
ΔXj

𝛌j+1

}
= −

{
∇fj
hj

}
(7.131)

Equation (7.131) can be solved to find the change in the design vector ΔXj and the new
values of the Lagrange multipliers, 𝝀j+1. The iterative process indicated by Eq. (7.131)
can be continued until convergence is achieved.

Now consider the following quadratic programming problem:
Find ΔX that minimizes the quadratic objective function

Q = ∇f TΔX + 1
2
ΔXT[∇2L]ΔX

subject to the linear equality constraints

hk + ∇hT
kΔX = 0, k = 1, 2, . . . , p or h + [H]TΔX = 𝟎 (7.132)

The lagrange function, L̃, corresponding to the problem of Eq. (7.132) is given by

L̃ = ∇f TΔX + 1
2
ΔXT[∇2L]ΔX +

p∑
k=1

λk(hk + ∇hT
kΔX) (7.133)

where 𝜆k is the Lagrange multiplier associated with the kth equality constraint.
The Kuhn–Tucker necessary conditions can be stated as

∇f + [∇2L]ΔX + [H]𝛌 = 𝟎 (7.134)

hk + ∇hT
kΔX = 0, k = 1, 2, . . . , p (7.135)

Equations (7.134) and (7.135) can be identified to be same as Eq. (7.131) in matrix
form. This shows that the original problem of Eq. (7.117) can be solved iteratively
by solving the quadratic programming problem defined by Eq. (7.132). In fact, when
inequality constraints are added to the original problem, the quadratic programming
problem of Eq. (7.132) becomes

Find X which minimizes Q = ∇f TΔX + 1
2
ΔXT[∇2L]ΔX

subject to

gj + ∇gT
j ΔX ≤ 0, j = 1, 2, . . . ,m

hk + ∇hT
kΔX = 0, k = 1, 2, . . . , p (7.136)

with the Lagrange function given by

L̃ = f (X) +
m∑

j=1

λjgj(X) +
p∑

k=1

λm+khk(X) (7.137)

Since the minimum of the augmented Lagrange function is involved, the sequential
quadratic programming method is also known as the projected Lagrangian method.

�

� �

�

7.10 Sequential Quadratic Programming 389

7.10.2 Solution Procedure

As in the case of Newton’s method of unconstrained minimization, the solution vector
ΔX in Eq. (7.136) is treated as the search direction, S, and the quadratic programming
subproblem (in terms of the design vector S) is restated as:

Find S which minimizes Q(S) = ∇f (X)TS + 1
2

ST[H]S

subject to

𝛽jgj(X) + ∇gj(X)TS ≤ 0, j = 1, 2, . . . ,m

𝛽hk(X) + ∇hk(X)TS = 0, k = 1, 2, . . . , p (7.138)

where [H] is a positive definite matrix that is taken initially as the identity matrix
and is updated in subsequent iterations so as to converge to the Hessian matrix of the
Lagrange function of Eq. (7.137), and 𝛽 j and 𝛽 are constants used to ensure that the
linearized constraints do not cut off the feasible space completely. Typical values of
these constants are given by

𝛽 ≈ 0.9; 𝛽j =

{
1 if gj(X) ≤ 0

𝛽 if gj(X) ≥ 0
(7.139)

The subproblem of Eq. (7.138) is a quadratic programming problem and hence
the method described in Section 4.8 can be used for its solution. Alternatively, the
problem can be solved by any of the methods described in this chapter since the gra-
dients of the function involved can be evaluated easily. Since the Lagrange multipliers
associated with the solution of the problem, Eq. (7.138), are needed, they can be eval-
uated using Eq. (7.263). Once the search direction, S, is found by solving the problem
in Eq. (7.138), the design vector is updated as

Xj+1 = Xj + 𝛼∗S (7.140)

where 𝛼* is the optimal step length along the direction S found by minimizing the
function (using an exterior penalty function approach):

𝜙 = f (X) +
m∑

j=1

λj(max[0, gj(X)]) +
p∑

k=1

λm+k|hk(X)| (7.141)

with

λj =

{|λj|, j = 1, 2, . . . ,m + p in first iteration

max
{|λj|, 1

2
(λ̃j, |λj|)} in subsequent iterations

(7.142)

and λ̃j = λj of the previous iteration. The one-dimensional step length 𝛼* can be found
by any of the methods discussed in Chapter 5.

Once Xj+1 is found from Eq. (7.140), for the next iteration the Hessian matrix [H]
is updated to improve the quadratic approximation in Eq. (7.138). Usually, a modified
BFGS formula, given below, is used for this purpose [7.12]:

[Hi+1] = [Hi] −
[Hi]PiP

T
i [Hi]

PT
i [Hi]Pi

+ 𝛾𝛾
T

PT
i Pi

(7.143)

�

� �

�

390 NLP III: Constrained Optimization Techniques

Pi = Xi+1 − Xi (7.144)

𝛾 = 𝜃Qi + (1 − 𝜃)[Hi]Pi (7.145)

Qi = ∇xL̃(Xi+1, λi+1) − ∇xL̃(Xi, λi) (7.146)

𝜃 =
⎧⎪⎨⎪⎩

1.0 if PT
i Qi ≥ 0.2PT

i [Hi]Pi

0.8PT
i [Hi]Pi

PT
i [Hi]Pi − PT

i Qi

if PT
i Qi < 0.2PT

i [Hi]Pi
(7.147)

where L̃ is given by Eq. (7.137) and the constants 0.2 and 0.8 in Eq. (7.147) can be
changed, based on numerical experience.

Example 7.5 Find the solution of the problem (see Problem 1.31):

Minimize f (X) = 0.1x1 + 0.05773x2 (E1)

subject to

g1(X) = 0.6
x1

+ 0.3464
x2

− 0.1 ≤ 0 (E2)

g2(X) = 6 − x1 ≤ 0 (E3)

g3(X) = 7 − x2 ≤ 0 (E4)

using the sequential quadratic programming technique.

SOLUTION Let the starting point be X1 = (11.8765, 7.0)T with g1(X1) = g3(X1) = 0,
g2(X1) = −5.8765, and f (X1) = 1.5917. The gradients of the objective and constraint
functions at X1 are given by

∇f (X1) =
{

0.1
0.05773

}
, ∇g1(X1) =

⎧⎪⎪⎨⎪⎪⎩

−0.6

x2
1

−0.3464

x2
2

⎫⎪⎪⎬⎪⎪⎭X1

=
{
−0.004254
−0.007069

}

∇g2(X1) =
{
−1
0

}
, ∇g3(X1) =

{
0
−1

}
We assume the matrix [H1] to be the identity matrix and hence the objective function
of Eq. (7.138) becomes

Q(S) = 0.1s1 + 0.05773s2 + 0.5s2
1 + 0.5s2

2 (E5)

Equation (7.139) gives 𝛽1 = 𝛽3 = 0 since g1 = g3 = 0 and 𝛽2 = 1.0 since g2 < 0, and
hence the constraints of Eq. (7.138) can be expressed as

g̃1 = −0.004254s1 − 0.007069s2 ≤ 0 (E6)

g̃2 = −5.8765 − s1 ≤ 0 (E7)

g̃3 = −s2 ≤ 0 (E8)

�

� �

�

7.10 Sequential Quadratic Programming 391

We solve this quadratic programming problem (Eqs. (E5)–(E8)) directly with the use
of the Kuhn–Tucker conditions. The Kuhn–Tucker conditions are given by

𝜕Q
𝜕s1

+
3∑

j=1

λj

𝜕g̃j

𝜕s1
= 0 (E9)

𝜕Q
𝜕s2

+
3∑

j=1

λj

𝜕g̃j

𝜕s1
= 0 (E10)

λjg̃j = 0, j = 1, 2, 3 (E11)

g̃j ≤ 0, j = 1, 2, 3 (E12)

λj ≥ 0, j = 1, 2, 3 (E13)

Equations (E9) and (E10) can be expressed, in this case, as

0.1 + s1 − 0.004254λ1 − λ2 = 0 (E14)

0.05773 + s2 − 0.007069λ1 − λ3 = 0 (E15)

By considering all possibilities of active constraints, we find that the optimum solution
of the quadratic programming problem (Eqs. (E5)–(E8)) is given by

s∗1 = −0.04791, s∗2 = 0.02883, λ∗1 = 12.2450, λ∗2 = 0, λ∗3 = 0

The new design vector, X, can be expressed as

X = X1 + 𝛼S =
{

11.8765 − 0.04791𝛼
7.0 + 0.02883𝛼

}
where 𝛼 can be found by minimizing the function 𝜙 in Eq. (7.141):

𝜙 = 0.1(11.8765 − 0.04791𝛼) + 0.05773(7.0 + 0.02883𝛼)

+ 12.2450
(0.6

11.8765 − 0.04791𝛼
+ 0.3464

7.0 + 0.02883𝛼
− 0.1

)
By using quadratic interpolation technique (unrestricted search method can also be
used for simplicity), we find that 𝜙 attains its minimum value of 1.48 at 𝛼* = 64.93,
which corresponds to the new design vector

X2 =
{

8.7657
8.8719

}
with f (X2) = 1.38874 and g1(X2) = +0.0074932 (violated slightly). Next, we update
the matrix [H] using Eq. (7.143) with

L̃ = 0.1x1 + 0.05773x2 + 12.2450

(
0.6
x1

+ 0.3464
x2

− 0.1

)

�

� �

�

392 NLP III: Constrained Optimization Techniques

∇xL̃ =
⎧⎪⎨⎪⎩
𝜕L̃
𝜕x1

𝜕L̃
𝜕x2

⎫⎪⎬⎪⎭ with
𝜕L̃
𝜕x1

= 0.1 − 7.3470

x2
1

and
𝜕L̃
𝜕x2

= 0.05773 − 4.2417

x2
2

P1 = X2 − X1 =
{
−3.1108
1.8719

}
Q1 = ∇xL̃(X2) − ∇xL̃(X1) =

{
0.00438
0.00384

}
−

{
0.04791
−0.02883

}
=

{
−0.04353
0.03267

}
PT

1 [H1]P1 = 13.1811, PT
1 Q1 = 0.19656

This indicates that PT
1 Q1 < 0.2PT

1 [H1]P1, and hence 𝜃 is computed using Eq. (7.147)
as

𝜃 = (0.8)(13.1811)
13.1811 − 0.19656

= 0.81211

𝛾 = 𝜃Q1 + (1 − 𝜃)[H1]P1 =
{

0.54914
−0.32518

}
Hence

[H2] =
[

0.2887 0.4283
0.4283 0.7422

]
We can now start another iteration by defining a new quadratic programming problem
using Eq. (7.138) and continue the procedure until the optimum solution is found. Note
that the objective function reduced from a value of 1.5917 to 1.38874 in one iteration
when X changed from X1 to X2.

Indirect Methods

7.11 TRANSFORMATION TECHNIQUES

If the constraints gj(X) are explicit functions of the variables xi and have certain sim-
ple forms, it may be possible to make a transformation of the independent variables
such that the constraints are satisfied automatically [7.13]. Thus, it may be possible
to convert a constrained optimization problem into an unconstrained one by making a
change of variables. Some typical transformations are indicated below:

1. If lower and upper bounds on xi are specified as

li ≤ xi ≤ ui (7.148)

these can be satisfied by transforming the variable xi as

xi = li + (ui − li)sin2yi (7.149)

where yi is the new variable, which can take any value.

�

� �

�

7.11 Transformation Techniques 393

2. If a variable xi is restricted to lie in the interval (0, 1), we can use the transfor-
mation:

xi = sin2yi, xi = cos2yi

xi =
eyi

eyi + e−yi
or, xi =

y2
i

1 + y2
i

(7.150)

3. If the variable xi is constrained to take only positive values, the transformation
can be

xi = abs(yi), xi = y2
i or xi = eyi (7.151)

4. If the variable is restricted to take values lying only in between −1 and 1, the
transformation can be

xi = sin yi, xi = cos yi, or xi =
2yi

1 + y2
i

(7.152)

Note the following aspects of transformation techniques:

1. The constraints gj(X) have to be very simple functions of xi.
2. For certain constraints it may not be possible to find the necessary transforma-

tion.
3. If it is not possible to eliminate all the constraints by making a change of

variables, it may be better not to use the transformation at all. The partial trans-
formation may sometimes produce a distorted objective function which might
be more difficult to minimize than the original function.

To illustrate the method of transformation of variables, we consider the following
problem.

Example 7.6 Find the dimensions of a rectangular prism-type box that has the largest
volume when the sum of its length, width, and height is limited to a maximum value
of 60 in. and its length is restricted to a maximum value of 36 in.

SOLUTION Let x1, x2, and x3 denote the length, width, and height of the box, respec-
tively. The problem can be stated as follows:

Maximize f (x1, x2, x3) = x1x2x3 (E1)

subject to
x1 + x2 + x3 ≤ 60 (E2)

x1 ≤ 36 (E3)

xi ≥ 0, i = 1, 2, 3 (E4)

By introducing new variables as

y1 = x1, y2 = x2, y3 = x1 + x2 + x3 (E5)

or
x1 = y1, x2 = y2, x3 = y3 − y1 − y2 (E6)

�

� �

�

394 NLP III: Constrained Optimization Techniques

the constraints of Eqs. (E2)–(E4) can be restated as

0 ≤ y1 ≤ 36, 0 ≤ y2 ≤ 60, 0 ≤ y3 ≤ 60 (E7)

where the upper bound, for example, on y2 is obtained by setting x1 = x3 = 0 in
Eq. (E2). The constraints of Eq. (E7) will be satisfied automatically if we define new
variables zi, i = 1, 2, 3, as

y1 = 36 sin2z1, y2 = 60 sin2z2, y3 = 60 sin2z3 (E8)

Thus, the problem can be stated as an unconstrained problem as follows:

Maximize f (z1, z2, z3)

= y1y2(y3 − y1 − y2)

= 2160 sin2z1 sin2 z2(60 sin2 z3 − 36 sin2z1 − 60 sin2 z2) (E9)

The necessary conditions of optimality yield the relations

𝜕f

𝜕z1
= 259,200 sin z1 cos z1 sin2 z2

(
sin2 z3 −

6
5

sin2 z1 − sin2 z2

)
= 0 (E10)

𝜕f

𝜕z2
= 518,400 sin2 z1 sin z2 cos z2

(1
2

sin2 z3 −
3

10
sin2z1 − sin2 z2

)
= 0 (E11)

𝜕f

𝜕z3
= 259,200 sin2 z1 sin2 z2 sin z3 cos z3 = 0 (E12)

Equation (E12) gives the nontrivial solution as cos z3 = 0 or sin2 z3 = 1. Hence
Eqs. (E10) and (E11) yield sin2 z1 =

5
9

and sin2 z2 =
1
3
. Thus the optimum solution is

given by x∗1 = 20 in., x∗2 = 20 in., x∗3 = 20 in., and the maximum volume = 8000 in.3.

7.12 BASIC APPROACH OF THE PENALTY FUNCTION METHOD

Penalty function methods transform the basic optimization problem into alternative
formulations such that numerical solutions are sought by solving a sequence of uncon-
strained minimization problems. Let the basic optimization problem, with inequality
constraints, be of the form:

Find X which minimizes f (X)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (7.153)

This problem is converted into an unconstrained minimization problem by con-
structing a function of the form

𝜙k = 𝜙(X, rk) = f (X) + rk

m∑
j=1

Gj[gj(X)] (7.154)

where Gj is some function of the constraint gj, and rk is a positive constant known
as the penalty parameter. The significance of the second term on the right side of
Eq. (7.154), called the penalty term, will be seen in Sections 7.13 and 7.15. If the

�

� �

�

7.12 Basic Approach of the Penalty Function Method 395

unconstrained minimization of the 𝜙 function is repeated for a sequence of values of
the penalty parameter rk(k = 1, 2, . . .), the solution may be brought to converge to
that of the original problem stated in Eq. (7.153). This is the reason why the penalty
function methods are also known as sequential unconstrained minimization techniques
(SUMTs).

The penalty function formulations for inequality constrained problems can be
divided into two categories: interior and exterior methods. In the interior formulations,
some popularly used forms of Gj are given by

Gj = − 1
gj(X)

(7.155)

Gj = − log[−gj(X)] (7.156)

Some commonly used forms of the function Gj in the case of exterior penalty function
formulations are

Gj = max[0, gj(X)] (7.157)

Gj = {max[0, gi(X)]}2 (7.158)

In the interior methods, the unconstrained minima of 𝜙k all lie in the feasible region
and converge to the solution of Eq. (7.153) as rk is varied in a particular manner. In the
exterior methods, the unconstrained minima of 𝜙k all lie in the infeasible region and
converge to the desired solution from the outside as rk is changed in a specified manner.
The convergence of the unconstrained minima of 𝜙k is illustrated in Figure 7.10 for
the simple problem

Find X = {x1} which minimizes f (X) = 𝛼x1

subject to

g1(X) = 𝛽 − x1 ≤ 0 (7.159)

It can be seen from Figure 7.10a that the unconstrained minima of 𝜙(X, rk) converge
to the optimum point X* as the parameter rk is increased sequentially. On the other
hand, the interior method shown in Figure 7.10b gives convergence as the parameter
rk is decreased sequentially.

There are several reasons for the appeal of the penalty function formulations. One
main reason, which can be observed from Figure 7.10, is that the sequential nature of
the method allows a gradual or sequential approach to criticality of the constraints. In
addition, the sequential process permits a graded approximation to be used in analysis
of the system. This means that if the evaluation of f and gj (and hence 𝜙(X, rk)) for any
specified design vector X is computationally very difficult, we can use coarse approx-
imations during the early stages of optimization (when the unconstrained minima of
𝜙k are far away from the optimum) and finer or more detailed analysis approximation
during the final stages of optimization. Another reason is that the algorithms for the
unconstrained minimization of rather arbitrary functions are well studied and gener-
ally are quite reliable. The algorithms of the interior and the exterior penalty function
methods are given in Sections 7.13 and 7.15.

�

� �

�

396 NLP III: Constrained Optimization Techniques

Optimum X*
Optimum X*

x1 x10 0

f(X) = αx1

f(X) = αx1

x1 = β x1 = β

ϕ3
*

ϕ3
*

ϕ2
*

ϕ2
*

ϕ1
*

ϕ1
*

ϕ(r1)

ϕ(X, r1)

ϕ(X, r2)

ϕ(X, r3)

ϕ(r2)

ϕ(r3)

ϕ, f ϕ, f

rk < rk + 1

rk > rk + 1

Gj {gj(X)} = {max [0, gj(X)]}2 Gj {gj(X)} = –1/gj(X)

(a) (b)

Figure 7.10 Penalty function methods: (a) exterior method; (b) interior method.

7.13 INTERIOR PENALTY FUNCTION METHOD

As indicated in Section 7.12, in the interior penalty function methods, a new function
(𝜙 function) is constructed by augmenting a penalty term to the objective function. The
penalty term is chosen such that its value will be small at points away from the con-
straint boundaries and will tend to infinity as the constraint boundaries are approached.
Hence the value of the 𝜙 function also “blows up” as the constraint boundaries are
approached. This behavior can also be seen from Figure 7.10b. Thus, once the uncon-
strained minimization of 𝜙(X, rk) is started from any feasible point X1, the subsequent
points generated will always lie within the feasible domain since the constraint bound-
aries act as barriers during the minimization process. This is the reason why the interior
penalty function methods are also known as barrier methods. The 𝜙 function defined
originally by Carroll [7.14] is

𝜙(X, rk) = f (X) − rk

m∑
j=1

1
gj(X)

(7.160)

It can be seen that the value of the function 𝜙 will always be greater than f since
gj(X) is negative for all feasible points X. If any constraint gj(X) is satisfied critically
(with equality sign), the value of 𝜙 tends to infinity. It is to be noted that the penalty
term in Eq. (7.160) is not defined if X is infeasible. This introduces serious shortcom-
ings while using the Eq. (7.160). Since this equation does not allow any constraint
to be violated, it requires a feasible starting point for the search toward the optimum
point. However, in many engineering problems, it may not be very difficult to find
a point satisfying all the constraints, gj(X)≤ 0, at the expense of large values of the
objective function, f (X). If there is any difficulty in finding a feasible starting point,
the method described in the latter part of this section can be used to find a feasible
point. Since the initial point as well as each of the subsequent points generated in this
method lies inside the acceptable region of the design space, the method is classified

�

� �

�

7.13 Interior Penalty Function Method 397

as an interior penalty function formulation. Since the constraint boundaries act as bar-
riers, the method is also known as a barrier method. The iteration procedure of this
method can be summarized as follows.

Iterative Process

1. Start with an initial feasible point X1 satisfying all the constraints with strict
inequality sign, that is, gj(X1)< 0 for j = 1, 2, . . . , m, and an initial value of
r1 > 0. Set k = 1.

2. Minimize 𝜙(X, rk) by using any of the unconstrained minimization methods
and obtain the solution X∗

k .
3. Test whether X∗

k is the optimum solution of the original problem. If X∗
k is found

to be optimum, terminate the process. Otherwise, go to the next step.
4. Find the value of the next penalty parameter, rk+1,as

rk+1 = crk

where c< 1.
5. Set the new value of k = k+ 1, take the new starting point as X1 = X∗

k , and go
to step 2.

Although the algorithm is straightforward, there are a number of points to be consid-
ered in implementing the method:

1. The starting feasible point X1 may not be readily available in some cases.
2. A suitable value of the initial penalty parameter (r1) has to be found.
3. A proper value has to be selected for the multiplication factor, c.
4. Suitable convergence criteria have to be chosen to identify the optimum point.
5. The constraints have to be normalized so that each one of them vary between

−1 and 0 only.
All these aspects are discussed in the following paragraphs.

Starting Feasible Point X1. In most engineering problems, it will not be very difficult
to find an initial point X1 satisfying all the constraints, gj(X1)< 0. As an example,
consider the problem of minimum weight design of a beam whose deflection under a
given loading condition has to remain less than or equal to a specified value. In this
case one can always choose the cross section of the beam to be very large initially so
that the constraint remains satisfied. The only problem is that the weight of the beam
(objective) corresponding to this initial design will be very large. Thus, in most of the
practical problems, we will be able to find a feasible starting point at the expense of
a large value of the objective function. However, there may be some situations where
the feasible design points could not be found so easily. In such cases, the required
feasible starting points can be found by using the interior penalty function method
itself as follows:

1. Choose an arbitrary point X1 and evaluate the constraints gj(X) at the point
X1. Since the point X1 is arbitrary, it may not satisfy all the constraints with
strict inequality sign. If r out of a total of m constraints are violated, renumber
the constraints such that the last r constraints will become the violated ones,
that is,

�

� �

�

398 NLP III: Constrained Optimization Techniques

gj(X1) < 0, j = 1, 2, . . . ,m − r

gj(X1) ≥ 0, j = m − r + 1,m − r + 2, . . . ,m (7.161)

2. Identify the constraint that is violated most at the point X1, that is, find the
integer k such that

gk(X1) = max[gj(X1)]

for j = m − r + 1,m − r + 2, . . . ,m (7.162)

3. Now formulate a new optimization problem as

Find X which minimizes gk(X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m − r

gj(X) − gk(X1) ≤ 0, j = m − r + 1, m − r + 2, . . . ,

k − 1, k + 1, . . . ,m (7.163)

4. Solve the optimization problem formulated in step 3 by taking the point X1 as
a feasible starting point using the interior penalty function method. Note that
this optimization method can be terminated whenever the value of the objective
function gk(X) drops below zero. Thus, the solution obtained XM will satisfy
at least one more constraint than did the original point X1.

5. If all the constraints are not satisfied at the point XM, set the new starting point
as X1 = XM, and renumber the constraints such that the last r constraints will be
the unsatisfied ones (this value of r will be different from the previous value),
and go to step 2.

This procedure is repeated until all the constraints are satisfied and a point X1 = XM
is obtained for which gj(X1)< 0, j = 1, 2, . . . , m.

If the constraints are consistent, it should be possible to obtain, by applying the
procedure, a point X1 that satisfies all the constraints. However, there may exist situa-
tions in which the solution of the problem formulated in step 3 gives the unconstrained
or constrained local minimum of gk(X) that is positive. In such cases one needs to start
afresh with a new point X1 from step 1 onward.

Initial Value of the Penalty Parameter (r1). Since the unconstrained minimization
of 𝜙(X, rk) is to be carried out for a decreasing sequence of rk, it might appear that by
choosing a very small value of r1, we can avoid an excessive number of minimizations
of the function 𝜙. But from a computational point of view, it will be easier to mini-
mize the unconstrained function 𝜙(X, rk) if rk is large. This can be seen qualitatively
from Figure 7.10b. As the value of rk becomes smaller, the value of the function 𝜙
changes more rapidly in the vicinity of the minimum 𝜙

∗
k . Since it is easier to find the

minimum of a function whose graph is smoother, the unconstrained minimization of
𝜙 will be easier if rk is large. However, the minimum of 𝜙k, X∗

k , will be farther away
from the desired minimum X* if rk is large. Thus, it requires an excessive number of
unconstrained minimizations of 𝜙(X, rk) (for several values of rk) to reach the point
X* if r1 is selected to be very large. Thus, a moderate value has to be chosen for the
initial penalty parameter (r1). In practice, a value of r1 that gives the value of 𝜙(X1, r1)

�

� �

�

7.13 Interior Penalty Function Method 399

approximately equal to 1.1–2.0 times the value of f (X1) has been found to be quite sat-
isfactory in achieving quick convergence of the process. Thus, for any initial feasible
starting point X1, the value of r1 can be taken as

r1 ≃ 0.1 to 1.0
f (X1)

−
∑m

j=1 1∕gj(X1)
(7.164)

Subsequent Values of the Penalty Parameter. Once the initial value of rk is chosen,
the subsequent values of rk+1 must be chosen such that

rk+1 < rk (7.165)

For convenience, the values of rk are chosen according to the relation

rk+1 = crk (7.166)

where c< 1. The value of c can be taken as 0.1, 0.2, or 0.5.

Convergence Criteria. Since the unconstrained minimization of 𝜙(X, rk) has to be
carried out for a decreasing sequence of values rk, it is necessary to use proper con-
vergence criteria to identify the optimum point and to avoid an unnecessarily large
number of unconstrained minimizations. The process can be terminated whenever the
following conditions are satisfied.

1. The relative difference between the values of the objective function obtained
at the end of any two consecutive unconstrained minimizations falls below a
small number 𝜀1, that is,

|||||
f (X∗

k) − f (X∗
k−1)

f (X∗
k)

||||| ≤ 𝜀1 (7.167)

2. The difference between the optimum points X∗
k and X∗

k−1 becomes very small.
This can be judged in several ways. Some of them are given below:

|(∇X)i| ≤ 𝜀2 (7.168)

where ΔX = X∗
k − X∗

k−1, and (ΔX)i is the ith component of the vector ΔX.

max|(ΔX)i| ≤ 𝜀3 (7.169)

|ΔX| = [(ΔX)21 + (ΔX)22 +⋯ + (ΔX)2n]1∕2 ≤ 𝜀4 (7.170)

Note that the values of 𝜀1 to 𝜀4 must be chosen depending on the characteristics
of the problem at hand.

Normalization of Constraints. A structural optimization problem, for example, might
be having constraints on the deflection (𝛿) and the stress (𝜎) as

g1(X) = 𝛿(X) − 𝛿max ≤ 0 (7.171)

g2(X) = 𝜎(X) − 𝜎max ≤ 0 (7.172)

�

� �

�

400 NLP III: Constrained Optimization Techniques

where the maximum allowable values are given by 𝛿max = 0.5 in. and 𝜎max = 20 000 psi.
If a design vector X1 gives the values of g1 and g2 as −0.2 and −10 000, the
contribution of g1 will be much larger than that of g2 (by an order of 104) in
the formulation of the 𝜙 function given by Eq. (7.160). This will badly affect the
convergence rate during the minimization of 𝜙 function. Thus, it is advisable to
normalize the constraints so that they vary between −1 and 0 as far as possible. For
the constraints shown in Eqs. (7.171) and (7.172), the normalization can be done as

g′1(X) =
g1(X)
𝛿max

= 𝛿(X)
𝛿max

− 1 ≤ 0 (7.173)

g′2(X) =
g2(X)
𝜎max

= 𝜎(X)
𝜎max

− 1 ≤ 0 (7.174)

If the constraints are not normalized as shown in Eqs. (7.173) and (7.174), the problem
can still be solved effectively by defining different penalty parameters for different
constraints as

𝜙(X, rk) = f (X) − rk

m∑
j=1

Rj

gj(X)
(7.175)

where R1, R2, . . . , Rm are selected such that the contributions of different gj(X) to the
𝜙 function will be approximately the same at the initial point X1. When the uncon-
strained minimization of 𝜙(X, rk) is carried for a decreasing sequence of values of rk,
the values of R1, R2, . . . , Rm will not be altered; however, they are expected to be effec-
tive in reducing the disparities between the contributions of the various constraints to
the 𝜙 function.

Example 7.7

Minimize f (x1, x2) =
1
3
(x1 + 1)3 + x2

subject to
g1(x1, x2) = −x1 + 1 ≤ 0

g2(x1, x2) = −x2 ≤ 0

SOLUTION To illustrate the interior penalty function method, we use the calculus
method for solving the unconstrained minimization problem in this case. Hence, there
is no need to have an initial feasible point X1. The 𝜙 function is

𝜙(X, r) = 1
3
(x1 + 1)3 + x2 − r

(
1

−x1 + 1
− 1

x2

)
To find the unconstrained minimum of 𝜙, we use the necessary conditions:

𝜕𝜙

𝜕x1
= (x1 + 1)2 − r

(1 − x1)2
= 0, this is, (x2

1 − 1)2 = r

𝜕𝜙

𝜕x2
= 1 − r

x2
2

= 0, that is, x2
2 = r

�

� �

�

7.13 Interior Penalty Function Method 401

Table 7.3 Results for Example 7.7.

Value of r x∗1(r) = (r1∕2 + 1)1∕2 x∗2(r) = r1∕2
𝜙min(r) f (r)

1000 5.71164 31.62278 376.2636 132.4003
100 3.31662 10.00000 89.9772 36.8109
10 2.04017 3.16228 25.3048 12.5286
1 1.41421 1.00000 9.1046 5.6904
0.1 1.14727 0.31623 4.6117 3.6164
0.01 1.04881 0.10000 3.2716 2.9667
0.001 1.01569 0.03162 2.8569 2.7615
0.0001 1.00499 0.01000 2.7267 2.6967
0.00001 1.00158 0.00316 2.6856 2.6762
0.000001 1.00050 0.00100 2.6727 2.6697
Exact solution 0 1 0 8/3 8/3

These equations give

x∗1(r) = (r1∕2 + 1)1∕2
, x∗2(r) = r1∕2

𝜙min(r) =
1
3
[(r1∕2 + 1)1∕2 + 1]3 + 2r1∕2 − 1

(1∕r) − (1∕r3∕2 + 1∕r2)1∕2

To obtain the solution of the original problem, we know that

fmin = lim
r→0

𝜙min(r)

x∗1 = lim
r→0

x∗1(r)

x∗2 = lim
r→0

x∗2(r)

The values of f, x∗1, and x∗2 corresponding to a decreasing sequence of values of r are
shown in Table 7.3.

Example 7.8
Minimize f (X) = x3

1 − 6x2
1 + 11x1 + x3

subject to

x2
1 + x2

2 − x2
3 ≤ 0

4 − x2
1 − x2

2 − x2
3 ≤ 0

x3 − 5 ≤ 0

−xi ≤ 0, i = 1, 2, 3

SOLUTION The interior penalty function method, coupled with the Davidon–
Fletcher–Powell method of unconstrained minimization and cubic interpolation
method of one-dimensional search, is used to solve this problem. The necessary data
are assumed as follows:

Starting feasible point,X1 =
⎧⎪⎨⎪⎩

0.1
0.1
3.0

⎫⎪⎬⎪⎭
r1 = 1.0, f (X1) = 4.041, 𝜙(X1, r1) = 25.1849

�

� �

�

402 NLP III: Constrained Optimization Techniques

The optimum solution of this problem is known to be [7.15]

X =
⎧⎪⎨⎪⎩

0√
2√
2

⎫⎪⎬⎪⎭ , f ∗ =
√

2

The results of numerical optimization are summarized in Table 7.4.

Convergence Proof. The following theorem proves the convergence of the interior
penalty function method.

Theorem 7.1 If the function

𝜙(X, rk) = f (X) − rk

n∑
j=1

1
gj(X)

(7.176)

is minimized for a decreasing sequence of values of rk, the unconstrained minima X∗
k

converge to the optimal solution of the constrained problem stated in Eq. (7.153) as
rk → 0.

Proof: If X* is the optimum solution of the constrained problem, we need to prove
that

lim
rk→0

[min𝜙(X, rk)] = 𝜙(X∗
k , rk) = f (X∗) (7.177)

Since f (X) is continuous and f (X*)≤ f (X) for all feasible points X, we can choose
feasible point X

̃
such that

f (X
̃
) < f (X∗) + 𝜀

2
(7.178)

for any value of 𝜀> 0. Next select a suitable value of k, say K, such that

rk ≤
{

𝜀

2m

/
min

j

[
− 1

gj(X̃)

]}
(7.179)

From the definition of the 𝜙 function, we have

f (X∗) ≤ min 𝜙(X, rk) = 𝜙(X∗
k , rk) (7.180)

where X∗
k is the unconstrained minimum of 𝜙(X, rk). Further,

𝜙(X∗
k , rk) ≤ 𝜙(X∗

k , rk) (7.181)

since X∗
k minimizes 𝜙(X, rk) and any X other than X∗

k leads to a value of 𝜙 greater
than or equal to 𝜙(X∗

k , rk). Further, by choosing rk < rK, we obtain

𝜙(X∗
K , rK) = f (X∗

K) − rK

m∑
j=1

1
gj(X∗

K)

> f (X∗
K) − rk

m∑
j=1

1
gj(X∗

K)

> 𝜙(X∗
k , rk) (7.182)

�

� �

�

7.13 Interior Penalty Function Method 403

Table 7.4 Results for Example 7.8.

k Value of rk

Starting point
for minimizing 𝜙k

Number of
iterations taken

for minimizing 𝜙k Optimum X∗
k 𝜙

∗
k f ∗k

1 1.0× 100
⎡⎢⎢⎣
0.1
0.1
3.0

⎤⎥⎥⎦ 9
⎡⎢⎢⎣
0.37898
1.67965
2.34617

⎤⎥⎥⎦ 10.36219 5.70766

2 1.0× 10−1
⎡⎢⎢⎣
0.37898
1.67965
2.34617

⎤⎥⎥⎦ 7
⎡⎢⎢⎣
0.10088
1.41945
1.68302

⎤⎥⎥⎦ 4.12440 2.73267

3 1.0× 10−2
⎡⎢⎢⎣
0.10088
1.41945
1.68302

⎤⎥⎥⎦ 5
⎡⎢⎢⎣
0.03066
1.41411
1.49842

⎤⎥⎥⎦ 2.25437 1.83012

4 1.0× 10−3
⎡⎢⎢⎣
0.03066
1.41411
1.49842

⎤⎥⎥⎦ 3
⎡⎢⎢⎣
0.009576
1.41419
1.44081

⎤⎥⎥⎦ 1.67805 1.54560

5 1.0× 10−4
⎡⎢⎢⎣
0.009576
1.41419
1.44081

⎤⎥⎥⎦ 7
⎡⎢⎢⎣
0.003020
1.41421
1.42263

⎤⎥⎥⎦ 1.49745 1.45579

6 1.0× 10−5
⎡⎢⎢⎣
0.003020
1.41421
1.42263

⎤⎥⎥⎦ 3
⎡⎢⎢⎣
0.0009530
1.41421
1.41687

⎤⎥⎥⎦ 1.44052 1.42735

7 1.0× 10−6
⎡⎢⎢⎣
0.0009530
1.41421
1.41687

⎤⎥⎥⎦ 3
⎡⎢⎢⎣
0.0003013
1.41421
1.41505

⎤⎥⎥⎦ 1.42253 1.41837

8 1.0× 10−7
⎡⎢⎢⎣
0.0003013
1.41421
1.41505

⎤⎥⎥⎦ 3
⎡⎢⎢⎣
0.00009535

1.41421
1.41448

⎤⎥⎥⎦ 1.41684 1.41553

9 1.0× 10−8
⎡⎢⎢⎣
0.00009535

1.41421
1.41448

⎤⎥⎥⎦ 5
⎡⎢⎢⎣
0.00003019

1.41421
1.41430

⎤⎥⎥⎦ 1.41505 1.41463

10 1.0× 10−9
⎡⎢⎢⎣
0.00003019

1.41421
1.41430

⎤⎥⎥⎦ 4
⎡⎢⎢⎣
0.000009567

1.41421
1.41424

⎤⎥⎥⎦ 1.41448 1.41435

11 1.0× 10−10
⎡⎢⎢⎣
0.000009567

1.41421
1.41424

⎤⎥⎥⎦ 3
⎡⎢⎢⎣
0.00003011

1.41421
1.41422

⎤⎥⎥⎦ 1.41430 1.41426

12 1.0× 10−11
⎡⎢⎢⎣
0.000003011

1.41421
1.41422

⎤⎥⎥⎦ 3
⎡⎢⎢⎣
0.9562 × 10−6

1.41421
1.41422

⎤⎥⎥⎦ 1.41424 1.41423

13 1.0× 10−12
⎡⎢⎢⎣
0.9562 × 10−6

1.41421
1.41422

⎤⎥⎥⎦ 4
⎡⎢⎢⎣
0.3248 × 10−6

1.41421
1.41421

⎤⎥⎥⎦ 1.41422 1.41422

�

� �

�

404 NLP III: Constrained Optimization Techniques

as X∗
k is the unconstrained minimum of 𝜙(X, rk). Thus

f (X∗) ≤ 𝜙(X∗
k , rk) ≤ 𝜙(X∗

K , rk) < 𝜙(X∗
K , rK) (7.183)

But

𝜙(X∗
K , rK) ≤ 𝜙(X

̃
, rK) = f (X

̃
) − rK

m∑
j=1

1
gj(X̃)

(7.184)

Combining the inequalities (7.183) and (7.184), we have

f (X∗) ≤ 𝜙(X∗
k , rk) ≤ f (X

̃
) − rK

m∑
j=1

1
gj(X̃)

(7.185)

Inequality (7.179) gives

−rK

m∑
j=1

1
gj(X̃)

<
𝜀

2
(7.186)

By using inequalities (7.178) and (7.186), inequality (7.185) becomes

f (X∗) ≤ 𝜙(X∗
k , rk) < f (X∗) + 𝜀

2
+ 𝜀

2
= f (X∗) + 𝜀

or
𝜙(X∗

k , rk) − f (X∗) < 𝜀 (7.187)

Given any 𝜀> 0 (however small it may be), it is possible to choose a value of k so as
to satisfy the inequality (7.187). Hence as k→∞ (rk → 0), we have

lim
rk→0

𝜙(X∗
k , rk) = f (X∗)

This completes the proof of the theorem.

Additional Results. From the proof above, it follows that as rk → 0,

lim
k→∞

f (X∗
k) = f (X∗) (7.188)

lim
k→∞

rk

[
−

m∑
j=1

1
gj(X∗

k)

]
(7.189)

It can also be shown that if r1, r2, . . . is a strictly decreasing sequence of positive val-
ues, the sequence f (X∗

1), f (X∗
2), . . . will also be strictly decreasing. For this, consider

two consecutive parameters, say, rk and rk+1, with

0 < rk+1 < rk (7.190)

Then we have

f (X∗
k+1) − rk+1

m∑
j=1

1
gj(X∗

k+1)
< f (X∗

k) − rk+1

m∑
j=1

1
gj(X∗

k)
(7.191)

�

� �

�

7.14 Convex Programming Problem 405

since X∗
k+1 alone minimizes 𝜙(X, rk+1). Similarly,

f (X∗
k) − rk

m∑
j=1

1
gj(X∗

k)
< f (X∗

k+1) − rk

m∑
j=1

1
gj(X∗

k+1)
(7.192)

Divide Eq. (7.191) by rk+1, Eq. (7.192) by rk, and add the resulting inequalities to
obtain

1
rk+1

f (X∗
k+1) −

m∑
j=1

1
gj(X∗

k+1)
+ 1

rk
f (X∗

k) −
m∑

j=1

1
gj(X∗

k)

<
1

rk+1
f (X∗

k) −
m∑

j=1

1
gj(X∗

k)
+ 1

rk
f (X∗

k+1) −
m∑

j=1

1
gj(X∗

k+1)
(7.193)

Canceling the common terms from both sides, we can write the inequality (7.193) as

f (X∗
k+1)

(
1

rk+1
− 1

rk

)
< f (X∗

k)
(

1
rk+1

− 1
rk

)
(7.194)

since
1

rk+1
− 1

rk
=

rk − rk+1

rkrk+1
> 0 (7.195)

we obtain
f (X∗

k+1) < f (X∗
k) (7.196)

7.14 CONVEX PROGRAMMING PROBLEM

In Section 7.13 we saw that the sequential minimization of

𝜙(X, rk) = f (X) − rk

m∑
j=1

1
gj(X)

, rk > 0 (7.197)

for a decreasing sequence of values of rk gives the minima X∗
k . As k→∞, these points

X∗
k converge to the minimum of the constrained problem:

Minimize f (X)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (7.198)

To ensure the existence of a global minimum of𝜙(X, rk) for every positive value of
rk,𝜙 has to be strictly convex function of X. The following theorem gives the sufficient
conditions for the 𝜙 function to be strictly convex. If 𝜙 is convex, for every rk > 0 there
exists a unique minimum of 𝜙(X, rk).

Theorem 7.2 If f (X) and gj (X) are convex and at least one of f (X) and gj(X) is
strictly convex, the function 𝜙(X, rk) defined by Eq. (7.197) will be a strictly convex
function of X.

Proof: This theorem can be proved in two steps. In the first step we prove that if a
function gk(X) is convex, 1/gk(X) will be concave. In the second step, we prove that a

�

� �

�

406 NLP III: Constrained Optimization Techniques

positive combination of convex functions is convex, and strictly convex if at least one
of the functions is strictly convex.

Thus Theorem A.3 of Appendix A guarantees that the sequential minimization of
𝜙(X, rk) for a decreasing sequence of values of rk leads to the global minimum of the
original constrained problem. When the convexity conditions are not satisfied, or when
the functions are so complex that we do not know beforehand whether the convexity
conditions are satisfied, it will not be possible to prove that the minimum found by the
SUMT method is a global one. In such cases one has to satisfy with a local minimum
only. However, one can always reapply the SUMT method from different feasible
starting points and try to find a better local minimum point if the problem has several
local minima. Of course, this procedure requires more computational effort.

7.15 EXTERIOR PENALTY FUNCTION METHOD

In the exterior penalty function method, the 𝜙 function is generally taken as

𝜙(X, rk) = f (X) + rk

m∑
j=1

⟨gj(X)⟩q (7.199)

where rk is a positive penalty parameter, the exponent q is a nonnegative constant, and
the bracket function ⟨gj(X)⟩ is defined as

⟨gj(X)⟩ = max⟨gj(X), 0⟩
=

⎧⎪⎪⎨⎪⎪⎩
gj(X) if gj(X) > 0

(constraint is violated)
0 if gj(X) ≤ 0

(constraint is satisfied)

(7.200)

It can be seen from Eq. (7.199) that the effect of the second term on the right side
is to increase 𝜙(X, rk) in proportion to the qth power of the amount by which the
constraints are violated. Thus, there will be a penalty for violating the constraints, and
the amount of penalty will increase at a faster rate than will the amount of violation
of a constraint (for q> 1). This is the reason why the formulation is called the penalty
function method. Usually, the function 𝜙(X, rk) possesses a minimum as a function
of X in the infeasible region. The unconstrained minima X∗

k converge to the optimal
solution of the original problem as k→∞ and rk →∞. Thus, the unconstrained minima
approach the feasible domain gradually, and as k→∞, the X∗

k eventually lies in the
feasible region. Let us consider Eq. (7.199) for various values of q.

1. q = 0. Here the 𝜙 function is given by

𝜙(X, rk) = f (X) + rk

m∑
j=1

⟨gj(X)⟩0

=

{
f (X) + mrk

f (X)
if
if

all
all

gj(X) > 0
gj(X) ≤ 0

(7.201)

�

� �

�

7.15 Exterior Penalty Function Method 407

ϕ, f

0
β

f(X) = αx1

f(X) + rk

rk

rk

x2

x1 x1

A

A Section A–A

(a) (b)

Figure 7.11 A 𝜙 function discontinuous for q = 0.

This function is discontinuous on the boundary of the acceptable region as
shown in Figure 7.11 and hence it would be very difficult to minimize this
function.

2. 0 < q< 1. Here, the 𝜙 function will be continuous, but the penalty for vio-
lating a constraint may be too small. Also, the derivatives of the function are
discontinuous along the boundary. Thus, it will be difficult to minimize the 𝜙
function. Typical contours of the 𝜙 function are shown in Figure 7.12.

3. q = 1. In this case, under certain restrictions, it has been shown by Zangwill
[7.16] that there exists an r0 so large that the minimum of𝜙(X, rk) is exactly the
constrained minimum of the original problem for all rk > r0. However, the con-
tours of the 𝜙 function look similar to those shown in Figure 7.12 and possess
discontinuous first derivatives along the boundary. Hence despite the conve-
nience of choosing a single rk that yields the constrained minimum in one
unconstrained minimization, the method is not very attractive from compu-
tational point of view.

ϕ, f

ϕ
f(X) = αx1

x1 = β
x1 x1

x2

0
(a) (b)

A

A

B

B
Section A − A

Figure 7.12 Derivatives of a 𝜙 function discontinuous for 0 < q< 1.

�

� �

�

408 NLP III: Constrained Optimization Techniques

f(X) = αx1

x1 = β0
x1 x1

ϕ

ϕ, f
x2

Section on A − A
B

B

A

A

(a) (b)

Figure 7.13 A 𝜙 function for q> 1.

4. q> 1. The𝜙 function will have continuous first derivatives in this case as shown
in Figure 7.13. These derivatives are given by

𝜕𝜙

𝜕xi
=
𝜕f

𝜕xi
+ rk

m∑
j=1

q⟨gj(X)⟩q−1
𝜕gj(X)
𝜕xi

(7.202)

Generally, the value of q is chosen as 2 in practical computation. We assume a
value of q> 1 in subsequent discussion of this method.

Algorithm. The exterior penalty function method can be stated by the following steps:

1. Start from any design X1 and a suitable value of r1. Set k = 1.
2. Find the vector X∗

k that minimizes the function

𝜙(X, rk) = f (X) + rk

m∑
j=1

⟨gj(X)⟩q

3. Test whether the point X∗
k satisfies all the constraints. If X∗

k is feasible, it is the
desired optimum and hence terminate the procedure. Otherwise, go to step 4.

4. Choose the next value of the penalty parameter that satisfies the relation

rk+1 > rk

and set the new value of k as original k plus 1 and go to step 2. Usually, the
value of rk+1 is chosen according to the relation rk+1 = crk, where c is a constant
greater than 1.

Example 7.9

Minimize f (x1, x2) =
1
3
(x1 + 1)3 + x2

subject to

g1(x1, x2) = 1 − x1 ≤ 0

g2(x1, x2) = −x2 ≤ 0

�

� �

�

7.15 Exterior Penalty Function Method 409

SOLUTION To illustrate the exterior penalty function method, we solve the uncon-
strained minimization problem by using differential calculus method. As such, it is
not necessary to have an initial trial point X1. The 𝜙 function is

𝜙(X1, r) =
1
3
(x1 + 1)3 + x2 + r[max(0, 1 − x1)]2 + r[max(0,−x2)]2

The necessary conditions for the unconstrained minimum of 𝜙(X, r) are

𝜕𝜙

𝜕x1
= (x1 + 1)2 − 2r[max(0, 1 − x1)] = 0

𝜕𝜙

𝜕x2
= 1 − 2r[max(0,−x2)] = 0

These equations can be written as

min[(x1 + 1)2, (x1 + 1)2 − 2r(1 − x1)] = 0 (E1)

min[1, 1 + 2rx2] = 0 (E2)

In Eq. (E1), if (x1 + 1)2 = 0, x1 = −1 (this violates the first constraint), and if

(x1 + 1)2 − 2r(1 − x1) = 0, x1 = −1 − r +
√

r2 + 4r

In Eq. (E2), the only possibility is that 1+ 2rx2 = 0 and hence x2 = −1/2r. Thus, the
solution of the unconstrained minimization problem is given by

x∗1(r) = −1 − r + r
(

1 + 4
r

)1∕2

(E3)

x∗2(r) = − 1
2r

(E4)

From this, the solution of the original constrained problem can be obtained as

x∗1 = lim
r→∞

x∗1(r) = 1, x∗2 = lim
r→∞

x∗2(r) = 0

fmin = lim
r→∞

𝜙min(r) =
8
3

The convergence of the method, as r increases gradually, can be seen from Table 7.5.

Table 7.5 Results for Example 7.9.

Value of r x∗1 x∗2 𝜙min(r) fmin(r)

0.001 −0.93775 −500.00000 −249.9962 −500.0000
0.01 −0.80975 −50.00000 −24.9650 −49.9977
0.1 −0.45969 −5.00000 −2.2344 −4.9474
1 0.23607 −0.50000 0.9631 0.1295
10 0.83216 −0.05000 2.3068 2.0001
100 0.98039 −0.00500 2.6249 2.5840
1 000 0.99800 −0.00050 2.6624 2.6582
10 000 0.99963 −0.00005 2.6655 2.6652
∞ 1 0 8

3
8
3

�

� �

�

410 NLP III: Constrained Optimization Techniques

Convergence Proof. To prove the convergence of the algorithm given above, we
assume that f and gj, j= 1, 2, . . . , m, are continuous and that an optimum solution exists
for the given problem. The following results are useful in proving the convergence of
the exterior penalty function method.

Theorem 7.3 If

𝜙(X, rk) = f (X) + rkG[g(X)] = f (X) + rk

m∑
j=1

⟨gj(X)⟩q

the following relations will be valid for any 0 < rk < rk+1:

1. 𝜙(X∗
k , rk)≤𝜙(X∗

k+1, rk+1).
2. f (X∗

k)≤ f (X∗
k+1).

3. G[g (X∗
k)]≥G[g (X∗

k+1)].

Proof: The proof is similar to that of Theorem 7.1.

Theorem 7.4 If the function 𝜙(X, rk) given by Eq. (7.199) is minimized for an
increasing sequence of values of rk, the unconstrained minima X∗

k converge to the
optimum solution (X*) of the constrained problem as rk →∞.

Proof: The proof is similar to that of Theorem 7.1 (see Problem 7.46).

7.16 EXTRAPOLATION TECHNIQUES IN THE INTERIOR
PENALTY FUNCTION METHOD

In the interior penalty function method, the 𝜙 function is minimized sequentially for
a decreasing sequence of values r1 > r2 > ⋯ > rk to find the unconstrained minima
X∗

1,X
∗
2, . . . ,X

∗
k , respectively. Let the values of the objective function corresponding

to X∗
1,X

∗
2, . . . ,X

∗
k be f ∗1 , f

∗
2 , . . . , f

∗
k , respectively. It has been proved that the sequence

X∗
1,X

∗
2, . . . ,X

∗
k converges to the minimum point X*, and the sequence f ∗1 , f

∗
2 , . . . , f

∗
k

to the minimum value f* of the original constrained problem stated in Eq. (7.153)
as rk → 0. After carrying out a certain number of unconstrained minimizations of 𝜙,
the results obtained thus far can be used to estimate the minimum of the original
constrained problem by a method known as the extrapolation technique. The extrap-
olations of the design vector and the objective function are considered in this section.

7.16.1 Extrapolation of the Design Vector X

Since different vectors X∗
i , i = 1, 2, . . . , k, are obtained as unconstrained minima of

𝜙(X, ri) for different ri, i = 1, 2, . . . , k, the unconstrained minimum 𝜙(X, r) for any
value of r, X* (r), can be approximated by a polynomial in r as

X∗(r) =
k−1∑
j=0

Aj(r)j = A0 + rA1 + r2A2 +⋯ + rk−1Ak−1 (7.203)

where Aj are n-component vectors. By substituting the known conditions

X∗(r = ri) = X∗
i , i = 1, 2, . . . , k (7.204)

�

� �

�

7.16 Extrapolation Techniques in the Interior Penalty Function Method 411

in Eq. (7.203), we can determine the vectors Aj, j = 0, 1, 2, . . . , k− 1 uniquely. Then
X*(r), given by Eq. (7.203), will be a good approximation for the unconstrained min-
imum of 𝜙(X, r) in the interval (0, r1). By setting r = 0 in Eq. (7.203), we can obtain
an estimate to the true minimum, X*, as

X∗ = X∗(r = 0) = A0 (7.205)

It is to be noted that it is not necessary to approximate X*(r) by a (k− 1) st-order poly-
nomial in r. In fact, any polynomial of order 1≤ p≤ k− 1 can be used to approximate
X*(r). In such a case we need only p+ 1 points out of X∗

1, X∗
2, . . . , X∗

k to define the
polynomial completely.

As a simplest case, let us consider approximating X*(r) by a first-order polynomial
(linear equation) in r as

X∗(r) = A0 + rA1 (7.206)

To evaluate the vectors A0 and A1, we need the data of two unconstrained minima. If
the extrapolation is being done at the end of the kth unconstrained minimization, we
generally use the latest information to find the constant vectors A0 and A1. Let X∗

k−1
and X* be the unconstrained minima corresponding to rk−1 and rk, respectively. Since
rk = crk−1 (c< 1), Eq. (7.206) gives

X∗(r = rk−1) = A0 + rk−1A1 = X∗
k−1

X∗(r = rk) = A0 + crk−1A1 = X∗
k (7.207)

These equations give

A0 =
X∗

k − cX∗
k−1

1 − c

A1 =
X∗

k−1 − X∗
k

rk−1(1 − c)
(7.208)

From Eqs. (7.206) and (7.208), the extrapolated value of the true minimum can be
obtained as

X∗(r = 0) = A0 =
X∗

k − cX∗
k−1

1 − c
(7.209)

The extrapolation technique (Eq. (7.203)) has several advantages:

1. It can be used to find a good estimate to the optimum of the original problem
with the help of Eq. (7.205).

2. It can be used to provide an additional convergence criterion to terminate the
minimization process. The point obtained at the end of the kth iteration, X∗

k ,
can be taken as the true minimum if the relation

|X∗
k − X∗(r = 0)| ≤ 𝜀 (7.210)

is satisfied, where 𝜀 is the vector of prescribed small quantities.

�

� �

�

412 NLP III: Constrained Optimization Techniques

3. This method can also be used to estimate the next minimum of the 𝜙 function
after a number of minimizations have been completed. This estimate3 can be
used as a starting point for the (k+ 1)st minimization of the 𝜙 function. The
estimate of the (k+ 1)st minimum, based on the information collected from the
previous k minima, is given by Eq. (7.203) as

X∗
k+1 ≃ X∗(r = rk+1 = r1ck)

= A0 + (r1ck)A1 + (r1ck)2A2 +⋯ + Ak−1(r1ck)k−1 (7.211)

If Eqs. (7.206) and (7.208) are used, this estimate becomes

Xk+1 ≃ X∗(r = c2rk−1) = A0 + c2rk−1A1

= (1 + c)X∗
k − cX∗

k−1 (7.212)

Discussion. It has been proved that under certain conditions, the difference between
the true minimum X* and the estimate X*(r = 0) = A0 will be of the order rk

1 [7.17].
Thus, as r1 → 0, A0 →X*. Moreover, if r1 < 1, the estimates of X* obtained by using
k minima will be better than those using (k− 1) minima, and so on. Hence as more
minima are achieved, the estimate of X* or X∗

k+1 presumably gets better. This estimate
can be used as the starting point for the (k+ 1)st minimization of the 𝜙 function. This
accelerates the entire process by substantially reducing the effort needed to minimize
the successive 𝜙 functions. However, the computer storage requirements and accu-
racy considerations (such as numerical round-off errors that become important for
higher-order estimates) limit the order of polynomial in Eq. (7.203). It has been found
in practice that extrapolations with the help of even quadratic and cubic equations in
r generally yield good estimates for X∗

k+1 and X*. Note that the extrapolated points
given by any of Eqs. (7.205), (7.209), (7.211), and (7.212) may sometimes violate the
constraints. Hence, we must check any extrapolated point for feasibility before using
it as a starting point for the next minimization of 𝜙. If the extrapolated point is found
infeasible, it must be rejected.

7.16.2 Extrapolation of the Function f

As in the case of the design vector, it is possible to use extrapolation technique to esti-
mate the optimum value of the original objective function, f*. For this, let f ∗1 , f

∗
2 , . . . , f

∗
k

be the values of the objective function corresponding to the vectors X∗
1,X

∗
2, . . . ,X

∗
k .

Since the points X∗
1,X

∗
2, . . . ,X

∗
k have been found to be the unconstrained minima of the

𝜙 function corresponding to r1, r2, . . . , rk, respectively, the objective function, f*, can
be assumed to be a function of r. By approximating f* by a (k− 1)st-order polynomial
in r, we have

f ∗(r) =
k−1∑
j=0

aj(r)j = a0 + a1r + a2r2 +⋯ + ak−1rk−1 (7.213)

where the k constants aj, j = 0, 1, 2, . . . , k− 1 can be evaluated by substituting the
known conditions

f ∗(r = ri) = f ∗i = a0 + a1ri + a2r2
i +⋯ + ak−1rk−1

i , i = 1, 2, . . . , k (7.214)

3The estimate obtained for X* can also be used as a starting point for the (k+ 1)st minimization of the 𝜙
function.

�

� �

�

7.16 Extrapolation Techniques in the Interior Penalty Function Method 413

Since Eq. (7.213) is a good approximation for the true f* in the interval (0, r1), we can
obtain an estimate for the constrained minimum of f as

f ∗ ≃ f ∗(r = 0) = a0 (7.215)

As a specific case, a linear approximation can be made for f* by using the last two data
points. Thus, if f ∗k−1 and f ∗k are the function values corresponding to rk−1 and rk = crk−1,
we have

f ∗k−1 = a0 + rk−1a1

f ∗k = a0 + crk−1a1 (7.216)

These equations yield

a0 =
f ∗k − cf ∗k−1

1 − c
(7.217)

a1 =
f ∗k−1 − cf ∗k
rk−1(1 − c)

(7.218)

f ∗(r) =
f ∗k − cf ∗k−1

1 − c
+ r

rk−1

f ∗k−1 − f ∗k
1 − c

(7.219)

Equation (7.219) gives an estimate of f* as

f ∗ ≃ f ∗(r = 0) = a0 =
f ∗k − cf ∗k−1

1 − c
(7.220)

The extrapolated value a0 can be used to provide an additional convergence criterion
for terminating the interior penalty function method. The criterion is that, whenever the
value of f ∗k obtained at the end of kth unconstrained minimization of 𝜙 is sufficiently
close to the extrapolated value a0, that is, when||||| f ∗k − a0

f ∗k

||||| ≤ 𝜀 (7.221)

where 𝜀 is a specified small quantity, the process can be terminated.

Example 7.10 Find the extrapolated values of X and f in Example 7.8 using the
results of minimization of 𝜙(X, r1) and 𝜙(X, r2).

SOLUTION From the results of Example 7.8, we have for r1 = 1.0,

X∗
1 =

⎧⎪⎨⎪⎩
0.37898
1.67965
2.34617

⎫⎪⎬⎪⎭ , f ∗1 = 5.70766

and for r2 = 0.1,

c = 0.1, X∗
2 =

⎧⎪⎨⎪⎩
0.10088
1.41945
1.68302

⎫⎪⎬⎪⎭ , f ∗2 = 2.73267

�

� �

�

414 NLP III: Constrained Optimization Techniques

By using Eq. (7.206) for approximating X*(r), the extrapolated vector X* is given by
Eq. (7.209) as

X∗ ≃ A0 =
X∗

2 − cX∗
1

1 − c
= 1

0.9

⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩

0.10088
1.41945
1.68302

⎫⎪⎬⎪⎭ − 0.1

⎧⎪⎨⎪⎩
0.37898
1.67865
2.34617

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ (E1)

=
⎧⎪⎨⎪⎩

0.06998
1.39053
1.60933

⎫⎪⎬⎪⎭ (E2)

Similarly, the linear relationships f*(r) = a0 + a1r leads to (from Eq. (7.220))

f ∗ ≃
f ∗2 − cf ∗1

1 − c
= 1

0.9
[2.73267 − 0.1(5.707667)] = 2.40211 (E3)

It can be verified that the extrapolated design vector X* is feasible and hence
can be used as a better starting point for the subsequent minimization of the
function 𝜙.

7.17 EXTENDED INTERIOR PENALTY FUNCTION METHODS

In the interior penalty function approach, the 𝜙 function is defined within the feasible
domain. As such, if any of the one-dimensional minimization methods discussed in
Chapter 5 is used, the resulting optimal step lengths might lead to infeasible designs.
Thus, the one-dimensional minimization methods have to be modified to avoid this
problem. An alternative method, known as the extended interior penalty function
method, has been proposed in which the 𝜙 function is defined outside the feasible
region. The extended interior penalty function method combines the best features of
the interior and exterior methods for inequality constraints. Several types of extended
interior penalty function formulations are described in this section.

7.17.1 Linear Extended Penalty Function Method

The linear extended penalty function method was originally proposed by Kavlie and
Moe [7.18] and later improved by Cassis and Schmit [7.19]. In this method, the 𝜙k
function is constructed as follows:

𝜙k = 𝜙(X, rk) = f (X) + rk

m∑
j=1

g̃j(X) (7.222)

where

g̃j(X) =
⎧⎪⎨⎪⎩
− 1

gj(X)
if gj(X) ≤ 𝜀

−
2𝜀 − gj(X)

𝜀2
if gj(X) > 𝜀

(7.223)

and 𝜀 is a small negative number that marks the transition from the interior penalty
[gj(X)≤ 𝜀] to the extended penalty [gj(X)>𝜀]. To produce a sequence of improved

�

� �

�

7.17 Extended Interior Penalty Function Methods 415

Stop
Converged

Not converged

Check for convergence

Set rk = γrk

Minimize ϕk = ϕ(X, rk, ε)
as an unconstrained function

Compute ε = –c(rk)a

Set k = 1

Start with X1, r1, γ, c, a

Figure 7.14 Linear extended penalty function method.

feasible designs, the value of 𝜀 is to be selected such that the function 𝜙k will have a
positive slope at the constraint boundary. Usually, 𝜀 is chosen as

𝜀 = −c(rk)a (7.224)

where c and a are constants. The constant a is chosen such that 1
3
≤ a ≤ 1

2
, where

the value of a = 1
3

guarantees that the penalty for violating the constraints increases

as rk goes to zero while the value of a = 1
2

is required to help keep the minimum
point X* in the quadratic range of the penalty function. At the start of optimization,
𝜀 is selected in the range −0.3 ≤ 𝜀≤−0.1. The value of r1 is selected such that the
values of f (X) and r1

∑m
j=1 g̃j(X) are equal at the initial design vector X1. This defines

the value of c in Eq. (7.224). The value of 𝜀 is computed at the beginning of each
unconstrained minimization using the current value of rk from Eq. (7.224) and is kept
constant throughout that unconstrained minimization. A flowchart for implementing
the linear extended penalty function method is given in Figure 7.14.

7.17.2 Quadratic Extended Penalty Function Method

The 𝜙k function defined by Eq. (7.222) can be seen to be continuous with continu-
ous first derivatives at gj(X) = 𝜀. However, the second derivatives can be seen to be
discontinuous at gj(X) = 𝜀. Hence it is not possible to use a second-order method for
unconstrained minimization [7.20]. The quadratic extended penalty function is defined
in order to have continuous second derivatives at gj(X) = 𝜀 as follows:

𝜙k = 𝜙(X, rk) = f (X) + rk

m∑
j=1

g̃j(X) (7.225)

�

� �

�

416 NLP III: Constrained Optimization Techniques

where

g̃j(X) =

⎧⎪⎪⎨⎪⎪⎩
− 1

gj(X)
if gj(X) ≤ 𝜀{

−1
𝜀

[gj(X)
𝜀

]2

− 3
gj(X)
𝜀

+ 3

}
if gj(X) > 𝜀

(7.226)

With this definition, second-order methods can be used for the unconstrained mini-
mization of 𝜙k. It is to be noted that the degree of nonlinearity of 𝜙k is increased in
Eq. (7.225) compared to Eq. (7.222). The concept of extended interior penalty func-
tion approach can be generalized to define a variable penalty function method from
which the linear and quadratic methods can be derived as special cases [7.24].

Example 7.11 Plot the contours of the 𝜙k function using the linear extended interior
penalty function for the following problem:

Minimize f (x) = (x − 1)2

subject to

g1(x) = 2 − x ≤ 0

g2(x) = x − 4 ≤ 0

SOLUTION We choose c = 0.2 and a = 0.5 so that 𝜀 = −0.2
√

rk. The 𝜙k function
is defined by Eq. (7.222). By selecting the values of rk as 10.0, 1.0, 0.1, and 0.01
sequentially, we can determine the values of 𝜙k for different values of x, which can
then be plotted as shown in Figure 7.15. The graph of f (x) is also shown in Figure 7.15
for comparison.

7.18 PENALTY FUNCTION METHOD FOR PROBLEMS WITH
MIXED EQUALITY AND INEQUALITY CONSTRAINTS

The algorithms described in previous sections cannot be directly applied to solve prob-
lems involving strict equality constraints. In this section we consider some of the
methods that can be used to solve a general class of problems.

Minimize f (X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

lj(X) = 0, j = 1, 2, . . . , p (7.227)

7.18.1 Interior Penalty Function Method

In a similar situation as with Eq. (7.154), the present problem can be converted into
an unconstrained minimization problem by constructing a function of the form

𝜙k = 𝜙(X, rk) = f (X) + rk

m∑
j=1

Gj[gj(X)] + H(rk)
p∑

j=1

l2j (X) (7.228)

�

� �

�

7.18 Penalty Function Method for Problems 417

1
0

5

10

15

20

25

30

2 3 4 5 x

f, ϕk

rk = 10

rk = 1

rk = 0.1

rk = 0.01

f

Figure 7.15 Graphs of 𝜙k.

where Gj is some function of the constraint gj tending to infinity as the constraint
boundary is approached, and H(rk) is some function of the parameter rk tending to
infinity as rk tends to zero. The motivation for the third term in Eq. (7.228) is that as
H(rk)→∞, the quantity

∑p
j=1 l2j (X) must tend to zero. If

∑p
j=1 l2j (X) does not tend to

zero, 𝜙k would tend to infinity, and this cannot happen in a sequential minimization
process if the problem has a solution. Fiacco and McCormick [7.17, 7.21] used the
following form of Eq. (7.228):

𝜙k = 𝜙(X, rk) = f (X) − rk

m∑
j=1

1
gj(X)

+ 1√
rk

p∑
j=1

l2j (X) (7.229)

If𝜙k is minimized for a decreasing sequence of values rk, the following theorem proves
that the unconstrained minima X∗

k will converge to the solution X* of the original
problem stated in Eq. (7.227).

Theorem 7.5 If the problem posed in Eq. (7.227) has a solution, the uncon-
strained minima, X∗

k , of 𝜙(X, rk), defined by Eq. (7.229) for a sequence of values
r1 > r2 > ⋯ > rk, converge to the optimal solution of the constrained problem (Eq.
(7.227)) as rk → 0.

Proof: A proof similar to that of Theorem 7.1 can be given to prove this theorem.
Further, the solution obtained at the end of sequential minimization of𝜙k is guaranteed
to be the global minimum of the problem, Eq. (7.227), if the following conditions are
satisfied:

�

� �

�

418 NLP III: Constrained Optimization Techniques

(i) f (X) is convex.
(ii) gj(X), j = 1, 2, . . . , m are convex.

(iii)
∑p

j=1 l2j (X) is convex in the interior feasible domain defined by the inequality
constraints.

(iv) One of the functions among f (X), g1(X), g2(X), . . . , gm (X), and
∑p

j=1 l2j (X) is
strictly convex.

Note:

1. To start the sequential unconstrained minimization process, we have to start
from a point X1 at which the inequality constraints are satisfied and not neces-
sarily the equality constraints.

2. Although this method has been applied to solve a variety of practical problems,
it poses an extremely difficult minimization problem in many cases, mainly
because of the scale disparities that arise between the penalty terms

−rk

m∑
j=1

1
gj(X)

and
1

r1∕2
k

p∑
j=1

l2j (X)

as the minimization process proceeds.

7.18.2 Exterior Penalty Function Method

To solve an optimization problem involving both equality and inequality constraints
as stated in Eq. (7.227), the following form of Eq. (7.228) has been proposed:

𝜙k = 𝜙(X, rk) = f (X) + rk

m∑
j=1

⟨gj(X)⟩2 + rk

p∑
j=1

l2j (X) (7.230)

As in the case of Eq. (7.199), this function needs to be minimized for an increasing
sequence of values of rk. It can be proved that as rk →∞, the unconstrained minima,
X∗

k , of 𝜙(X, rk) converge to the minimum of the original constrained problem stated
in Eq. (7.227).

7.19 PENALTY FUNCTION METHOD FOR PARAMETRIC
CONSTRAINTS

7.19.1 Parametric Constraint

In some optimization problems, a particular constraint may have to be satisfied over a
range of some parameter (𝜃) as

gj(X, 𝜃) ≤ 0, 𝜃l ≤ 𝜃 ≤ 𝜃u (7.231)

where 𝜃l and 𝜃u are lower and the upper limits on 𝜃, respectively. These types of
constraints are called parametric constraints. As an example, consider the design of a
four-bar linkage shown in Figure 7.16. The angular position of the output link 𝜙 will
depend on the angular position of the input link, 𝜃, and the lengths of the links, l1, l2, l3,
and l4. If li(i = 1–4) are taken as the design variables xi(i = 1–4), the angular position
of the output link, 𝜙(X, 𝜃), for any fixed value of 𝜃(𝜃i) can be changed by changing
the design vector, X. Thus if 𝜙(𝜃) is the output desired, the output 𝜙(X, 𝜃) generated

�

� �

�

7.19 Penalty Function Method for Parametric Constraints 419

Output
link

l3

l2

l1

l4

Crank
(input
link)

Coupler

θ
ϕ (θ)

Fixed Link

Figure 7.16 Four-bar linkage.

ϕ (θ)

ϕ (θ) – ϕ (θ, X)

θ
θ

ϕ (θ, X)
ϕ (θ)
–

Figure 7.17 Output angles generated and desired.

will, in general, be different from that of 𝜙(𝜃), as shown in Figure 7.17. If the linkage
is used in some precision equipment, we would like to restrict the difference |𝜙(𝜃) −
𝜙 (X, 𝜃)| to be smaller than some permissible value, say, 𝜀. Since this restriction must
be satisfied for all values of the parameter 𝜃, the constraint can be stated as a parametric
constraint as |𝜙(𝜃) − 𝜙 (X, 𝜃)| ≤ 𝜀, 0∘ ≤ 𝜃 ≤ 360∘ (7.232)

Sometimes the number of parameters in a parametric constraint may be more than one.
For example, consider the design of a rectangular plate acted on by an arbitrary load as
shown in Figure 7.18. If the magnitude of the stress induced under the given loading,
|𝜎(x, y)|, is restricted to be smaller than the allowable value 𝜎max, the constraint can be
stated as a parametric constraint as

|𝜎(x, y)| − 𝜎max ≤ 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b (7.233)

Thus, this constraint has to be satisfied at all the values of parameters x and y.

�

� �

�

420 NLP III: Constrained Optimization Techniques

y

x

(a, b)

(a, 0)

(0, 0)

(0, b)

Figure 7.18 Rectangular plate under arbitrary load.

7.19.2 Handling Parametric Constraints

One method of handling a parametric constraint is to replace it by a number of ordinary
constraints as

gj(X, 𝜃i) ≤ 0, i = 1, 2, . . . , r (7.234)

where 𝜃1, 𝜃2, . . . , 𝜃r are discrete values taken in the range of 𝜃. This method is not
efficient, for the following reasons:

1. It results in a very large number of constraints in the optimization problem.
2. Even if all the r constraints stated in Eq. (7.234) are satisfied, the constraint may

still be violated at some other value of 𝜃 (i.e. gj(X, 𝜃) > 0 where 𝜃k <𝜃 <𝜃k+1
for some k).

Another method of handling the parametric constraints is to construct the 𝜙 func-
tion in a different manner as follows [7.1, 7.15].

Interior Penalty Function Method

𝜙(X, rk) = f (X) − rk

m∑
j=1

[
∫

𝜃u

𝜃l

1
gj(X, 𝜃)

d𝜃

]
(7.235)

The idea behind using the integral in Eq. (7.235) for a parametric constraint is to
make the integral tend to infinity as the value of the constraint gj(X, 𝜃) tends to zero
even at one value of 𝜃 in its range. If a gradient method is used for the unconstrained
minimization of 𝜙(X, rk), the derivatives of 𝜙 with respect to the design variables
xi(i = 1, 2, . . . , n) are needed. Equation (7.235) gives

𝜕𝜙

𝜕xi
(X, rk) =

𝜕f

𝜕xi
(X) + rk

m∑
j=1

[
∫

𝜃u

𝜃l

1

g2
j (X, 𝜃)

𝜕gj

𝜕xi
(X, 𝜃)d𝜃

]
(7.236)

by assuming that the limits of integration, 𝜃l and 𝜃u, are independent of the design
variables xi. Thus it can be noticed that the computation of 𝜙(X, rk) or 𝜕𝜙(X,
rk)/𝜕xi involves the evaluation of an integral. In most of the practical problems, no
closed-form expression will be available for gj(X, 𝜃), and hence we have to use some
sort of a numerical integration process to evaluate 𝜙 or 𝜕𝜙/𝜕xi. The trapezoidal rule
[7.22] can be used to evaluate the integral in Eq. (7.235), as follows (see Figure 7.19).
Let the interval of the parameter 𝜃 be divided into r − 1 equal divisions so that

�

� �

�

7.19 Penalty Function Method for Parametric Constraints 421

𝜃1 = 𝜃l, 𝜃2 = 𝜃1 + Δ𝜃, 𝜃3 = 𝜃1 + 2 ⋅ Δ𝜃, . . . , 𝜃r = 𝜃1 + (r − 1)Δ𝜃 = 𝜃u,

Δ𝜃 =
𝜃u − 𝜃l

r − 1

If the graph of the function gj(X, 𝜃) looks as shown in Figure 7.19, the integral of
1/gj(X, 𝜃) can be found approximately by adding the areas of all the trapeziums, like
ABCD. This is the reason why the method is known as trapezoidal rule. The sum of
all the areas is given by

∫
𝜃u

𝜃l

d𝜃
gj(X, 𝜃)

≈
r−1∑
l=1

Al =
r−1∑
p=1

[
1

gj(X, 𝜃p)
+ 1

gj(X, 𝜃p+1)

]
Δ𝜃
2

= Δ𝜃
2

[
1

gj(X, 𝜃l)
+ 1

gj(X, 𝜃u)

]
+

r−1∑
p=2

Δ𝜃
gj(X, 𝜃p)

where r is the number of discrete values of 𝜃, and Δ𝜃 is the uniform spacing between
the discrete values so that

𝜃1 = 𝜃l, 𝜃2 = 𝜃1 + Δ𝜃,

𝜃3 = 𝜃1 + 2Δ𝜃, . . . , 𝜃r = 𝜃1 + (r − 1)Δ𝜃 = 𝜃u

Thus, Eq (7.236) becomes

𝜙(X, rk) = f (X) − rk

m∑
r=1

{
Δ𝜃
2

[
1

gj(X, 𝜃l)
+ 1

gj(X, 𝜃u)

]

+Δ𝜃
r−1∑
p=2

1
gj(X, 𝜃p)

}
(7.237)

A

A1

Ak

B

C

B

C

D DA
θl

∆θ ∆θ

θk θk + 1 θu
θ

1/gj (θ, X)

Figure 7.19 Numerical integration procedure.

�

� �

�

422 NLP III: Constrained Optimization Techniques

If gj(X, 𝜃) cannot be expressed as a closed-form function of X, the derivative 𝜕gj/𝜕xi
occurring in Eq. (7.236) has to be evaluated by using some form of a finite-difference
formula.

Exterior Penalty Function Method

𝜙(X, rk) = f (X) + rk

m∑
j=1

[
∫

𝜃u

𝜃l

⟨gj(X, 𝜃)⟩2d𝜃

]
(7.238)

The method of evaluating𝜙(X, rk) will be similar to that of the interior penalty function
method.

7.20 AUGMENTED LAGRANGE MULTIPLIER METHOD

7.20.1 Equality-Constrained Problems

The augmented Lagrange multiplier (ALM) method combines the Lagrange multi-
plier and the penalty function methods. Consider the following equality-constrained
problem:

Minimize f (X) (7.239)

subject to
hj(X) = 0, j = 1, 2, . . . , p, p < n (7.240)

The Lagrangian corresponding to Eqs. (7.239) and (7.240) is given by

L(X, 𝛌) = f (X) +
p∑

j=1

𝜆jhj(X) (7.241)

where 𝜆j, j = 1, 2, . . . , p, are the Lagrange multipliers. The necessary conditions for a
stationary point of L(X, 𝝀) include the equality constraints, Eq. (7.240). The exterior
penalty function approach is used to define the new objective function A(X, 𝝀, rk),
termed the augmented Lagrangian function, as

A(X, 𝛌, rk) = f (X) +
p∑

j=1

𝜆jhj(X) + rk

p∑
j=1

h2
j (X) (7.242)

where rk is the penalty parameter. It can be noted that the function A reduces to the
Lagrangian if rk = 0 and to the𝜙 function used in the classical penalty function method
if all 𝜆j = 0. It can be shown that if the Lagrange multipliers are fixed at their optimum
values 𝜆∗j , the minimization of A(X, 𝝀, rk) gives the solution of the problem stated in
Eqs. (7.239) and (7.240) in one step for any value of rk. In such a case there is no need
to minimize the function A for an increasing sequence of values of rk. Since the values
of 𝜆∗j are not known in advance, an iterative scheme is used to find the solution of the

problem. In the first iteration (k = 1), the values of 𝜆(k)j are chosen as zero, the value
of rk is set equal to an arbitrary constant, and the function A is minimized with respect
to X to find X*(k). The values of 𝜆(k)j and rk are then updated to start the next iteration.
For this, the necessary conditions for the stationary point of L, given by Eq. (7.241),
are written as

𝜕L
𝜕xi

=
𝜕f

𝜕xi
+

p∑
j=1

𝜆
∗
j

𝜕hj

𝜕xi
= 0, i = 1, 2, . . . , n (7.243)

�

� �

�

7.20 Augmented Lagrange Multiplier Method 423

where 𝜆∗j denote the values of Lagrange multipliers at the stationary point of L. Simi-
larly, the necessary conditions for the minimum of A can be expressed as

𝜕A
𝜕xi

=
𝜕f

𝜕xi
+

p∑
j=1

(𝜆j + 2rkhj)
𝜕hj

𝜕xi
= 0, i = 1, 2, . . . , n (7.244)

A comparison of the right-hand sides of Eqs. (7.243) and (7.244) yields

𝜆
∗
j = 𝜆j + 2rkhj, j = 1, 2, . . . , p (7.245)

These equations are used to update the values of 𝜆j as

𝜆
(k+1)
j = 𝜆

(k)
j + 2rkhj(X(k)), j = 1, 2, . . . , p (7.246)

where X(k) denotes the starting vector used in the minimization of A. The value of rk
is updated as

rk+1 = crk, c > 1 (7.247)

The function A is then minimized with respect to X to find X*(k+1) and the iterative
process is continued until convergence is achieved for 𝜆(k)j or X*. If the value of rk+1
exceeds a prespecified maximum value rmax, it is set equal to rmax. The iterative process
is indicated as a flow diagram in Figure 7.20.

7.20.2 Inequality-Constrained Problems

Consider the following inequality-constrained problem:

Minimize f (X) (7.248)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (7.249)

To apply the ALM method, the inequality constraints of Eq. (7.249) are first converted
to equality constraints as

gj(X) + y2
j = 0, j = 1, 2, . . . ,m (7.250)

where y2
j are the slack variables. Then, the augmented Lagrangian function is con-

structed as

A(X, 𝛌,Y, rk) = f (X) +
m∑

j=1

𝜆j[gj(X) + y2
j] +

m∑
j=1

rk[gj(X) + y2
j]

2 (7.251)

where the vector of slack variables, Y, is given by

Y =
⎧⎪⎨⎪⎩

y1
y2
⋮
ym

⎫⎪⎬⎪⎭
If the slack variables yj, j = 1, 2, . . . , m, are considered as additional unknowns, the
function A is to be minimized with respect to X and Y for specified values of 𝜆j and

�

� �

�

424 NLP III: Constrained Optimization Techniques

Start with X(1), λ(1), r1, c > 1, rmax

Set k = 1

Minimize A(X, λ(k), rk) from starting
point X(k) and find X*(k)

Check for convergence of λ(k) and X*(k)

Set λj
(k+1) = λj

(k) + 2rk hj(X*(k)), j = 1,2,..., p

Set rk+1 = crk

Set k = k + 1

If rk+1 > rmax, set rk+1 = rmax

Take X* = X*(k) and stop

Not converged

Figure 7.20 Flowchart of augmented Lagrange multiplier method.

rk. This increases the problem size. It can be shown [7.23] that the function A given
by Eq. (7.251) is equivalent to

A(X, 𝛌, rk) = f (X) +
m∑

j=1

𝜆j𝛼j + rk

m∑
j=1

𝛼
2
j (7.252)

where

𝛼j = max

{
gj(X),−

𝜆j

2rk

}
(7.253)

Thus, the solution of the problem stated in Eqs. (7.248) and (7.249) can be obtained by
minimizing the function A, given by Eq. (7.252), as in the case of equality-constrained
problems using the update formula

𝜆
(k+1)
j = 𝜆

(k)
j + 2rk𝛼

(k)
j , j = 1, 2, . . . ,m (7.254)

in place of Eq. (7.246). It is to be noted that the function A, given by Eq. (7.252), is con-
tinuous and has continuous first derivatives but has discontinuous second derivatives

�

� �

�

7.20 Augmented Lagrange Multiplier Method 425

with respect to X at gj(X) = −𝜆j/2rk. Hence a second-order method cannot be used to
minimize the function A.

7.20.3 Mixed Equality–Inequality-Constrained Problems

Consider the following general optimization problem:

Minimize f (X) (7.255)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (7.256)

hj(X) = 0, j = 1, 2, . . . , p (7.257)

This problem can be solved by combining the procedures of the two preceding
sections. The augmented Lagrangian function, in this case, is defined as

A(X, 𝛌, rk) = f (X) +
m∑

j=1

𝜆j𝛼j +
p∑

j=1

𝜆m+jhj(X)

+ rk

m∑
j=1

𝛼
2
j + rk

p∑
j=1

h2
j (X) (7.258)

where 𝛼j is given by Eq. (7.253). The solution of the problem stated in
Eqs. (7.255)–(7.257) can be found by minimizing the function A, defined by
Eq. (7.258), as in the case of equality-constrained problems using the update formula

𝜆
(k+1) = 𝜆

(k)
j + 2rkmax

⎧⎪⎨⎪⎩gj(X),−
𝜆
(k)
j

2rk

⎫⎪⎬⎪⎭ , j = 1, 2, . . . ,m (7.259)

𝜆
(k+1)
m+j = 𝜆

(k)
m+j + 2rkhj(X), j = 1, 2, . . . , p (7.260)

The ALM method has several advantages. As stated earlier, the value of rk need not
be increased to infinity for convergence. The starting design vector, X(1), need not
be feasible. Finally, it is possible to achieve gj(X) = 0 and hj(X) = 0 precisely and
the nonzero values of the Lagrange multipliers (𝜆j ≠ 0) identify the active constraints
automatically.

Example 7.12
Minimize f (X) = 6x2

1 + 4x1x2 + 3x2
2 (E1)

subject to
h(X) = x1 + x2 − 5 = 0 (E2)

using the ALM method.

SOLUTION The augmented Lagrangian function can be constructed as

A(X, 𝜆, rk) = 6x2
1 + 4x1x2 + 3x2

2 + 𝜆(x1 + x2 − 5)

+ rk(x1 + x2 − 5)2 (E3)

�

� �

�

426 NLP III: Constrained Optimization Techniques

Table 7.6 Results for Example 7.12.

𝜆
(i) rk x∗(i)1 x∗(i)2 Value of h

0.00000 1.00000 0.263158 1.052631 −3.684211
−7.368422 1.00000 0.457064 1.828255 −2.714681
−12.797784 1.00000 0.599942 2.399767 −2.000291
−16.798366 1.00000 0.705220 2.820881 −1.473899
−19.746165 1.00000 0.782794 3.131175 −1.086031
−21.918226 1.00000 0.839953 3.359813 −0.800234
−23.518693 1.00000 0.882071 3.528283 −0.589646
−24.697985 1.00000 0.913105 3.652619 −0.434475
−25.566936 1.00000 0.935972 3.743888 −0.320140
−26.207216 1.00000 0.952821 3.811286 −0.235893

For the stationary point of A, the necessary conditions, 𝜕A/𝜕xi = 0, i = 1, 2, yield

x1(12 + 2rk) + x2(4 + 2rk) = 10rk − 𝜆 (E4)

x1(4 + 2rk) + x2(6 + 2rk) = 10rk − 𝜆 (E5)

The solution of Eqs. (E4) and (E5) gives

x1 =
10 rk − 𝜆

2 (14 + 5 rk)
(E6)

x2 =
2 (10 rk − 𝜆)
(14 + 5 rk)

(E7)

Let the value of rk be fixed at 1 and select a value of 𝜆(1) = 0. This gives

x(1)1 = 0.263158, x(1)2 = 1.052631 with h = 0.263158 + 1.052631 − 5 = −3.684211

For the next iteration,

𝜆
(2) = 𝜆

(1) + 2 rk h(−→X
(1)
) = 0 + 2 (1) (−3.684211) = −7.368422

Substituting this value for 𝜆 along with rk = 1 in Eqs. (E6) and (E7), we get

x(2)1 = 0.457064, x(2)2 = 1.828255

with h = 0.457064 + 1.828255 − 5 = −2.714681

This procedure can be continued until some specified convergence is satisfied. The
results of the first 10 iterations are given in Table 7.6.

7.21 CHECKING THE CONVERGENCE OF CONSTRAINED
OPTIMIZATION PROBLEMS

In all the constrained optimization techniques described in this chapter, identification
of the optimum solution is very important from the points of view of stopping the
iterative process and using the solution with confidence. In addition to the convergence
criteria discussed earlier, the following two methods can also be used to test the point
for optimality.

�

� �

�

7.21 Checking the Convergence of Constrained Optimization Problems 427

7.21.1 Perturbing the Design Vector

Since the optimum point

X∗ =

⎧⎪⎪⎨⎪⎪⎩

x∗1
x∗2
⋮

x∗n

⎫⎪⎪⎬⎪⎪⎭
corresponds to the minimum function value subject to the satisfaction of the con-
straints gj(X

*)≤ 0, j = 1, 2, . . . , m (the equality constraints can also be included,
if necessary), we perturb X* by changing each of the design variables, one at a time,
by a small amount, and evaluate the values of f and gj, j = 1, 2, . . . , m. Thus if

X+
i = X∗ + ΔXi

X−
i = X∗ − ΔXi

where

ΔXi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
⋮
0
Δxi
0
⋮
0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
← i th row

Δxi is a small perturbation in xi that can be taken as 0.1–2.0% of x∗i . Evaluate

f (X+
i); f (X−

i); gj(X+
i)

gj(X−
i), j = 1, 2, . . . ,m for i = 1, 2, . . . , n

If

f (X+
i) ≥ f (X∗); gj(X+

i) ≤ 0, j = 1, 2, . . . ,m

f (X−
i) ≥ f (X∗); gj(X−

i) ≤ 0, j = 1, 2, . . . ,m

for i = 1, 2, . . . , n, X* can be taken as the constrained optimum point of the original
problem.

7.21.2 Testing the Kuhn–Tucker Conditions

Since the Kuhn–Tucker conditions, Eqs. (2.73) and (2.74), are necessarily to be satis-
fied4 by the optimum point of any nonlinear programming problem, we can at least test
for the satisfaction of these conditions before taking a point X as optimum. Equation
(2.73) can be written as

∑
j∈j1

𝜆j

𝜕gj

𝜕xi
= −

𝜕f

𝜕xi
, i = 1, 2, . . . , n (7.261)

4These may not be sufficient to guarantee a global minimum point for nonconvex programming problems.

�

� �

�

428 NLP III: Constrained Optimization Techniques

where J1 indicates the set of active constraints at the point X. If gj1(X) = gj2(X) =⋯=
gjp(X) = 0, Eq. (7.261) can be expressed as

G
n×p

𝜆
p×1

= F
n×1

(7.262)

where

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕gj1

𝜕x1

𝜕gj2

𝜕x1
⋯
𝜕gjp

𝜕x1
𝜕gj1

𝜕x2

𝜕gj2

𝜕x2
. . .

𝜕gjp

𝜕x2

⋮
𝜕gj1

𝜕xn

𝜕gj2

𝜕xn
⋯
𝜕gjp

𝜕xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦X

𝛌 =

⎧⎪⎪⎨⎪⎪⎩
𝜆j1

𝜆j2

⋮
𝜆jp

⎫⎪⎪⎬⎪⎪⎭
and F =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−
𝜕f

𝜕x1

−
𝜕f

𝜕x2

⋮

−
𝜕f

𝜕xn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭X

From Eq. (7.262) we can obtain an expression for 𝝀 as

𝛌 = (GTG)−1GTF (7.263)

If all the components of 𝝀, given by Eq. (7.263) are positive, the Kuhn–Tucker condi-
tions will be satisfied. A major difficulty in applying Eq. (7.263) arises from the fact
that it is very difficult to ascertain which constraints are active at the point X. Since
no constraint will have exactly the value of 0.0 at the point X while working on the
computer, we have to take a constraint gj to be active whenever it satisfies the relation

|gj(X)| ≤ 𝜀 (7.264)

where 𝜀 is a small number on the order of 10−2–10−6. Notice that Eq. (7.264) assumes
that the constraints were originally normalized.

7.22 TEST PROBLEMS

As discussed in previous sections, a number of algorithms are available for solving a
constrained nonlinear programming problem. In recent years, a variety of computer
programs have been developed to solve engineering optimization problems. Many of
these are complex and versatile and the user needs a good understanding of the algo-
rithms/computer programs to be able to use them effectively. Before solving a new
engineering design optimization problem, we usually test the behavior and conver-
gence of the algorithm/computer program on simple test problems. Five test problems
are given in this section. All these problems have appeared in the optimization litera-
ture and most of them have been solved using different techniques.

�

� �

�

7.22 Test Problems 429

7.22.1 Design of a Three-Bar Truss

The optimal design of the three-bar truss shown in Figure 7.21 is considered using
two different objectives with the cross-sectional areas of members 1 (and 3) and 2 as
design variables [7.38].

Design vector:

X =
{

x1
x2

}
=

{
A1
A2

}
Objective functions:

f1(X) = weight = 2
√

2x1 + x2

f2(X) = vertical deflection of loaded joint = PH
E

1

x1 +
√

2x2

Constraints:

𝜎1(X) − 𝜎(u) ≤ 0

𝜎2(X) − 𝜎(u) ≤ 0

𝜎3(X) − 𝜎(l) ≤ 0

x(l)i ≤ xi ≤ x(u)i , i = 1, 2

where 𝜎i is the stress induced in member i, 𝜎(u) the maximum permissible stress in
tension, 𝜎(l) the maximum permissible stress in compression, x(l)i the lower bound on
xi, and x(u)i the upper bound on xi. The stresses are given by

𝜎1(X) = P
x2 +

√
2x1√

2x2
1 + 2x1x2

𝜎2(X) = P
1

x1 +
√

2x2

𝜎3(X) = −P
x2√

2x2
1 + 21x2

Data: 𝜎(u) = 20, 𝜎(l) = −15, x(l)i = 0.1(i = 1, 2), x(u)i = 5.0(i = 1, 2), P = 20, and E = 1.

H

H

P

H

A3 = A1A2A1

Figure 7.21 Three-bar truss [7.38].

�

� �

�

430 NLP III: Constrained Optimization Techniques

Optimum design:

X∗
1 =

{
0.78706
0.40735

}
, f ∗1 = 2.6335, stress constraint of

member 1 is active at X∗
1

X∗
2 =

{
5.0
5.0

}
, f ∗2 = 1.6569

7.22.2 Design of a Twenty-Five-Bar Space Truss

The 25-bar space truss shown in Figure 7.22 is required to support the two load condi-
tions given in Table 7.7 and is to be designed with constraints on member stresses as

Table 7.7 Loads Acting on the 25-bar Truss.

Joint

1 2 3 6

Load condition 1, loads in pounds

Fx 0 0 0 0
Fy 20 000 −20 000 0 0
Fz −5 000 −5 000 0 0

Load condition 2, loads in pounds

Fx 1 000 0 500 500
Fy 10 000 10 000 0 0
Fz −5 000 −5 000 0 0

100 in.

200 in.

200 in.

100 in.

75 in.

75 in.

1
2

3
5

6
9

2

4
1

8
7

5

4 12

22

14

3
10

6

20

19
18

7

10

2421

17

8

9

23

15

25

16

11 13

4

x

y

z

Figure 7.22 A 25-bar space truss [7.38].

�

� �

�

7.22 Test Problems 431

well as Euler buckling [7.38]. A minimum allowable area is specified for each mem-
ber. The allowable stresses for all members are specified as 𝜎max in both tension and
compression. The Young’s modulus and the material density are taken as E = 107 psi
and 𝜌 = 0.1 lb/in.3. The members are assumed to be tubular with a nominal diame-
ter/thickness ratio of 100, so that the buckling stress in member i becomes

pi = −
100.01𝜋EAi

8l2i
, i = 1, 2, . . . , 25

where Ai and li denote the cross-sectional area and length, respectively, of member i.
The member areas are linked as follows:

A1, A2 = A3 = A4 = A5, A6 = A7 = A8 = A9,

A10 = A11, A12 = A13, A14 = A15 = A16 = A17,

A18 = A19 = A20 = A21, A22 = A23 = A24 = A25

Thus, there are eight independent area design variables in the problem. Three problems
are solved using different objective functions:

f1(X) =
25∑
i=1

𝜌Aili = weight

f2(X) = (𝛿2
1x + 𝛿

2
1y + 𝛿

2
1z)

1∕2 + (𝛿2
2x + 𝛿

2
2y + 𝛿

2
2z)

1∕2

= sum of deflections of nodes 1 and 2

f3(X) = −𝜔1 = negative of fundamental natural frequency of vibration

where 𝛿ix = deflection of node i along x direction.

Constraints:

|𝜎ij(X)| ≤ 𝜎max, i = 1, 2, . . . , 25, j = 1, 2

𝜎ij(X) ≤ pi(X), i = 1, 2, . . . , 25, j = 1, 2

x(l)i ≤ xi ≤ x(u)i , i = 1, 2, . . . , 8

where 𝜎ij is the stress induced in member i under load condition j, x(l)i the lower bound
on xi, and x(u)i the upper bound on xi.

Data: 𝜎max = 40 000 psi, x(l)i = 0.1 in2, x(u)i = 5.0 in2 for i = 1, 2, . . . , 25.

Optimum solution: See Table 7.8.

7.22.3 Welded Beam Design

The welded beam shown in Figure 7.23 is designed for minimum cost subject to con-
straints on shear stress in weld (𝜏), bending stress in the beam (𝜎), buckling load on
the bar (Pc), end deflection of the beam (𝛿), and side constraints [7.39].

Design vector: ⎧⎪⎨⎪⎩
x1
x2
x3
x4

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

h
l
t
b

⎫⎪⎬⎪⎭

�

� �

�

432 NLP III: Constrained Optimization Techniques

Table 7.8 Optimization Results of the 25-bar Truss [7.38].

Optimization problem

Quantity
Minimization

of weight
Minimization
of deflection

Maximization
of frequency

Design vector, X 0.1a 3.7931 0.1a

0.80228 5.0a 0.79769
0.74789 5.0a 0.74605
0.1a 3.3183 0.72817
0.12452 5.0a 0.84836
0.57117 5.0a 1.9944
0.97851 5.0a 1.9176
0.80247 5.0a 4.1119

Weight (lb) 233.07265 1619.3258 600.87891
Deflection (in.) 1.924989 0.30834 1.35503
Fundamental frequency (Hz) 73.25348 70.2082 108.6224
Number of active behavior constraints 9b 0 4c

aActive side constraint.
bBuckling stress in members, 2, 5, 7, 8, 19, and 20 in load condition 1 and in members 13, 16, and 24 in
load condition 2.
cBuckling stress in members 2, 5, 7, and 8 in load condition 1.

l

L

Ph

h

b

t

Figure 7.23 Welded beam [7.39].

Objective function: f (X) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

Constraints:

g1(X) = 𝜏(X) − 𝜏max ≤ 0

g2(X) = 𝜎(X) − 𝜎max ≤ 0

g3(X) = x1 − x4 ≤ 0

g4(X) = 0.10471x2
1 + 0.04811x3x4(14.0 + x2) − 5.0 ≤ 0

�

� �

�

7.22 Test Problems 433

g5(X) = 0.125 − x1 ≤ 0

g6(X) = 𝛿(X) − 𝛿max ≤ 0

g7(X) = P − Pc(X) ≤ 0

g8(X) to g11(X) ∶ 0.1 ≤ xi ≤ 2.0, i = 1, 4

g12(X) to g15(X) ∶ 0.1 ≤ xi ≤ 10.0, i = 2, 3

where

𝜏(X) =
√

(𝜏′)2 + 2𝜏′𝜏′′
x2

2R
+ (𝜏′′)2

𝜏
′ = P√

2x1x2

, 𝜏
′′ = MR

J
, M = P

(
L +

x2

2

)

R =

√
x2

2

4
+

(
x1 + x3

2

)2

J = 2

{
x1x2√

2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

𝜎(X) = 6PL

x4x2
3

𝛿(X) = 4PL3

Ex3
3x4

Pc(X) =
4.013

√
EG(x2

3x6
4∕36)

L2

(
1 −

x3

2L

√
E

4G

)

Data: P = 6000 lb, L = 14 in., E = 30× 106 psi, G = 12× 106 psi, 𝜏max = 13 600 psi,
𝜎max = 30 000 psi, and 𝛿max = 0.25 in.

Starting and optimum solutions:

Xstart =
⎧⎪⎨⎪⎩

h
l
t
b

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0.4
6.0
9.0
0.5

⎫⎪⎬⎪⎭ in., f start = $5.3904, X∗ =
⎧⎪⎨⎪⎩

h
l
t
b

⎫⎪⎬⎪⎭
∗

=
⎧⎪⎨⎪⎩

0.2444
6.2177
8.2915
0.2444

⎫⎪⎬⎪⎭ in.,

f ∗ = $2.3810

7.22.4 Speed Reducer (Gear Train) Design

The design of the speed reducer, shown in Figure 7.24, is considered with the face
width (b), module of teeth (m), number of teeth on pinion (z), length of shaft 1 between
bearings (l1), length of shaft 2 between bearings (l2), diameter of shaft 1 (d1), and
diameter of shaft 2 (d2) as design variables x1, x2, . . . , x7, respectively. The con-
straints include limitations on the bending stress of gear teeth, surface stress, transverse
deflections of shafts 1 and 2 due to transmitted force, and stresses in shafts 1 and 2
[7.40, 7.41].

�

� �

�

434 NLP III: Constrained Optimization Techniques

l1 = x4

l1 = x5z1 = x3

d1 = x6
d2 = x7

z2

Figure 7.24 Speed reducer (gear pairs) [7.40].

Objective (minimization of weight of speed reducer):

f (X) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934) − 1.508x1(x2
6 + x2

7)

+ 7.477(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7)

Constraints:

g1(x) = 27x−1
1 x−2

2 x−1
3 ≤ 1

g2(x) = 397.5x−1
1 x−2

2 x−2
3 ≤ 1

g3(x) = 1.93x−1
2 x−1

3 x3
4x−4

6 ≤ 1

g4(x) = 1.93x−1
2 x−1

3 x3
5x−4

7 ≤ 1

g5(x) =

[(
745x4

x2x3

)2

+ (16.9)106

]0.5/
0.1x3

6 ≤ 1100

g6(x) =

[(
745x5

x2x3

)2

+ (157.5)106

]0.5/
0.1x3

7 ≤ 850

g7(x) = x2x3 ≤ 40

g8(x) ∶ 5 ≤ x1

x2
≤ 12 ∶ g9(x)

g10(x) ∶ 2.6 ≤ x1 ≤ 3.6 ∶ g11(x)

g12(x) ∶ 0.7 ≤ x2 ≤ 0.8 ∶ g13(x)

g14(x) ∶ 17 ≤ x3 ≤ 28 ∶ g15(x)

g16(x) ∶ 7.3 ≤ x4 ≤ 8.3 ∶ g17(x)

g18(x) ∶ 7.3 ≤ x5 ≤ 8.3 ∶ g19(x)

g20(x) ∶ 2.9 ≤ x6 ≤ 3.9 ∶ g21(x)

g22(x) ∶ 5.0 ≤ x7 ≤ 5.5 ∶ g23(x)

g24(x) = (1.5x6 + 1.9)x−1
4 ≤ 1

g25(x) = (1.1x7 + 1.9)x−1
5 ≤ 1

Optimum solution:

X∗ = {3.5 0.7 17.0 7.3 7.3 3.35 5.29}T
, f ∗ = 2985.22

�

� �

�

References and Bibliography 435

7.22.5 Heat Exchanger Design [7.42]

Objective function: Minimize f (X) = x1 + x2 + x3

Constraints:

g1(X) = 0.0025(x4 + x6) − 1 ≤ 0

g2(X) = 0.0025(−x4 + x5 + x7) − 1 ≤ 0

g3(X) = 0.01(−x5 + x8) − 1 ≤ 0

g4(X) = 100x1 − x1x6 + 833.33252x4 − 83, 333.333 ≤ 0

g5(X) = x2x4 − x2x7 − 1250x4 + 1250x5 ≤ 0

g6(X) = x3x5 − x3x8 − 2500x5 + 1,250, 000 ≤ 0

g7 ∶ 100 ≤ x1 ≤ 10,000 ∶ g8

g9 ∶ 1000 ≤ x2 ≤ 10,000 ∶ g10

g11 ∶ 1000 ≤ x3 ≤ 10,000 ∶ g12

g13 to g22 ∶ 10 ≤ xi ≤ 1000, i = 4, 5, . . . , 8

Optimum solution: X* = {567 1357 5125 181 295 219 286 395}T, f* = 7049

7.23 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solutions of the constrained nonlinear
optimization problem given in Example 7.8 and the welded beam design problem
described in Section 7.22.3 are given in Examples 17.7 and 17.8, respectively.

REFERENCES AND BIBLIOGRAPHY

7.1 Fox, R.L. (1971). Optimization Methods for Engineering Design. Reading, MA:
Addison-Wesley.

7.2 Box, M.J. (1965). A new method of constrained optimization and a comparison with
other methods. Computer Journal 8 (1): 42–52.

7.3 Cheney, E.W. and Goldstein, A.A. (1959). Newton’s method of convex programming
and Tchebycheff approximation. Numerische Mathematik 1: 253–268.

7.4 Kelly, J.E. (1960). The cutting plane method for solving convex programs. Journal of
SIAM VIII (4): 703–712.

7.5 Zoutendijk, G. (1960). Methods of Feasible Directions. Amsterdam: Elsevier.

7.6 Garvin, W.W. (1960). Introduction to Linear Programming. New York: McGraw-Hill.

7.7 Jacoby, S.L.S., Kowalik, J.S., and Pizzo, J.T. (1972). Iterative Methods for Nonlinear
Optimization Problems. Englewood Cliffs, NJ: Prentice Hall.

7.8 Zoutendijk, G. (1966). Nonlinear programming: a numerical survey. SIAM Journal of
Control Theory and Applications 4 (1): 194–210.

7.9 Rosen, J.B. (1960). The gradient projection method of nonlinear programming, Part I:
linear constraints. SIAM Journal 8: 181–217.

7.10 Rosen, J.B. (1961). The gradient projection method for nonlinear programming, Part II:
nonlinear constraints. SIAM Journal 9: 414–432.

7.11 Gabriele, G.A. and Ragsdell, K.M. (1977). The generalized reduced gradient method: a
reliable tool for optimal design. ASME Journal of Engineering for Industry 99: 384–400.

�

� �

�

436 NLP III: Constrained Optimization Techniques

7.12 Powell, M.J.D. (1978). A fast algorithm for nonlinearity constrained optimization cal-
culations. In: Lecture Notes in Mathematics (ed. G.A. Watson). Berlin: Springer-Verlag.

7.13 Box, M.J. (1966). A comparison of several current optimization methods and the use of
transformations in constrained problems. Computer Journal 9: 67–77.

7.14 Carroll, C.W. (1961). The created response surface technique for optimizing nonlinear
restrained systems. Operations Research 9: 169–184.

7.15 Fiacco, A.V. and McCormick, G.P. (1968). Nonlinear Programming: Sequential Uncon-
strained Minimization Techniques. New York: Wiley.

7.16 Zangwill, W.I. (1967). Nonlinear programming via penalty functions. Management Sci-
ence 13 (5): 344–358.

7.17 Fiacco, A.V. and McCormick, G.P. (1966). Extensions of SUMT for nonlinear program-
ming: equality constraints and extrapolation. Management Science 12 (11): 816–828.

7.18 Kavlie, D. and Moe, J. (1971). Automated design of frame structure. ASCE Journal of
the Structural Division 97 (ST1): 33–62.

7.19 Cassis, J.H. and Schmit, L.A. (1976). On implementation of the extended interior penalty
function. International Journal for Numerical Methods in Engineering 10: 3–23.

7.20 Haftka, R.T. and Starnes, J.H. Jr. (1976). Application of a quadratic extended interior
penalty function for structural optimization. AIAA Journal 14: 718–728.

7.21 Fiacco, A.V. and McCormick, G.P. (1965). SUMT Without Parameters, System Research
Memorandum 121. Evanston, IL: Technical Institute, Northwestern University.

7.22 Ralston, A. (1965). A First Course in Numerical Analysis. New York: McGraw-Hill.

7.23 Rockafellar, R.T. (1973). The multiplier method of Hestenes and Powell applied to con-
vex programming. Journal of Optimization Theory and Applications 12 (6): 555–562.

7.24 Prasad, B. (1981). A class of generalized variable penalty methods for nonlinear pro-
gramming. Journal of Optimization Theory and Applications 35: 159–182.

7.25 Schmit, L.A. and Mallett, R.H. (1963). Structural synthesis and design parameter hier-
archy. Journal of the Structural Division, Proceedings of ASCE 89 (ST4): 269–299.

7.26 Kowalik, J. and Osborne, M.R. (1968). Methods for Unconstrained Optimization Prob-
lems. New York: American Elsevier.

7.27 Baba, N. (1981). Convergence of a random optimization method for constrained opti-
mization problems. Journal of Optimization Theory and Applications 33: 451–461.

7.28 Betts, J.T. (1978). A gradient projection-multiplier method for nonlinear programming.
Journal of Optimization Theory and Applications 24: 523–548.

7.29 Betts, J.T. (1975). An improved penalty function method for solving constrained param-
eter optimization problems. Journal of Optimization Theory and Applications 16: 1–24.

7.30 Hock, W. and Schittkowski, K. (1980). Test examples for nonlinear programming codes.
Journal of Optimization Theory and Applications 30: 127–129.

7.31 Geromel, J.C. and Baptistella, L.F.B. (1981). Feasible direction method for large-scale
nonconvex programs: decomposition approach. Journal of Optimization Theory and
Applications 35: 231–249.

7.32 Topkis, D.M. (1982). A cutting-plane algorithm with linear and geometric rates of con-
vergence. Journal of Optimization Theory and Applications 36: 1–22.

7.33 Avriel, M. (1976). Nonlinear Programming: Analysis and Methods. Englewood Cliffs,
NJ: Prentice Hall.

7.34 Kuhn, H.W. (1976). Nonlinear programming: a historical view. In: Nonlinear Program-
ming, SIAM-AMS Proceedings, vol. 9 (eds. R.W. Cottle and C.E. Lemke). Providence,
RI: American Mathematical Society.

7.35 Elzinga, J. and Moore, T.G. (1975). A central cutting plane algorithm for the convex
programming problem. Mathematical Programming 8: 134–145.

�

� �

�

Review Questions 437

7.36 Venkayya, V.B., Tischler, V.A., and Pitrof, S.M. (1992). Benchmarking in struc-
tural optimization. Proceedings of the 4th AIAA/USAF/NASA/OAI Symposium on
Multidisciplinary Analysis and Optimization, 21–23 September 1992, Cleveland, Ohio.
AIAA Paper AIAA-92-4794.

7.37 Hock, W. and Schittkowski, K. (1981). Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, vol. 187. Berlin:
Springer-Verlag.

7.38 Rao, S.S. (1987). Multiobjective optimization of fuzzy structural systems. International
Journal for Numerical Methods in Engineering 24: 1157–1171.

7.39 Ragsdell, K.M. and Phillips, D.T. (1976). Optimal design of a class of welded struc-
tures using geometric programming. ASME Journal of Engineering for Industry 98:
1021–1025.

7.40 Golinski, J. (1973). An adaptive optimization system applied to machine synthesis.
Mechanism and Machine Synthesis 8: 419–436.

7.41 Li, H.L. and Papalambros, P. (1985). A production system for use of global optimization
knowledge. ASME Journal of Mechanisms, Transmissions, and Automation in Design
107: 277–284.

7.42 Avriel, M. and Williams, A.C. (1971). An extension of geometric programming
with application in engineering optimization. Journal of Engineering Mathematics 5:
187–194.

7.43 Gabriele, G.A. and Ragsdell, K.M. (1980). Large scale nonlinear programming using
the generalized reduced gradient method. ASME Journal of Mechanical Design 102 (3):
566–573.

7.44 Belegundu, A.D. and Arora, J.S. (1984). A recursive quadratic programming algorithm
with active set strategy for optimal design. International Journal for Numerical Methods
in Engineering 20 (5): 803–816.

7.45 Gabriele, G.A. and Beltracchi, T.J. (1987). An investigation of Pschenichnyi’s recursive
quadratic programming method for engineering optimization. ASME Journal of Mech-
anisms, Transmissions, and Automation in Design 109: 248–253.

7.46 Moses, F. (1964). Optimum structural design using linear programming. ASCE Journal
of the Structural Division 90 (ST6): 89–104.

7.47 Lipson, S.L. and Gwin, L.B. (1977). The complex method applied to optimal truss con-
figuration. Computers and Structures 7: 461–468.

7.48 Vanderplaats, G.N. (1984). Numerical Optimization Techniques for Engineering Design
with Applications. New York: McGraw-Hill.

7.49 Edgar, T.F. and Himmelblau, D.M. (1988). Optimization of Chemical Processes. New
York: McGraw-Hill.

7.50 Ravindran, A., Ragsdell, K.M., and Reklaitis, G.V. (2006). Engineering Optimization
Methods and Applications, 2e. New York: Wiley.

7.51 Lasdon, L.S. (1970). Optimization Theory for Large Systems. New York: Macmillan.

7.52 Haftka, R.T. and Gürdal, Z. (1992). Elements of Structural Optimization, 3e. Dordrecht,
The Netherlands: Kluwer Academic.

REVIEW QUESTIONS

7.1 Answer true or false:

(a) The complex method is similar to the simplex method.

(b) The optimum solution of a constrained problem can be the same as the unconstrained
optimum.

�

� �

�

438 NLP III: Constrained Optimization Techniques

(c) The constraints can introduce local minima in the feasible space.

(d) The complex method can handle both equality and inequality constraints.

(e) The complex method can be used to solve both convex and nonconvex problems.

(f) The number of inequality constraints cannot exceed the number of design variables.

(g) The complex method requires a feasible starting point.

(h) The solutions of all LP problems in the SLP method lie in the infeasible domain of
the original problem.

(i) The SLP method is applicable to both convex and nonconvex problems.

(j) The usable feasible directions can be generated using random numbers.

(k) The usable feasible direction makes an obtuse angle with the gradients of all the
constraints.

(l) If the starting point is feasible, all subsequent unconstrained minima will be feasible
in the exterior penalty function method.

(m) The interior penalty function method can be used to find a feasible starting point.

(n) The penalty parameter rk approaches zero as k approaches infinity in the exterior
penalty function method.

(o) The design vector found through extrapolation can be used as a starting
point for the next unconstrained minimization in the interior penalty function
method.

7.2 Why is the SLP method called the cutting plane method?

7.3 How is the direction-finding problem solved in Zoutendijk’s method?

7.4 What is SUMT?

7.5 How is a parametric constraint handled in the interior penalty function method?

7.6 How can you identify an active constraint during numerical optimization?

7.7 Formulate the equivalent unconstrained objective function that can be used in random
search methods.

7.8 How is the perturbation method used as a convergence check?

7.9 How can you compute Lagrange multipliers during numerical optimization?

7.10 What is the use of extrapolating the objective function in the penalty function approach?

7.11 Why is handling of equality constraints difficult in the penalty function methods?

7.12 What is the geometric interpretation of the reduced gradient?

7.13 Is the generalized reduced gradient zero at the optimum solution?

7.14 What is the relation between the sequential quadratic programming method and the
Lagrangian function?

7.15 Approximate the nonlinear function f (X) as a linear function at X0.

7.16 What is the limitation of the linear extended penalty function?

7.17 What is the difference between the interior and extended interior penalty function meth-
ods?

7.18 What is the basic principle used in the augmented Lagrangian method?

7.19 When can you use the steepest descent direction as a usable feasible direction in Zou-
tendijk’s method?

7.20 Construct the augmented Lagrangian function for a constrained optimization problem.

7.21 Construct the𝜙k function to be used for a mixed equality–inequality constrained problem
in the interior penalty function approach.

�

� �

�

Problems 439

7.22 What is a parametric constraint?

7.23 Match the following methods:

(a) Zoutendijk method Heuristic method
(b) Cutting plane method Barrier method
(c) Complex method Feasible directions method
(d) Projected Lagrangian method Sequential linear programming

method
(e) Penalty function method Gradient projection method
(f) Rosen’s method Sequential unconstrained

minimization method
(g) Interior penalty function method Sequential quadratic programming

method

7.24 Answer true or false:

(a) The Rosen’s gradient projection method is a method of feasible directions.

(b) The starting vector can be infeasible in Rosen’s gradient projection method.

(c) The transformation methods seek to convert a constrained problem into an uncon-
strained one.

(d) The 𝜙k function is defined over the entire design space in the interior penalty func-
tion method.

(e) The sequence of unconstrained minima generated by the interior penalty function
method lies in the feasible space.

(f) The sequence of unconstrained minima generated by the exterior penalty function
method lies in the feasible space.

(g) The random search methods are applicable to convex and nonconvex optimization
problems.

(h) The GRG method is related to the method of elimination of variables.

(i) The sequential quadratic programming method can handle only equality constraints.

(j) The augmented Lagrangian method is based on the concepts of penalty function and
Lagrange multiplier methods.

(k) The starting vector can be infeasible in the augmented Lagrangiam method.

PROBLEMS

7.1 Find the solution of the problem:

Minimize f (X) = x2
1 + 2x2

2 − 2x1x2 − 14x1 − 14x2 + 10

subject to
4x2

1 + x2
2 − 25 ≤ 0

using a graphical procedure.

7.2 Generate four feasible design vectors to the welded beam design problem
(Section 7.22.3) using random numbers.

7.3 Generate four feasible design vectors to the three-bar truss design problem
(Section 7.22.1) using random numbers.

7.4 Consider the tubular column described in Example 1.1. Starting from the design vector
(d = 8.0 cm, t = 0.4 cm), complete two steps of reflection, expansion, and/or contraction
of the complex method.

�

� �

�

440 NLP III: Constrained Optimization Techniques

7.5 Consider the problem:
Minimize f (X) = x1 − x2

subject to
3x2

1 − 2x1x2 + x2
2 − 1 ≤ 0

(a) Generate the approximating LP problem at the vector, X1 =
{
−2
2

}
.

(b) Solve the approximating LP problem using graphical method and find whether the
resulting solution is feasible to the original problem.

7.6 Approximate the following optimization problem as (a) a quadratic programming prob-

lem, and (b) a linear programming problem at X =
{

1
−2

}
.

Minimize f (X) = 2x3
1 + 15x2

2 − 8x1x2 + 15

subject to

x2
1 + x1x2 + 1 = 0

4x1 − x2
2 ≤ 4

7.7 The problem of minimum volume design subject to stress constraints of the three-bar
truss shown in Figure 7.21 can be stated as follows:

Minimize f (X) = 282.8x1 + 100.0x2

subject to

𝜎1 − 𝜎0 =
20(x2 +

√
2x1)

2x1x2 +
√

2x2
1

− 20 ≤ 0

−𝜎3 − 𝜎0 =
20x2

2x1x2 +
√

2x2
1

− 20 ≤ 0

0 ≤ xi ≤ 0.3, i = 1, 2

where 𝜎i is the stress induced in member i, 𝜎0 = 20 the permissible stress, x1 the area
of cross section of members 1 and 3, and x2 the area of cross section of member 2.
Approximate the problem as a LP problem at (x1 = 1, x2 = 1).

7.8 Minimize f (X) = x2
1 + x2

2 − 6x1 − 8x2 + 10

subject to

4x2
1 + x2

2 ≤ 16

3x1 + 5x2 ≤ 15

xi ≥ 0, i = 1, 2

with the starting point X1 =
{

1
1

}
. Using the cutting plane method, complete one step

of the process.

�

� �

�

Problems 441

7.9 Minimize f (X) = 9x2
1 + 6x2

2 + x2
3 − 18x1 − 12x2 − 6x3 − 8

subject to

x1 + 2x2 + x3 ≤ 4

xi ≥ 0, i = 1, 2, 3

Using the starting point X1 = {0, 0, 0}T, complete one step of sequential linear program-
ming method.

7.10 Complete one cycle of the sequential linear programming method for the truss of

Section 7.22.1 using the starting point, X1 =
{

1
1

}
.

7.11 A flywheel is a large mass that can store energy during coasting of an engine and feed
it back to the drive when required. A solid disk-type flywheel is to be designed for an
engine to store maximum possible energy with the following specifications: maximum
permissible weight= 150 lb, maximum permissible diameter (d)= 25 in., maximum rota-
tional speed = 3000 rpm, maximum allowable stress (𝜎max) = 20 000 psi, unit weight
(𝛾) = 0.283 lb/in.3, and Poisson’s ratio (𝜈) = 0.3. The energy stored in the flywheel is
given by 1

2
I𝜔2, where I is the mass moment of inertia and 𝜔 is the angular velocity, and

the maximum tangential and radial stresses developed in the flywheel are given by

𝜎t = 𝜎r =
𝛾(3 + 𝜈)𝜔2d2

8g

where g is the acceleration due to gravity and d the diameter of the flywheel. The distor-
tion energy theory of failure is to be used, which leads to the stress constraint

𝜎
2
t + 𝜏2

r − 𝜎t𝜎r ≤ 𝜎
2
max

Considering the diameter (d) and the width (w) as design variables, formulate the opti-
mization problem. Starting from (d = 15 in., w = 2 in.), complete one iteration of the SLP
method.

7.12 Derive the necessary conditions of optimality and find the solution for the following
problem:

Minimize f (X) = 5x1x2

subject to
25 − x2

1 − x2
2 ≥ 0

7.13 Consider the following problem:

Minimize f = (x1 − 5)2 + (x2 − 5)2

subject to

x1 + 2x2 ≤ 15

1 ≤ xi ≤ 10, i = 1, 2

Derive the conditions to be satisfied at the point X =
{

1
7

}
by the search direction S ={

s1
s2

}
if it is to be a usable feasible direction.

�

� �

�

442 NLP III: Constrained Optimization Techniques

7.14 Consider the problem:

Minimize f = (x1 − 1)2 + (x2 − 5)2

subject to

g1 = −x2
1 + x2 − 4 ≤ 0

g2 = −(x1 − 2)2 + x2 − 3 ≤ 0

Formulate the direction-finding problem at Xi =
{
−1
5

}
as a linear programming prob-

lem (in Zoutendijk method).

7.15 Minimize f (X) = (x1 − 1)2 + (x2 − 5)2

subject to

−x2
1 + x2 ≤ 4

−(x1 − 2)2 + x2 ≤ 3

starting from the point X1 =
{

1
1

}
and using Zoutendijk’s method. Complete two

one-dimensional minimization steps.

7.16 Minimize f (X) = (x1 − 1)2 + (x2 − 2)2 − 4
subject to

x1 + 2x2 ≤ 5

4x1 + 3x2 ≤ 10

6x1 + x2 ≤ 7

xi ≥ 0, i = 1, 2

by using Zoutendijk’s method from the starting point X1 =
{

1
1

}
. Perform two one-

dimensional minimization steps of the process.

7.17 Complete one iteration of Rosen’s gradient projection method for the following problem:

Minimize f = (x1 − 1)2 + (x2 − 2)2 − 4

subject to

x1 + 2x2 ≤ 5

4x1 + 3x2 ≤ 10

6x1 + x2 ≤ 7

xi ≥ 0, i = 1, 2

Use the starting point, X1 =
{

1
1

}
.

7.18 Complete one iteration of the GRG method for the problem starting from X1 =
{

2.0
4.5

}
:

Minimize f = x2
1 + x2

2

subject to x1x2 − 9 = 0

�

� �

�

Problems 443

1000 mm

1000 mm

S

1414 mm

Area, A1 = x1

Area, A1 = x1

Area, A2 = x2
Area, A2 = x2

707 mm

P2 = 1000 N

P1 = 1000 N

Figure 7.25 Four-bar truss.

7.19 Approximate the following problem as a quadratic programming problem at (x1 = 1,
x2 = 1):

Minimize f = x2
1 + x2

2 − 6x1 − 8x2 + 15

subject to

4x2
1 + x2

2 ≤ 16

3x2
1 + 5x2

2 ≤ 15

xi ≥ 0, i = 1, 2

7.20 Consider the truss structure shown in Figure 7.25. The minimum weight design of the
truss subject to a constraint on the deflection of node S along with lower bounds on the
cross-sectional areas of members can be started as follows:

Minimize f = 0.1847x1 + 0.1306x2

subject to

26.1546
x1

+ 30.1546
x2

≤ 1.0

xi ≥ 25 mm2
, i = 1, 2

Complete one iteration of sequential quadratic programming method for this problem.

7.21 Find the dimensions of a rectangular prism type parcel that has the largest volume when
each of its sides is limited to 42 in. and its depth plus girth is restricted to a maximum
value of 72 in. Solve the problem as an unconstrained minimization problem using suit-
able transformations.

7.22 Transform the following constrained problem into an equivalent unconstrained problem:

Maximize f (x1, x2) = [9 − (x1 − 3)2]
x3

2

27
√

3

�

� �

�

444 NLP III: Constrained Optimization Techniques

subject to

0 ≤ x1

0 ≤ x2 ≤ x1√
3

0 ≤ x1 +
√

3x2 ≤ 6

7.23 Construct the 𝜙k function, according to (a) interior and (b) exterior penalty function
methods and plot its contours for the following problem:

Maximize f = 2x

subject to
2 ≤ x ≤ 10

7.24 Construct the 𝜙k function according to the exterior penalty function approach and com-
plete the minimization of 𝜙k for the following problem.

Minimize f (x) = (x − 1)2

subject to
g1(x) = 2 − x ≤ 0, g2(x) = x − 4 ≤ 0

7.25 Plot the contours of the𝜙k function using the quadratic extended interior penalty function
method for the following problem:

Minimize f (x) = (x − 1)2

subject to
g1(x) = 2 − x ≤ 0, g2(x) = x − 4 ≤ 0

7.26 Consider the problem:
Minimize f (x) = x2 − 10x − 1

subject to
1 ≤ x ≤ 10

Plot the contours of the 𝜙k function using the linear extended interior penalty function
method.

7.27 Consider the problem:

Minimize f (x1, x2) = (x1 − 1)2 + (x1 − 2)2

subject to
2x1 − x2 = 0 and x1 ≤ 5

Construct the 𝜙k function according to the interior penalty function approach and com-
plete the minimization of 𝜙1.

�

� �

�

Problems 445

7.28 Solve the following problem using an interior penalty function approach coupled with
the calculus method of unconstrained minimization:

Minimize f = x2 − 2x − 1

subject to
1 − x ≥ 0

Note: Sequential minimization is not necessary.

7.29 Consider the problem:

Minimize f = x2
1 + x2

2 − 6x1 − 8x2 + 15

subject to
x1

2 + x2
2 ≤ 16, 3 x1 + 5 x2 ≤ 15

Normalize the constraints and find a suitable value of r1 for use in the interior penalty
function method at the starting point (x1, x2) = (0, 0).

7.30 Determine whether the following optimization problem is convex, concave, or neither
type:

Minimize f = −4x1 + x2
1 − 2x1x2 + 2x2

2

subject to
2x1 + x2 ≤ 6, x1 − 4x2 ≤ 0, xi ≥ 0, i = 1, 2

7.31 Find the solution of the following problem using an exterior penalty function method
with classical method of unconstrained minimization:

Minimize f (x1, x2) = (2x1 − x2)2 + (x2 + 1)2

subject to
x1 + x2 = 10

Consider the limiting case as rk →∞ analytically.

7.32 Minimize f = 3x2
1 + 4x2

2 subject to x1 + 2x2 = 8 using an exterior penalty function method
with the calculus method of unconstrained minimization.

7.33 A beam of uniform rectangular cross section is to be cut from a log having a circular cross
section of diameter 2a. The beam is to be used as a cantilever beam to carry a concentrated
load at the free end. Find the cross-sectional dimensions of the beam which will have the
maximum bending stress carrying capacity using an exterior penalty function approach
with analytical unconstrained minimization.

7.34 Consider the problem:

Minimize f = 1
3
(x1 + 1)3 + x2

subject to
1 − x1 ≤ 0, x2 ≥ 0

The results obtained during the sequential minimization of this problem according to the
exterior penalty function approach are given below:

�

� �

�

446 NLP III: Constrained Optimization Techniques

Value of k rk

Starting point
for minimization

of 𝜙(X, rk)

Unconstrained
minimum of
𝜙(X, rk) = X∗

k f (X∗
k) = f ∗k

1 1 (−0.4597, −5.0) (0.2361, −0.5) 0.1295
2 10 (0.2361, −0.5) (0.8322, −0.05) 2.0001

Estimate the optimum solution, X* and f *, using a suitable extrapolation technique.

7.35 The results obtained in an exterior penalty function method of solution for the optimiza-
tion problem stated in Problem 7.15 are given below:

r1 = 0.01, X∗
1 =

{
− 0.80975
−50.0

}
, 𝜙

∗
1 = −24.9650, f ∗1 = −49.9977

r2 = 1.0, X∗
2 =

{
0.23607
−0.5

}
, 𝜙

∗
2 = 0.9631, f ∗2 = 0.1295

Estimate the optimum design vector and optimum objective function using an extrapo-
lation method.

7.36 The following results have been obtained during an exterior penalty function approach:

r1 = 10−10
, X∗

1 =
{

0.66
28.6

}
r2 = 10−9

, X∗
2 =

{
1.57
18.7

}
Find the optimum solution, X*, using an extrapolation technique.

7.37 The results obtained in a sequential unconstrained minimization technique (using an exte-

rior penalty function approach) from the starting point X1 =
{

6.0
30.0

}
are

r1 = 10−10
, X∗

1 =
{

0.66
28.6

}
; r2 = 10−9

, X∗
2 =

{
1.57
18.7

}
r3 = 10−8

, X∗
3 =

{
1.86
18.8

}
Estimate the optimum solution using a suitable extrapolation technique.

7.38 The two-bar truss shown in Figure 7.26 is acted on by a varying load whose magni-
tude is given by P(𝜃) = P0 cos 2𝜃; 0∘ ≤ 𝜃 ≤ 360∘. The bars have a tubular section
with mean diameter d and wall thickness t. Using P0 = 50 000 lb, 𝜎yield = 30 000 psi,
and E = 30× 106 psi, formulate the problem as a parametric optimization problem for
minimum volume design subject to buckling and yielding constraints. Assume the bars
to be pin connected for the purpose of buckling analysis. Indicate the procedure that can
be used for a graphical solution of the problem.

7.39 Minimize f (X) = (x1 − 1)2 + (x2 − 2)2

subject to
x1 + 2x2 − 2 = 0

using the augmented Lagrange multiplier method with a fixed value of rp = 1. Use a
maximum of three iterations.

�

� �

�

Problems 447

Section A–A

t

d
A

AA

A

100 in.

75 in.

α α

θ

P(θ) = P0 cos 2θ

Figure 7.26 Two-bar truss subjected to a parametric load.

7.40 Solve the following optimization problem using the augmented Lagrange multiplier
method keeping rp = 1 throughout the iterative process and 𝜆(1) = 0:

Minimize f = (x1 − 1)2 + (x2 − 2)2

subject to
−x1 + 2x2 = 2

7.41 Consider the problem:

Minimize f = (x1 − 1)2 + (x2 − 5)2

subject to
x1 + x2 − 5 = 0

(a) Write the expression for the augmented Lagrange function with rp = 1.

(b) Start with 𝜆(3)1 = 0 and perform two iterations.

(c) Find 𝜆(3)1 .

7.42 Consider the optimization problem:

Minimize f = x3
1 − 6x2

1 + 11x1 + x3

subject to

x2
1 + x2

2 − x2
3 ≤ 0, 4 − x2

1 − x2
2 − x2

3 ≤ 0, x3 ≤ 5,

xi ≥ 0, i = 1, 2, 3

Determine whether the solution

X =
⎧⎪⎨⎪⎩

0√
2√
2

⎫⎪⎬⎪⎭
is optimum by finding the values of the Lagrange multipliers.

�

� �

�

448 NLP III: Constrained Optimization Techniques

7.43 Determine whether the solution

X =
⎧⎪⎨⎪⎩

0√
2√
2

⎫⎪⎬⎪⎭
is optimum for the problem considered in Example 7.8 using a perturbation method with
Δxi = 0.001, i = 1, 2, 3.

7.44 The following results are obtained during the minimization of

f (X) = 9 − 8x1 − 6x2 − 4x3 + 2x2
1 + 2x2

2 + x2
3 + 2x1x2 + 2x1x3

subject to

x1 + x2 + 2x3 ≤ 3

xi ≥ 0, i = 1, 2, 3

using the interior penalty function method:

Value of ri

Starting point
for minimization

of 𝜙(X, ri)

Unconstrained
minimum of
𝜙(X, ri) = X∗

i f (X∗
i) = f ∗i

1

⎧⎪⎨⎪⎩
0.1
0.1
0.1

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

0.8884
0.7188
0.7260

⎫⎪⎬⎪⎭ 0.7072

0.01

⎧⎪⎨⎪⎩
0.8884
0.7188
0.7260

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1.3313
0.7539
0.3710

⎫⎪⎬⎪⎭ 0.1564

0.0001

⎧⎪⎨⎪⎩
1.3313
0.7539
0.3710

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1.3478
0.7720
0.4293

⎫⎪⎬⎪⎭ 0.1158

Use an extrapolation technique to predict the optimum solution of the-problem using the
following relations:

(a) X(r) = A0 + rA1; f (r) = a0 + ra1

(b) X(r) = A0 + r1/2A1; f (r) = a0 + r1/2a1

Compare your results with the exact solution

X∗ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

12
9
7
9
4
9

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, fmin = 1

9

7.45 Find the extrapolated solution of Problem 7.44 by using quadratic relations for X(r) and
f (r).

7.46 Give a proof for the convergence of exterior penalty function method.

�

� �

�

8

Geometric Programming

8.1 INTRODUCTION

Geometric programming is a relatively new method of solving a class of nonlinear
programming problems compared to general NLP. It was developed by Duffin et al
[8.1]. It is used to minimize functions that are in the form of posynomials subject
to constraints of the same type. It differs from other optimization techniques in
the emphasis it places on the relative magnitudes of the terms of the objective
function rather than the variables. Instead of finding optimal values of the design
variables first, geometric programming first finds the optimal value of the objective
function. This feature is especially advantageous in situations where the optimal
value of the objective function may be all that is of interest. In such cases, calculation
of the optimum design vectors can be omitted. Another advantage of geometric
programming is that it often reduces a complicated optimization problem to one
involving a set of simultaneous linear algebraic equations. The major disadvantage
of the method is that it requires the objective function and the constraints in the form
of posynomials. We will first see the general form of a posynomial.

8.2 POSYNOMIAL

In an engineering design situation, frequently the objective function (e.g. the total cost)
f (X) is given by the sum of several component costs Ui (X) as

f (X) = U1 + U2 +⋯ + UN (8.1)

In many cases, the component costs Ui can be expressed as power functions of the
type

Ui = ci xa1i

1 xa2i

2 ⋯ xani
n (8.2)

where the coefficients ci are positive constants, the exponents aij are real constants
(positive, zero, or negative), and the design parameters x1, x2, . . . , xn are taken to be
positive variables. Functions like f, because of the positive coefficients and variables
and real exponents, are called posynomials. For example,

f (x1, x2, x3) = 6 + 3x1 − 8x2 + 7x3 + 2x1x2

−3x1x3 +
4
3

x2x3 +
8
7

x2
1 − 9x2

2 + x2
3

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

449

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

450 Geometric Programming

is a second-degree polynomial in the variables, x1, x2, and x3 (coefficients of the
various terms are real) while

g(x1, x2, x3) = x1 x2 x3 + x2
1x2 + 4x3 +

2
x1x2

+ 5x−1∕2
3

is a posynomial. If the natural formulation of the optimization problem does not lead to
posynomial functions, geometric programming techniques can still be applied to solve
the problem by replacing the actual functions by a set of empirically fitted posynomials
over a wide range of the parameters xi.

8.3 UNCONSTRAINED MINIMIZATION PROBLEM

Consider the unconstrained minimization problem:

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭
that minimizes the objective function

f (X) =
N∑

j=1

Uj(X) =
N∑

j=1

(
cj

n∏
i=1

x
aij

i

)
=

N∑
j=1

(cj x
a1j

1 x
a2j

2 ⋯ x
anj
n) (8.3)

where cj > 0, xi > 0, and the aij are real constants.
The solution of this problem can be obtained by various procedures. In the fol-

lowing sections, two approaches – one based on the differential calculus and the other
based on the concept of geometric inequality – are presented for the solution of the
problem stated in Eq. (8.3).

8.4 SOLUTION OF AN UNCONSTRAINED GEOMETRIC
PROGRAMMING PROGRAM USING DIFFERENTIAL
CALCULUS

According to the differential calculus methods presented in Chapter 2, the necessary
conditions for the minimum of f are given by

𝜕f

𝜕xk
=

N∑
j=1

𝜕Uj

𝜕xk

=
N∑

j=1

(cj x
a1j

1 x
a2j

2 ⋯ x
ak−1,j

k−1 akjx
akj−1

k x
ak+1,j

k+1 ⋯ x
anj
n) = 0,

k = 1, 2, . . . , n (8.4)

�

� �

�

8.4 Differential Calculus Approach 451

By multiplying Eq. (8.4) by xk, we can rewrite it as

xk
𝜕f

𝜕xk
=

N∑
j=1

akj(cj x
a1j

1 x
a2j

2 ⋯ x
ak−1,j

k−1 x
akj

k x
ak+1,j

k+1 ⋯ x
anj
n)

=
N∑

j=1

akjUj(X) = 0, k = 1, 2, . . . , n (8.5)

To find the minimizing vector

X∗ =

⎧⎪⎪⎨⎪⎪⎩

x∗1
x∗2
⋮

x∗n

⎫⎪⎪⎬⎪⎪⎭
we have to solve the n equations given by Eq. (8.4), simultaneously. To ensure that the
point X* corresponds to the minimum of f (but not to the maximum or the stationary
point of X), the sufficiency condition must be satisfied. This condition states that the
Hessian matrix of f evaluated at X*:

JX∗ =
[
𝜕

2f

𝜕xk𝜕xl

]
X∗

must be positive definite. We will see this condition at a later stage. Since the vector
X* satisfies Eq. (8.5), we have

N∑
j=1

akjUj(X∗) = 0, k = 1, 2, . . . , n (8.6)

After dividing by the minimum value of the objective function f*, Eq. (8.6) becomes

N∑
j=1

Δ∗
j akj = 0, k = 1, 2, . . . , n (8.7)

where the quantities Δ∗
j are defined as

Δ∗
j =

Uj(X∗)
f ∗

=
U∗

j

f ∗
(8.8)

and denote the relative contribution of jth term to the optimal objective function. From
Eq. (8.8), we obtain

N∑
j=1

Δ∗
j = Δ∗

1 + Δ∗
2 +⋯ + Δ∗

N

= 1
f ∗
(U∗

1 + U∗
2 +⋯ + U∗

N) = 1 (8.9)

�

� �

�

452 Geometric Programming

Equation (8.7) are called the orthogonality conditions and Eq. (8.9) is called the
normality condition. To obtain the minimum value of the objective function f*, the
following procedure can be adopted. Consider

f ∗ = (f ∗)1 = (f ∗)
∑N

j=1 Δ
∗
j = (f ∗)Δ∗

1 (f ∗)Δ∗
2 ⋯ (f ∗)Δ∗

N (8.10)

Since

f ∗ =
U∗

1

Δ∗
1

=
U∗

2

Δ∗
2

= ⋯ =
U∗

N

Δ∗
N

(8.11)

from Eq. (8.8), (8.10) can be rewritten as

f ∗ =
(

U∗
1

Δ∗
1

)Δ∗
1
(

U∗
2

Δ∗
2

)Δ∗
2

⋯
(

U∗
N

Δ∗
N

)Δ∗
N

(8.12)

By substituting the relation

U∗
j = cj

n∏
i=1

(x∗i)
ai j , j = 1, 2, . . . ,N

Eq. (8.12) becomes

f ∗ =
⎧⎪⎨⎪⎩
(

c1

Δ∗
1

)Δ∗
1

[
n∏

i=1

(x∗i)
ai1

]Δ∗
1
⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩
(

c2

Δ∗
2

)Δ∗
2

[
n∏

i=1

(x∗i)
ai2

]Δ∗
2
⎫⎪⎬⎪⎭

⋯

⎧⎪⎨⎪⎩
(

cN

Δ∗
N

)Δ∗
N

[
n∏

i=1

(x∗i)
ai N

]Δ∗
N
⎫⎪⎬⎪⎭

=
⎧⎪⎨⎪⎩

N∏
j=1

(
cj

Δ∗
j

)Δ∗
j
⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

N∏
j=1

[
n∏

i=1

(x∗i)
ai j

]Δ∗
j
⎫⎪⎬⎪⎭

=
⎧⎪⎨⎪⎩

N∏
j=1

(
cj

Δ∗
j

)Δ∗
j
⎫⎪⎬⎪⎭
[

n∏
i=1

(x∗i)
∑N

j=1 ai jΔ∗
j

]

=
N∏

j=1

(
cj

Δ∗
j

)Δ∗
j

(8.13)

since
N∑

j=1

ai jΔ∗
j = 0

for any i form Eq. (8.7)
Thus, the optimal objective function f* can be found from Eq. (8.13) once Δ∗

j are
determined. To determine Δ∗

j (j = 1, 2, . . . ,N), Eqs. (8.7) and (8.9) can be used. It can
be seen that there are n+ 1 equations in N unknowns. If N = n+ 1, there will be as
many linear simultaneous equations as there are unknowns and we can find a unique
solution.

�

� �

�

8.4 Differential Calculus Approach 453

8.4.1 Degree of Difficulty

The quantity N− n− 1 is termed a degree of difficulty in geometric programming. In
the case of a constrained geometric programming problem, N denotes the total number
of terms in all the posynomials and n represents the number of design variables. If
N− n− 1 = 0, the problem is said to have a zero degree of difficulty. In this case, the
unknowns Δ∗

j (j = 1, 2, . . . ,N) can be determined uniquely from the orthogonality and
normality conditions. If N is greater than n+ 1, we have a greater number of variables
(Δ∗

j s) than the equations, and the method of solution for this case will be discussed in
subsequent sections. It is to be noted that geometric programming is not applicable to
problems with negative degree of difficulty.

8.4.2 Sufficiency Condition

We can see thatΔ∗
j are found by solving Eqs. (8.7) and (8.9), which in turn are obtained

by using the necessary conditions only. We can show that these conditions are also
sufficient.

8.4.3 Finding the Optimal Values of Design Variables

Since f* and Δ∗
j (j = 1, 2, . . . ,N) are known, we can determine the optimal values of

the design variables from the relations

U∗
j = Δ∗

j f ∗ = cj

n∏
i=1

(x∗i)
ai j , j = 1, 2, . . . ,N (8.14)

The simultaneous solution of these equations will yield the desired quantities x∗i (i =
1, 2, . . . , n). It can be seen that Eq. (8.14) are nonlinear in terms of the variables
x∗1, x

∗
2, . . . , x

∗
n, and hence their simultaneous solution is not easy if we want to solve

them directly. To simplify the simultaneous solution of Eq. (8.14), we rewrite them as

Δ∗
j f ∗

cj
= (x∗1)

a1j(x∗2)
a2j ⋯ (x∗n)anj , j = 1, 2, . . . ,N (8.15)

By taking logarithms on both the sides of Eq. (8.15), we obtain

ln
Δ∗

j f ∗

cj
= a1j ln x∗1 + a2j ln x∗2 +⋯ + anj ln x∗n,

j = 1, 2, . . . ,N (8.16)

By letting
wi = ln x∗i , i = 1, 2, . . . , n (8.17)

Equation (8.16) can be written as

a11w1 + a21w2 +⋯ + an1wn = ln
f ∗Δ∗

1

c1

a12w1 + a22w2 +⋯ + an2wn = ln
f ∗Δ∗

2

c2

⋮

a1Nw1 + a2Nw2 +⋯ + anNwn = ln
f ∗Δ∗

N

cN
(8.18)

�

� �

�

454 Geometric Programming

These equations, in the case of problems with a zero degree of difficulty, give a unique
solution to w1, w2, . . . , wn. Once wi are found, the desired solution can be obtained as

x∗i = ewi
, i = 1, 2, . . . , n (8.19)

In a general geometric programming problem with a nonnegative degree of difficulty,
N≥ n+ 1, and hence Eq. (8.18) denote N equations in n unknowns. By choosing any
n linearly independent equations, we obtain a set of solutions wi and hence x∗i .

The solution of an unconstrained geometric programming problem is illustrated
with the help of the following zero-degree-of-difficulty example [8.1].

Example 8.1 It has been decided to shift grain from a warehouse to a factory in
an open rectangular box of length x1 meters, width x2 meters, and height x3 meters.
The bottom, sides, and the ends of the box cost, respectively, $80, $10, and $20/m2.
It costs $1 for each round trip of the box. Assuming that the box will have no salvage
value, find the minimum cost of transporting 80 m3 of grain.

SOLUTION The total cost of transportation is given by

total cost = cost of box + cost of transportation

= (cost of sides + cost of bottom + cost of ends of the box)

+ (number of round trips required for transporting the grain

× cost of each round trip)

f (X) = [(2x1x3)10 + (x1x2)80 + (2x2x3)20] +
[

80
x1x2x3

(1)
]

= $

(
80x1x2 + 40x2x3 + 20x1x3 +

80
x1x2x3

)
(E1)

where x1, x2, and x3 indicate the dimensions of the box, as shown in Figure 8.1. By
comparing Eq. (E1) with the general posynomial of Eq. (8.1), we obtain

c1 = 80, c2 = 40, c3 = 20, c4 = 80

x2

x3

x1

Sides

End

Bottom

Figure 8.1 Open rectangular box.

�

� �

�

8.4 Differential Calculus Approach 455

⎛⎜⎜⎝
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

⎞⎟⎟⎠ =
⎛⎜⎜⎝
1 0 1 −1
1 1 0 −1
0 1 1 −1

⎞⎟⎟⎠
The orthogonality and normality conditions are given by

⎡⎢⎢⎢⎣
1 0 1 −1
1 1 0 −1
0 1 1 −1
1 1 1 1

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
Δ1
Δ2
Δ3
Δ4

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0
1

⎫⎪⎬⎪⎭
that is,

Δ1 + Δ3 − Δ4 = 0 (E2)
Δ1 + Δ2 − Δ4 = 0 (E3)
Δ2 + Δ3 − Δ4 = 0 (E4)

Δ1 + Δ2 + Δ3 + Δ4 = 1 (E5)

From Eqs. (E2) and (E3), we obtain

Δ4 = Δ1 + Δ3 = Δ1 + Δ2 or Δ2 = Δ3 (E6)

Similarly, Eqs. (E3) and (E4) give us

Δ4 = Δ1 + Δ2 = Δ2 + Δ3 or Δ1 = Δ3 (E7)

Equations (E6) and (E7) yield
Δ1 = Δ2 = Δ3

while Eq. (E6) gives
Δ4 = Δ1 + Δ3 = 2Δ1

Finally, Eq. (E5) leads to the unique solution

Δ∗
1 = Δ∗

2 = Δ∗
3 = 1

5
and Δ∗

4 = 2
5

Thus, the optimal value of the objective function can be found from Eq. (8.13) as

f ∗ =
(

80
1∕5

)1∕5(
40

1∕5

)1∕5(
20

1∕5

)1∕5(
80

2∕5

)2∕5

= (4 × 102)1∕5(2 × 102)1∕5(1 × 102)1∕5(4 × 104)1∕5

= (32 × 1010)1∕5 = $200

It can be seen that the minimum total cost has been obtained before finding the optimal
size of the box. To find the optimal values of the design variables, let us write Eq. (8.14)
as

U∗
1 = 80x∗1x∗2 = Δ∗

1f ∗ = 1
5
(200) = 40 (E8)

U∗
2 = 40x∗2x∗3 = Δ∗

2f ∗ = 1
5
(200) = 40 (E9)

U∗
3 = 20x∗1x∗3 = Δ∗

3f ∗ = 1
5
(200) = 40 (E10)

�

� �

�

456 Geometric Programming

U∗
4 = 80

x∗1x∗2x∗3
= Δ∗

4f ∗ = 2
5
(200) = 80 (E11)

From these equations, we obtain

x∗2 = 1
2

1
x∗1

= 1
x∗3
, x∗1 =

x∗3
2
, x∗2 = 1

x∗3

1
x∗1x∗2x∗3

= 1 =
2x∗3
x∗3x∗3

, x∗3 = 2

Therefore,

x∗1 = 1 m, x∗2 = 1
2

m, x∗3 = 2 m (E12)

It is to be noticed that there is one redundant equation among Eqs. (E8) to (E11), which
is not needed for the solution of x∗i (i = 1 to n).

The solution given in Eq. (E12) can also be obtained using Eq. (8.18). In the
present case, Eq. (8.18) lead to

1w1 + 1w2 + 0w3 = ln
200 × 1

5

80
= ln

1
2

(E13)

0w1 + 1w2 + 1w3 = ln
200 × 1

5

40
= ln 1 (E14)

1w1 + 0w2 + 1w3 = ln
200 × 1

5

20
= ln 2 (E15)

−1w1 − 1w2 − 1w3 = ln
200 × 2

5

80
= ln 1 (E16)

By adding Eqs. (E13), (E14), and (E16), we obtain

w2 = ln
1
2
+ ln 1 + ln 1 = ln

(1
2

. 1 . 1
)
= ln

1
2
= ln x∗2

or
x∗2 = 1

2

Similarly, by adding Eqs. (E13), (E15), and (E16), we get

w1 = ln
1
2
+ ln 2 + ln 1 = ln 1 = ln x∗1

or
x∗1 = 1

Finally, we can obtain x∗3 by adding Eqs. (E14), (E15), and (E16) as

w3 = ln 1 + ln 2 + ln 1 = ln 2 = ln x∗3

or
x∗3 = 2

It can be noticed that there are four equations, Eqs. (E13) to (E16) in three unknowns
w1, w2, and w3. However, not all of them are linearly independent. In this case, the
first three equations only are linearly independent, and the fourth equation, (E16), can
be obtained by adding Eqs. (E13), (E14), and (E15), and dividing the result by −2.

�

� �

�

8.5 Solution of Unconstrained GMP 457

8.5 SOLUTION OF AN UNCONSTRAINED GEOMETRIC
PROGRAMMING PROBLEM USING
ARITHMETIC–GEOMETRIC INEQUALITY

The arithmetic mean–geometric mean inequality (also known as the
arithmetic–geometric inequality or Cauchy’s inequality) is given by [8.1]

Δ1u1 + Δ2u2 +⋯ + ΔNuN ≥ uΔ1

1 uΔ2

2 ⋯ uΔN

N (8.20)

with
Δ1 + Δ2 +⋯ + ΔN = 1 (8.21)

This inequality is found to be very useful in solving geometric programming problems.
Using the inequality of (8.20), the objective function of Eq. (8.3) can be written as (by
setting Ui = ui Δi, i = 1, 2, . . . , N)

U1 + U2 +⋯ + UN ≥
(

U1

Δ1

)Δ1
(

U2

Δ2

)Δ2

⋯
(

UN

ΔN

)ΔN

(8.22)

where Ui = Ui (X), i = 1, 2, . . . , N, and the weights Δ1, Δ2, . . . , ΔN, satisfy Eq. (8.21).
The left-hand side of the inequality (8.22) (i.e. the original function f (X)) is called the
primal function. The right side of inequality (8.22) is called the predual function. By
using the known relations

Uj = cj

n∏
i=1

x
aij

i , j = 1, 2, . . . ,N (8.23)

the predual function can be expressed as(
U1

Δ1

)Δ1
(

U2

Δ2

)Δ2

⋯
(

UN

ΔN

)ΔN

=

⎛⎜⎜⎜⎜⎝
c1

n∏
i=1

xai1

i

Δ1

⎞⎟⎟⎟⎟⎠

Δ1⎛⎜⎜⎜⎜⎝
c2

n∏
i=1

xai2

i

Δ2

⎞⎟⎟⎟⎟⎠

Δ2

⋯

⎛⎜⎜⎜⎜⎝
cN

n∏
i=1

xaiN

i

ΔN

⎞⎟⎟⎟⎟⎠

ΔN

=
(

c1

Δ1

)Δ1
(

c2

Δ2

)Δ2

⋯
(

cN

ΔN

)ΔN
⎧⎪⎨⎪⎩
(

n∏
i=1

xai1

i

)Δ1
(

n∏
i=1

xai2

i

)Δ2

⋯

(
n∏

i=1

xaiN

i

)ΔN
⎫⎪⎬⎪⎭

=
(

c1

Δ1

)Δ1
(

c2

Δ2

)Δ2

⋯
(

cN

ΔN

)ΔN
{(

x
∑N

j=1 a1jΔj

1

)(
x
∑N

j=1 a2jΔj

2

)
⋯
(

x
∑N

j=1 an j Δj

n

)}
(8.24)

If we select the weights Δj so as to satisfy the normalization condition, Eq. (8.21), and
also the orthogonality relations

N∑
j=1

aijΔj = 0, i = 1, 2, . . . , n (8.25)

�

� �

�

458 Geometric Programming

Equation (8.24) reduces to(
U1

Δ1

)Δ1
(

U2

Δ2

)Δ2

⋯
(

UN

ΔN

)ΔN

=
(

c1

Δ1

)Δ1
(

c2

Δ2

)Δ2

⋯
(

cN

ΔN

)ΔN

(8.26)

Thus, the inequality (8.22) becomes

U1 + U2 +⋯ + UN ≥
(

c1

Δ1

)Δ1
(

c2

Δ2

)Δ2

⋯
(

cN

ΔN

)ΔN

(8.27)

In this inequality, the right side is called the dual function, v(Δ1, Δ2, . . . , ΔN). The
inequality (8.27) can be written simply as

f ≥ v (8.28)

A basic result is that the maximum of the dual function equals the minimum of the pri-
mal function. Proof of this theorem is given in the next section. The theorem enables us
to accomplish the optimization by minimizing the primal or by maximizing the dual,
whichever is easier. Also, the maximization of the dual function subject to the orthog-
onality and normality conditions is a sufficient condition for f, the primal function, to
be a global minimum.

8.6 PRIMAL–DUAL RELATIONSHIP AND SUFFICIENCY
CONDITIONS IN THE UNCONSTRAINED CASE

If f* indicates the minimum of the primal function and v* denotes the maximum of
the dual function, Eq. (8.28) states that

f ≥ f ∗ ≥ v∗ ≥ v (8.29)

In this section we prove that f * = v* and also that f * corresponds to the global mini-
mum of f (X). For convenience of notation, let us denote the objective function f (X)
by x0 and make the exponential transformation

ewi = xi or wi = ln xi i = 0, 1, 2, . . . , n (8.30)

where the variables wi are unrestricted in sign. Define the new variablesΔj, also termed
weights, as

Δj =
Uj

x0
=

cj

n∏
i=1

x
aij

i

x0
, j = 1, 2, . . . ,N (8.31)

which can be seen to be positive and satisfy the relation

N∑
j=1

Δj = 1 (8.32)

By taking logarithms on both sides of Eq. (8.31), we obtain

lnΔj = ln cj +
n∑

i=1

aij ln xi − ln x0 (8.33)

�

� �

�

8.6 Primal–dual Relationship 459

or

ln
Δj

cj
=

n∑
i=1

aijwi − w0, j = 1, 2, . . . ,N (8.34)

Thus the original problem of minimizing f (X) with no constraints can be replaced
by one of minimizing w0 subject to the equality constraints given by Eqs. (8.32) and
(8.34). The objective function x0 is given by

x0 = ew0 =
N∑

j=1

cj

n∏
i=1

eaij wi

=
N∑

j=1

cje
∑n

i=1 aijwi (8.35)

Since the exponential function (eaij wi) is convex with respect to wi, the objective func-
tion x0, which is a positive combination of exponential functions, is also convex (see
Problem 8.15). Hence there is only one stationary point for x0 and it must be the global
minimum. The global minimum point of w0 can be obtained by constructing the fol-
lowing Lagrangian function and finding its stationary point:

L(w,𝚫, 𝛌) = w0 + λ0

(
N∑

i=1

Δi − 1

)

+
N∑

j=1

λj

(
n∑

i=1

ai j wi − w0 − ln
Δj

cj

)
(8.36)

where

w =
⎧⎪⎨⎪⎩

w0
w1
⋮

wn

⎫⎪⎬⎪⎭ , 𝚫 =
⎧⎪⎨⎪⎩
Δ1
Δ2
⋮
ΔN

⎫⎪⎬⎪⎭ , 𝛌 =
⎧⎪⎨⎪⎩
λ0
λ1
⋮
λN

⎫⎪⎬⎪⎭ (8.37)

with 𝜆 denoting the vector of Lagrange multipliers. At the stationary point of L, we
have

𝜕L
𝜕wi

= 0, i = 0, 1, 2, . . . , n

𝜕L
𝜕Δj

= 0, j = 1, 2, . . . ,N

𝜕L
𝜕λi

= 0, i = 0, 1, 2, . . . ,N (8.38)

These equations yield the following relations:

1 −
N∑

j=1

λj = 0 or
N∑

j=1

λj = 1 (8.39)

N∑
j=1

λjai j = 0, i = 1, 2, . . . , n (8.40)

λ0 −
λj

Δj
= 0 or λ0 =

λj

Δj
, j = 1, 2, . . . ,N (8.41)

�

� �

�

460 Geometric Programming

N∑
j=1

Δj − 1 = 0 or
N∑

j=1

Δj = 1 (8.42)

− ln
Δj

cj
+

n∑
i=1

ai jwi − w0 = 0, j = 1, 2, . . . ,N (8.43)

Equations (8.39), (8.41), and (8.42) give the relation

N∑
j=1

λj = 1 =
N∑

j=1

λ0Δj = λ0

N∑
j=1

Δj = λ0 (8.44)

Thus the values of the Lagrange multipliers are given by

λj =

{
1

Δj

for
for

j = 0
j = 1,2, . . . ,N

(8.45)

By substituting Eq. (8.45) into Eq. (8.36), we obtain

L(𝚫,w) = −
N∑

j=1

Δj ln
Δj

cj
+ (1 − w0)

(
N∑

j=1

Δj − 1

)
+

n∑
i=1

wi

(
N∑

j=1

ai jΔj

)
(8.46)

The function given in Eq. (8.46) can be considered as the Lagrangian function
corresponding to a new optimization problem whose objective function ṽ(𝚫) is given
by

ṽ(𝚫) = −
N∑

j=1

Δj ln
Δj

cj
= ln

[
N∏

j=1

(cj

Δj

)Δj
]

(8.47)

and the constraints by
N∑

j=1

Δj − 1 = 0 (8.48)

N∑
j=1

ai j Δj = 0, i = 1, 2, . . . , n (8.49)

This problem will be the dual for the original problem. The quantities (1−w0), w1,
w2, . . . , wn can be regarded as the Lagrange multipliers for the constraints given by
Eqs. (8.48) and (8.49).

Now it is evident that the vector 𝚫 which makes the Lagrangian of Eq. (8.46)
stationary will automatically give a stationary point for that of Eq. (8.36). It can be
proved that the function

Δj ln
Δj

cj
, j = 1, 2, . . . ,N

is convex (see Problem 8.16) since Δj is positive. Since the function ṽ(𝚫) is given
by the negative of a sum of convex functions, it will be a concave function. Hence
the function ṽ(𝚫) will have a unique stationary point that will be its global maximum
point. Hence the minimum of the original primal function is same as the maximum of
the function given by Eq. (8.47) subject to the normality and orthogonality conditions
given by Eqs. (8.48) and (8.49) with the variables Δj constrained to be positive.

�

� �

�

8.6 Primal–dual Relationship 461

By substituting the optimal solution Δ*, the optimal value of the objective func-
tion becomes

ṽ∗ = ṽ(𝚫∗) = L(w∗
,𝚫∗) = w∗

0 = L(w∗
,𝚫∗

, 𝛌∗)

= −
N∑

j=1

Δ∗
j ln

Δ∗
j

cj
(8.50)

By taking the exponentials and using the transformation (8.30), we get

f ∗ =
N∏

j=1

(
cj

Δ∗
j

)Δ∗
j

(8.51)

8.6.1 Primal and Dual Problems

We saw that geometric programming treats the problem of minimizing posynomials
and maximizing product functions. The minimization problems are called primal pro-
grams and the maximization problems are called dual programs. Table 8.1 gives the
primal and dual programs corresponding to an unconstrained minimization problem.

8.6.2 Computational Procedure

To solve a given unconstrained minimization problem, we construct the dual function
v(Δ) and maximize either v(Δ) or ln v(Δ), whichever is convenient, subject to the
constraints given by Eqs. (8.48) and (8.49). If the degree of difficulty of the problem
is zero, there will be a unique solution for the Δ∗

j ’s.
For problems with degree of difficulty greater than zero, there will be more vari-

ables Δj (j = 1, 2, . . . , N) than the number of equations (n+ 1). Sometimes it will

Table 8.1 Primal and Dual Programs Corresponding to an Unconstrained
Minimization Problem.

Primal program Dual program

Find X =
⎧⎪⎨⎪⎩

x1

x2

⋮
xn

⎫⎪⎬⎪⎭ Find 𝚫 =
⎧⎪⎨⎪⎩
Δ1

Δ2

⋮
ΔN

⎫⎪⎬⎪⎭
so that so that

f (X) =
N∑

j=1
cjx

a1j

1 x
a2j

2 ⋯ x
an j
n v(Δ) =

N∏
j=1

(
cj

Δj

)Δj

→ minimum
x1 > 0, x2 > 0, . . . , xn > 0

or

ln v(𝚫) = ln

[
N∏

j=1

(
cj

Δj

)Δj

]
→ maximum

(8.47)

subject to the constraints
N∑

j=1
Δj = 1 (8.48)

N∑
j=1

ai j Δj = 0, i = 1, 2, . . . , n (8.49)

�

� �

�

462 Geometric Programming

be possible for us to express any (n+ 1) number of Δj’s in terms of the remaining
(N− n− 1) number of Δj’s. In such cases, our problem will be to maximize v(Δ) or
ln v(Δ) with respect to the (N− n− 1) independent Δj’s. This procedure is illustrated
with the help of the following one-degree-of-difficulty example.

Example 8.2 In a certain reservoir pump installation, the first cost of the pipe is given
by (100D + 50D2), where D is the diameter of the pipe in centimeters. The cost of the
reservoir decreases with an increase in the quantity of fluid handled and is given by
20/Q, where Q is the rate at which the fluid is handled (cubic meters per second).

The pumping cost is given by (300Q2/D5). Find the optimal size of the pipe and
the amount of fluid handled for minimum overall cost.

SOLUTION

f (D,Q) = 100D1Q0 + 50D2Q0 + 20D0Q−1 + 300D−5Q2 (E1)

Here we can see that

c1 = 100, c2 = 50, c3 = 20, c4 = 300(
a11 a12 a13 a14
a21 a22 a23 a24

)
=
(

1 2 0 −5
0 0 −1 2

)
The orthogonality and normality conditions are given by

⎛⎜⎜⎝
1 2 0 −5
0 0 −1 2
1 1 1 1

⎞⎟⎟⎠
⎧⎪⎨⎪⎩
Δ1
Δ2
Δ3
Δ4

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

1

⎫⎪⎬⎪⎭
Since N> (n+ 1), these equations do not yield the required Δj (j = 1 to 4) directly.
But any three of the Δj’s can be expressed in terms of the remaining one. Hence by
solving for Δ1, Δ2, and Δ3 in terms of Δ4, we obtain

Δ1 = 2 − 11Δ4

Δ2 = 8Δ4 − 1

Δ3 = 2Δ4 (E2)

The dual problem can now be written as

Maximize v(Δ1,Δ2,Δ3,Δ4)

=
(

c1

Δ1

)Δ1
(

c2

Δ2

)Δ2(c3

Δ3

)Δ3
(

c4

Δ4

)Δ4

=
(

100
2 − 11Δ4

)2−11Δ4
(

50
8Δ4 − 1

)8Δ4−1(
20

2Δ4

)2Δ4
(

300
Δ4

)Δ4

Since the maximization of v is equivalent to the maximization of ln v, we will maxi-
mize ln v for convenience. Thus

ln v = (2 − 11Δ4)[ln 100 − ln(2 − 11Δ4)] + (8Δ4 − 1)

× [ln 50 − ln(8Δ4 − 1)] + 2Δ4[ln 20 − ln(2Δ4)]

+ Δ4[ln 300 − ln(Δ4)]

�

� �

�

8.6 Primal–dual Relationship 463

Since ln v is expressed as a function of Δ4 alone, the value of Δ4 that maximizes ln
v must be unique (because the primal problem has a unique solution). The necessary
condition for the maximum of ln v gives

𝜕

𝜕Δ4
(ln v) = −11[ln 100 − ln(2 − 11Δ4)] + (2 − 11Δ4)

11
2 − 11Δ4

+ 8 [ln 50 − ln(8Δ4 − 1)] + (8Δ4 − 1)
(
− 8

8Δ4 − 1

)
+ 2 [ln 20 − ln(2Δ4)] + 2Δ4

(
− 2

2Δ4

)
+1 [ln 300 − ln(Δ4)] + Δ4

(
− 1
Δ4

)
= 0

This gives after simplification

ln
(2 − 11Δ4)11

(8Δ4 − 1)8(2Δ4)2Δ4
− ln

(100)11

(50)8(20)2(300)
= 0

i.e.
(2 − 11Δ4)11

(8Δ4 − 1)8(2Δ4)2Δ4
= (100)11

(50)8(20)2(300)
= 2130 (E3)

from which the value of Δ∗
4 can be obtained by using a trial-and-error process as

follows:

Value of Δ∗
4 Value of left-hand side of Eq. (E3)

2/11 = 0.182 0.0

0.15
(0.35)11

(0.2)8(0.3)2(0.15)
≃ 284

0.147
(0.385)11

(0.175)8(0.294)2(0.147)
≃ 2210

0.146
(0.39)11

(0.169)8(0.292)2(0.146)
≃ 4500

Thus, we find that Δ∗
4 ≃ 0.147, and Eq. (E2) give

Δ∗
1 = 2 − 11Δ∗

4 = 0.385

Δ∗
2 = 8Δ∗

4 − 1 = 0.175

Δ∗
3 = 2Δ∗

4 = 0.294

The optimal value of the objective function is given by

v∗ = f ∗ =
(100

0.385

)0.385(50
0.175

)0.175(20
0.294

)0.294(300
0.147

)0.147

= 8.5 × 2.69 × 3.46 × 3.06 = 242

�

� �

�

464 Geometric Programming

The optimum values of the design variables can be found from

U∗
1 = Δ∗

1f ∗ = (0.385)(242) = 92.2

U∗
2 = Δ∗

2f ∗ = (0.175)(242) = 42.4

U∗
3 = Δ∗

3f ∗ = (0.294)(242) = 71.1

U∗
4 = Δ∗

4f ∗ = (0.147)(242) = 35.6 (E4)

From Eqs. (E1) and (E4), we have

U∗
1 = 100D∗ = 92.2

U∗
2 = 50D∗2 = 42.4

U∗
3 = 20

Q∗ = 71.1

U∗
4 = 300Q∗2

D∗5
= 35.6

These equations can be solved to find the desired solution D* = 0.922 cm,
Q* = 0.281 m3/s.

8.7 CONSTRAINED MINIMIZATION

Most engineering optimization problems are subject to constraints. If the objective
function and all the constraints are expressible in the form of posynomials, geometric
programming can be used most conveniently to solve the optimization problem. Let
the constrained minimization problem be stated as

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭
which minimizes the objective function

f (X) =
N0∑
j=1

c0j

n∏
i=1

x
a0ij

i (8.52)

and satisfies the constraints

gk(X) =
Nk∑
j=1

ckj

n∏
i=1

x
aki j

i
<

>
1, k = 1, 2, . . . ,m (8.53)

where the coefficients c0j (j= 1, 2, . . . , N0) and ckj (k= 1, 2, . . . , m; j= 1, 2, . . . , Nk) are
positive numbers, the exponents a0ij (i = 1, 2, . . . , n; j = 1, 2, . . . , N0) and akij (k = 1,
2, . . . , m; i = 1, 2, . . . , n; j = 1, 2, . . . , Nk) are any real numbers, m indicates the total
number of constraints, N0 represents the number of terms in the objective function, and
Nk denotes the number of terms in the kth constraint. The design variables x1, x2, . . . , xn
are assumed to take only positive values in Eqs. (8.52) and (8.53). The solution of the
constrained minimization problem stated above is considered in the next section.

�

� �

�

8.8 Solution of a Constrained GMP 465

8.8 SOLUTION OF A CONSTRAINED GEOMETRIC
PROGRAMMING PROBLEM

For simplicity of notation, let us denote the objective function as

x0 = g0(X) = f (X) =
N0∑
i=1

c0j

n∏
j=1

x
a0i j

i (8.54)

The constraints given in Eq. (8.53) can be rewritten as

fk = 𝜎k[1 − gk(X)] ≥ 0, k = 1, 2, . . . ,m (8.55)

where 𝜎k, the signum function, is introduced for the kth constraint so that it takes on the
value +1 or− 1, depending on whether gk (X) is ≤1or≥ 1, respectively. The problem
is to minimize the objective function, Eq. (8.54), subject to the inequality constraints
given by Eq. (8.55). This problem is called the primal problem and can be replaced by
an equivalent problem (known as the dual problem) with linear constraints, which is
often easier to solve. The dual problem involves the maximization of the dual function,
v(𝜆), given by

v(𝛌) =
m∏

k=0

Nk∏
j=1

(
ckj

λkj

Nk∑
l=1

λkl

)𝜎kλkj

(8.56)

subject to the normality and orthogonality conditions

N0∑
j=1

λ0j = 1 (8.57)

m∑
k=0

Nk∑
j=1

𝜎kakijλkj = 0, i = 1, 2, . . . , n (8.58)

If the problem has zero degree of difficulty, the normality and orthogonality conditions
(Eqs. (8.57) and (8.58)) yield a unique solution for 𝜆* from which the stationary value
of the original objective function can be obtained as

f ∗ = x∗0 = v(𝛌∗) =
m∏

k=0

Nk∏
j=1

(
ckj

λ∗kj

Nk∑
l=1

λ∗kl

)𝜎kλ∗kj

(8.59)

If the function f (X) is known to possess a minimum, the stationary value f * given by
Eq. (8.59) will be the global minimum of f since, in this case, there is a unique solution
for 𝜆*.

The degree of difficulty of the problem (D) is defined as

D = N − n − 1 (8.60)

where N denotes the total number of posynomial terms in the problem:

N =
m∑

k=0

Nk (8.61)

If the problem has a positive degree of difficulty, the linear Eqs. (8.57) and (8.58) can
be used to express any (n+ 1) of the 𝜆kj’s in terms of the remaining D of the 𝜆kj’s. By

�

� �

�

466 Geometric Programming

using these relations, v can be expressed as a function of the D independent 𝜆kj’s. Now
the stationary points of v can be found by using any of the unconstrained optimization
techniques.

If calculus techniques are used, the first derivatives of the function v with respect to
the independent dual variables are set equal to zero. This results in as many simultane-
ous nonlinear equations as there are degrees of difficulty (i.e. N− n− 1). The solution
of these simultaneous nonlinear equations yields the best values of the dual variables,
𝜆*. Hence this approach is occasionally impractical due to the computations required.
However, if the set of nonlinear equations can be solved, geometric programming pro-
vides an elegant approach.

8.8.1 Optimum Design Variables

For problems with a zero degree of difficulty, the solution of 𝜆* is unique. Once
the optimum values of 𝜆kj are obtained, the maximum of the dual function v* can
be obtained from Eq. (8.59), which is also the minimum of the primal function, f*.
Once the optimum value of the objective function f ∗ = x∗0 is known, the next step is to
determine the values of the design variables x∗i (i = 1, 2, . . . , n). This can be achieved
by solving simultaneously the following equations:

Δ∗
0j = λ∗0j ≡

c0j

n∏
i=1

(x∗i)
a0ij

x∗0
, j = 1, 2, . . . ,N0 (8.62)

Δ∗
kj =

λ∗kj

Nk∑
l=1

λ∗kl

= ckj

n∏
i=1

(x∗i)
akij
,

j = 1, 2, . . . ,Nk
k = 1, 2, . . . ,m

(8.63)

8.9 PRIMAL AND DUAL PROGRAMS IN THE CASE OF
LESS-THAN INEQUALITIES

If the original problem has a zero degree of difficulty, the minimum of the primal
problem can be obtained by maximizing the corresponding dual function. Unfortu-
nately, this cannot be done in the general case where there are some greater than type
of inequality constraints. However, if the problem has all the constraints in the form
of gk(X)≤ 1, the signum functions 𝜎k are all equal to +1, and the objective function
g0(X) will be a strictly convex function of the transformed variables w1, w2, . . . , wn,
where

xi = ewi
, i = 0, 1, 2, . . . , n (8.64)

In this case, the following primal–dual relationship can be shown to be valid:

f (X) ≥ f ∗ ≡ v∗ ≥ v(𝛌) (8.65)

Table 8.2 gives the primal and the corresponding dual programs. The following char-
acteristics can be noted from this table:

1. The factors ckj appearing in the dual function v(𝜆) are the coefficients of the
posynomials gk(X), k = 0, 1, 2, . . . , m.

2. The number of components in the vector 𝜆 is equal to the number of terms
involved in the posynomials g0, g1, g2, . . . , gm. Associated with every term in
gk(X), there is a corresponding Δkj.

�

� �

�

8.9 Primal and Dual Programs 467

Table 8.2 Corresponding Primal and Dual Programs.

Primal program Dual program

Find X =

⎧⎪⎪⎨⎪⎪⎩

x1

x2

⋮

xn

⎫⎪⎪⎬⎪⎪⎭

Find 𝛌 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ01

λ02

⋮
λ0N0

⋯
λ11

λ12

⋮
λ1N1

. . .

⋮
. . .

λm1

λm2

⋮
λmNm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

so that

g0(X)≡ f (X)→minimum

subject to the constraints
x1 > 0

x2 > 0

⋮
xn > 0,

g1(X) ≤ 1

g2(X) ≤ 1

⋮
gm(X) ≤ 1,

so that

v(𝛌) =
m∏

k=0

Nk∏
j=1

(
ckj

λkj

Nk∑
l=1

λkl

)λkj

→ maximum

with

g0(X) =
N0∑
j=1

c0jx
a01j

1 x
a02j

2 ⋯ x
a0nj
n

g1(X) =
N1∑
j=1

c1jx
a11j

1 x
a12j

2 ⋯ x
a1nj
n

g2(X) =
N2∑
j=1

c2jx
a21j

1 x
a22j

2 ⋯ x
a2nj
n

⋮

gm(X) =
Nm∑
j=1

cmjx
am1j

1 x
am2j

2 ⋯ x
amnj
n

subject to the constraints

λ01 ≥ 0

λ02 ≥ 0

⋮

λ0N0
≥ 0

λ11 ≥ 0

⋮

λ1N1
≥ 0

⋮

λm1 ≥ 0

λm2 ≥ 0

⋮

λmNm
≥ 0

the exponents akij are real numbers, and
the coefficients ckj are positive numbers.

N0∑
j=1

λ0j = 1

m∑
k=0

Nk∑
j=1

akijλkj = 0 i = 1, 2, . . . , n

the factors ckj are positive, and the
coefficients akij are real numbers.

(continues)

�

� �

�

468 Geometric Programming

Table 8.2 (continued)

Primal program Dual program

Terminology

g0 = f = primal function
x1, x2, . . . , xn = primal variables
gk ≤ 1 are primal constraints

(k = 1, 2, . . . , m)

xi > 0, i = 1, 2, . . . , n positive restrictions.
n = number of primal variables
m = number of primal constriants
N = N0 +N1 + ⋅⋅⋅+Nm = total number of

terms in the posynomials
N− n− 1 = degree of difficulty of the

problem

𝜈 = dual function
𝜆01, 𝜆02, . . . , 𝜆m Nm = dual variables
N0∑
j=1

λ0j = 1 is the normality constraint

m∑
k=0

Nk∑
j=1

akijλkj = 0 i = 1, 2, . . . , n are the

orthogonality constraints

𝜆kj ≥ 0, j = 1, 2, . . . , Nk;
k = 0, 1, 2, . . . , m

are nonnegativity restrictions
N = N0 +N1 + ⋅⋅⋅+Nm

= number of dual variables
n+ 1 number of dual constraints

3. Each factor
(∑Nk

l=1 λkl

)λkj

of v(𝜆) comes from an inequality constraint gk(X)≤ 1.
No such factor appears from the primal function g0(X) as the normality condi-
tion forces

∑N0

j=1 λ0j to be unity.

4. The coefficient matrix [akij] appearing in the orthogonality condition is same as
the exponent matrix appearing in the posynomials of the primal program.

The following examples are considered to illustrate the method of solving geo-
metric programming problems with less-than inequality constraints.

Example 8.3 Zero-Degree-of-Difficulty Problem Suppose that the problem con-
sidered in Example 8.1 is restated in the following manner. Minimize the cost of
constructing the open rectangular box subject to the constraint that a maximum of
10 trips only are allowed for transporting the 80 m3 of grain.

SOLUTION The optimization problem can be stated as

Find X =
⎧⎪⎨⎪⎩

x1

x2

x3

⎫⎪⎬⎪⎭ so as to minimize

f (X) = 20x1x2 + 40x2x3 + 80x1x2

subject to
80

x1x2x3
≤ 10 or

8
x1x2x3

≤ 1

Since n = 3and N = 4, this problem has zero degree of difficulty. As N0 = 3, N1 = 1,
and m = 1, the dual problem can be stated as follows:

Find 𝛌 =
⎧⎪⎨⎪⎩
λ01
λ02
λ03
λ11

⎫⎪⎬⎪⎭ to maximize

�

� �

�

8.9 Primal and Dual Programs 469

v(𝛌) =
1∏

k=0

Nk∏
j=1

(
ckj

λkj

Nk∑
l=1

λkl

)λkj

=
N0=3∏
j=1

(
c0j

λ0j

N0=3∑
l=1

λ0l

)λ0j N1=1∏
j=1

(
c1j

λ1j

N1=1∑
l=1

λ1l

)λ1j

=
[

c01

λ01
(λ01 + λ02 + λ03)

]λ01
[

c02

λ02
(λ01 + λ02 + λ03)

]λ02

.
[

c03

λ03
(λ01 + λ02 + λ03)

]λ03
(

c11

λ11
λ11

)λ11

(E1)

subject to the constraints

λ01 + λ02 + λ03 = 1

a011λ01 + a012λ02 + a013λ03 + a111λ11 = 0

a021λ01 + a022λ02 + a023λ03 + a121λ11 = 0

a031λ01 + a032λ02 + a033λ03 + a131λ11 = 0 (E2)

λ0j ≥ 0, j = 1, 2, 3

λ11 ≥ 0

In this problem, c01 = 20, c02 = 40, c03 = 80, c11 = 8, a011 = 1, a021 = 0, a031 = 1,
a012 = 0, a022 = 1, a032 = 1, a013 = 1, a023 = 1, a033 = 0, a111 = −1, a121 = −1, and
a131 = −1. Hence Eqs. (E1) and (E2) become

v(𝛌) =
[

20
λ01

(λ01 + λ02 + λ03)
]λ01

[
40
λ02

(λ01 + λ02 + λ03)
]λ02

×
[

80
λ03

(λ01 + λ02 + λ03)
]λ03

(
8
λ11

λ11

)λ11

(E3)

subject to

λ01 + λ02 + λ03 = 1

λ01 + λ03 − λ11 = 0

λ02 + λ03 − λ11 = 0

λ01 + λ02 − λ11 = 0 (E4)

λ01 ≥ 0, λ02 ≥ 0, λ03 ≥ 0, λ11 ≥ 0

The four linear equations in Eq. (E4) yield the unique solution

λ∗01 = λ∗02 = λ∗03 = 1
3
, λ∗11 = 2

3

Thus the maximum value of v or the minimum value of x0 is given by

v∗ = x∗0 = (60)1∕3(120)1∕3(240)1∕3(8)2∕3

= [(60)3]1∕3(8)1∕3(8)2∕3 = (60)(8) = 480

�

� �

�

470 Geometric Programming

The values of the design variables can be obtained by applying Eqs. (8.62) and (8.63)
as

λ∗01 =
c01(x∗1)

a011(x∗2)
a021(x∗3)

a031

x∗0

1
3
=

20(x∗1)(x
∗
3)

480
=

x∗1x∗3
24

(E5)

λ∗02 =
c02(x∗1)

a012(x∗2)
a022(x∗3)

a032

x∗0

1
3
=

40(x∗2)(x
∗
3)

480
=

x∗2x∗3
12

(E6)

λ∗03 =
c03(x∗1)

a013(x∗2)
a023(x∗3)

a033

x∗0

1
3
=

80(x∗1)(x
∗
2)

480
=

x∗1x∗2
6

(E7)

λ∗11

λ∗11

= c11(x∗1)
a111(x∗2)

a121(x∗3)
a131

1 = 8(x∗1)
−1(x∗2)

−1(x∗3)
−1 = 8

x∗1x∗2x∗3
(E8)

Equations (E5) to (E8) give

x∗1 = 2, x∗2 = 1, x∗3 = 4

Example 8.4 One-Degree-of-Difficulty Problem

Minimize f = x1x2
2x−1

3 + 2x−1
1 x−3

2 x4 + 10x1x3

subject to

3x−1
1 x3x−2

4 + 4x3x4 ≤ 1

5x1x2 ≤ 1

SOLUTION Here N0 = 3, N1 = 2, N2 = 1, N = 6, n = 4, m = 2, and the degree of
difficulty of this problem is N− n− 1 = 1. The dual problem can be stated as follows:

Maximixze v(𝛌) =
m∏

k=0

Nk∏
j=1

(
ckj

λkj

Nk∑
l=1

λkl

)λkj

subject to
N0∑
j=1

λ0j = 1

m∑
k=0

Nk∑
j=1

akijλkj = 0, i = 1, 2, . . . , n (E1)

�

� �

�

8.9 Primal and Dual Programs 471

Nk∑
j=1

λkj ≥ 0, k = 1, 2, . . . ,m

As c01 = 1, c02 = 2, c03 = 10, c11 = 3, c12 = 4, c21 = 5, a011 = 1, a021 = 2, a031 = −1,
a041 = 0, a012 =−1, a022 =−3, a032 = 0, a042 = 1, a013 = 1, a023 = 0, a033 = 1, a043 = 0,
a111 =−1, a121 = 0, a131 = 1, a141 =−2, a112 = 0, a122 = 0, a132 = 1, a142 = 1, a211 = 1,
a221 = 1, a231 = 0, and a241 = 0, Eq. (E1) become

Maximize v(𝛌) =
[

c01

λ01
(λ01 + λ02 + λ03)

]λ01
[

c02

λ02
(λ01 + λ02 + λ03)

]λ02

×
[

c03

λ03
(λ01 + λ02 + λ03)

]λ03
[

c11

λ11
(λ11 + λ12)

]λ11

×
[

c12

λ12
(λ11 + λ12)

]λ12
(

c21

λ21
λ21

)λ21

subject to

λ01 + λ02 + λ03 = 1

a011λ01 + a012λ02 + a013λ03 + a111λ11 + a112λ12 + a211λ21 = 0

a021λ01 + a022λ02 + a023λ03 + a121λ11 + a122λ12 + a221λ21 = 0

a031λ01 + a032λ02 + a033λ03 + a131λ11 + a132λ12 + a231λ21 = 0

a041λ01 + a042λ02 + a043λ03 + a141λ11 + a142λ12 + a241λ21 = 0

λ11 + λ12 ≥ 0

λ21 ≥ 0

or

Maximixze v(𝛌) =
(

1
λ01

)λ01(
2
λ02

)λ02(
10
λ03

)λ03
[

3
λ11

(λ11 + λ12)
]λ11

×
[

4
λ12

(λ11 + λ12)
]λ12

(5)λ21 (E2)

subject to

λ01 + λ02 + λ03 = 1

λ01 − λ02 + λ03 − λ11 + λ21 = 0

2λ01 − 3λ02 + λ21 = 0

−λ01 + λ03 + λ11 + λ12 = 0

λ02 − 2λ11 + λ12 = 0 (E3)

λ11 + λ12 ≥ 0

λ21 ≥ 0

�

� �

�

472 Geometric Programming

Equation (E3) can be used to express any five of the 𝜆’s in terms of the remaining one
as follows: Eq. (E3) can be rewritten as

λ02 + λ03 = 1 − λ01 (E4)

λ02 − λ03 + λ11 − λ21 = λ01 (E5)

3λ02 − λ21 = 2λ01 (E6)

λ12 = λ01 − λ03 − λ11 (E7)

λ12 = 2λ11 − λ02 (E8)

From Eqs. (E7) and (E8), we have

λ12 = λ01 − λ03 − λ11 = 2λ11 − λ02

3λ11 − λ02 + λ03 = λ01 (E9)

Adding Eqs. (E5) and (E9), we obtain

λ21 = 4λ11 − 2λ01 (E10)

= 3λ02 − 2λ01

from Eq. (E6)

λ11 = 3
4
λ02 (E11)

Substitution of Eq. (E11) in Eq. (E8) gives

λ12 = 3
2
λ02 − λ02 = 1

2
λ02 (E12)

Equations (E11), (E12), and (E7) give

λ03 = λ01 − λ11 − λ12 = λ01 −
3
4
λ02 −

1
2
λ02 = λ01 −

5
4
λ02 (E13)

By substituting for 𝜆03, Eq. (E4) gives

λ02 = 8λ01 − 4 (E14)

Using this relation for 𝜆02, the expressions for 𝜆03, 𝜆11, 𝜆12, and 𝜆21 can be obtained
as

λ03 = λ01 −
5
4
λ02 = −9λ01 + 5 (E15)

λ11 = 3
4
λ02 = 6λ01 − 3 (E16)

λ12 = 1
2
λ02 = 4λ01 − 2 (E17)

λ21 = 4λ11 − 2λ01 = 22λ01 − 12 (E18)

�

� �

�

8.10 GMP with Mixed Inequality Constraints 473

Thus, the objective function in Eq. (E2) can be stated in terms of 𝜆01 as

v(λ01) =
(

1
λ01

)λ01
(

2
8λ01 − 4

)8λ01−4(
10

5 − 9λ01

)5−9λ01

×
(

30λ01 − 15

6λ01 − 3

)6λ01−3(40λ01 − 20

4λ01 − 2

)4λ01−2

(5)22λ01−2

=
(

1
λ01

)λ01
(

1
4λ01 − 2

)8λ01−4(
10

5 − 9λ01

)5−9λ01

× (5)6λ01−3(10)4λ01−2(5)22λ01−12

=
(

1
λ01

)λ01
(

1
4λ01 − 2

)8λ01−4(
10

5 − 9λ01

)5−9λ01

(5)32λ01−17(2)4λ01−2

To find the maximum of v, we set the derivative of v with respect to 𝜆01 equal to zero.
To simplify the calculations, we set d (ln v)/d𝜆01 = 0 and find the value of λ∗01. Then
the values of λ∗02, λ

∗
03, λ

∗
11, λ

∗
12, and λ∗21 can be found from Eqs. (E14) to (E18). Once the

dual variables (λ∗kj) are known, Eqs. (8.62) and (8.63) can be used to find the optimum
values of the design variables as in Example 8.3.

8.10 GEOMETRIC PROGRAMMING WITH MIXED INEQUALITY
CONSTRAINTS

In this case the geometric programming problem contains at least one signum function
with a value of 𝜎k = − 1 among k = 1, 2, . . . , m. (Note that 𝜎0 = + 1 corresponds to
the objective function.) Here, no general statement can be made about the convexity
or concavity of the constraint set. However, since the objective function is continuous
and is bounded below by zero, it must have a constrained minimum, provided that
there exist points satisfying the constraints.

Example 8.5
Minimize f = x1x2

2x−1
3 + 2x−1

1 x−3
2 x4 + 10x1x3

subject to

3x1x−1
3 x2

4 + 4x−1
3 x−1

4 ≥ 1

5x1x2 ≤ 1

SOLUTION In this problem, m = 2, N0 = 3, N1 = 2, N2 = 1, N = 6, n = 4, and the
degree of difficulty is 1. The signum functions are 𝜎0 = 1, 𝜎1 = −1, and 𝜎2 = 1. The
dual objective function can be stated, using Eq. (8.56), as follows:

Minimize v(𝛌) =
2∏

k=0

Nk∏
j=1

(
ckj

λkj

Nk∑
l=1

λkl

)𝜎kλkj

=
[

c01

λ01
(λ01 + λ02 + λ03)

]λ01
[

c02

λ02
(λ01 + λ02 + λ03)

]λ02

×
[

c03

λ03
(λ01 + λ02 + λ03)

]λ03

�

� �

�

474 Geometric Programming

×
[

c11

λ11
(λ11 + λ12)

]−λ11
[

c12

λ12
(λ11 + λ12)

]−λ12
(

c21

λ21
λ21

)λ21

=
(

1
λ01

)λ01
(

2
λ02

)λ02
(

10
λ03

)λ03
[

3(λ11 + λ12)
λ11

]−λ11

×
[

4(λ11 + λ12)
λ12

]−λ12

(5)λ21 (E1)

The constraints are given by (see Table 8.2)

N0∑
j=1

λ0j = 1

m∑
k=0

Nk∑
j=1

𝜎kakijλkj = 0, i = 1, 2, . . . , n

Nk∑
j=1

λk j ≥ 0, k = 1, 2, . . . ,m

that is,

λ01 + λ02 + λ03 = 1

𝜎0a011λ01 + 𝜎0a012λ02 + 𝜎0a013λ03 + 𝜎1a111λ11 + 𝜎1a112λ12 + 𝜎2a211λ21 = 0

𝜎0a021λ01 + 𝜎0a022λ02 + 𝜎0a023λ03 + 𝜎1a121λ11 + 𝜎1a122λ12 + 𝜎2a221λ21 = 0

𝜎0a031λ01 + 𝜎0a032λ02 + 𝜎0a033λ03 + 𝜎1a131λ11 + 𝜎1a132λ12 + 𝜎2a231λ21 = 0

𝜎0a041λ01 + 𝜎0a042λ02 + 𝜎0a043λ03 + 𝜎1a141λ11 + 𝜎1a142λ12 + 𝜎2a241λ21 = 0

λ11 + λ12 ≥ 0

λ21 ≥ 0

that is,

λ01 + λ02 + λ03 = 1

λ01 − λ02 + λ03 − λ11 + λ21 = 0

2λ01 − 3λ02 + λ21 = 0

−λ01 + λ03 + λ11 + λ12 = 0

λ02 − 2λ11 + λ12 = 0 (E2)

λ11 + λ12 ≥ 0

λ21 ≥ 0

�

� �

�

8.11 Complementary Geometric Programming 475

Since Eq. (E2) are same as Eq. (E3) of the preceding example, the equality constraints
can be used to express 𝜆02, 𝜆03, 𝜆11, 𝜆12, and 𝜆21 in terms of 𝜆01 as

λ02 = 8λ01 − 4

λ03 = − 9λ01 + 5

λ11 = 6λ01 − 3

λ12 = 4λ01 − 2

λ21 = 22λ01 − 12 (E3)

By using Eq. (E3), the dual objective function of Eq. (E1) can be expressed as

v(λ01) =
(

1
λ01

)λ01
(

2
8λ01 − 4

)8λ01−4(
10

−9λ01 + 5

)5−9λ01

×
(

3(10λ01 − 5)
6λ01 − 3

)−6λ01+3 4
(
10λ01 − 5

)
4λ01 − 2

−4λ01−2

(5)22λ01−12

=
(

1
λ01

)λ01
(

1
4λ01 − 2

)8λ01−4(
10

5 − 9λ01

)5−9λ01

(5)3−6λ01(10)2−4λ01

× (5)22λ01−12

=
(

1
λ01

)λ01
(

1
4λ01 − 2

)8λ01−4(
10

5 − 9λ01

)5−9λ01

(5)12λ01−7(2)2−4λ01

To maximize v, set d (ln v)/d𝜆01 = 0 and find λ∗01. Once λ∗01 is known, λ∗kj can be obtained
from Eq. (E3) and the optimum design variables from Eqs. (8.62) and (8.63).

8.11 COMPLEMENTARY GEOMETRIC PROGRAMMING

Avriel and Williams [8.4] extended the method of geometric programming to include
any rational function of posynomial terms and called the method complementary geo-
metric programming (CGP).1 The case in which some terms may be negative will
then become a special case of CGP. While geometric programming problems have the
remarkable property that every constrained local minimum is also a global minimum,
no such claim can generally be made for CGP problems. However, in many practical
situations, it is sufficient to find a local minimum.

The algorithm for solving CGP problems consists of successively approximating
rational functions of posynomial terms by posynomials. Thus solving a CGP problem
by this algorithm involves the solution of a sequence of ordinary geometric program-
ming (OGP) problems. It has been proved that the algorithm produces a sequence
whose limit is a local minimum of the CGP problem (except in some pathological
cases).

Let the CGP problem be stated as follows:

Minimize R0(X)

1The application of geometric programming to problems involving generalized polynomial functions was
presented by Passy and Wilde [2].

�

� �

�

476 Geometric Programming

subject to
Rk(X) ≤ 𝟏, k = 1, 2, . . . ,m

where

Rk(X) =
Ak(X) − Bk(X)
Ck(X) − Dk(X)

, k = 0, 1, 2, . . . ,m (8.66)

where Ak(X), Bk(X), Ck(X), and Dk(X) are posynomials in X and possibly some of
them may be absent. We assume that R0(X) > 0 for all feasible X. This assumption
can always be satisfied by adding, if necessary, a sufficiently large constant to R0(X).

To solve the problem stated in Eq. (8.66), we introduce a new variable x0 > 0,
constrained to satisfy the relation x0 ≥R0(X) (i.e. R0(X)/x0 ≤ 1), so that the problem
can be restated as

Minimize x0 (8.67)

subject to
Ak(X) − Bk(X)
Ck(X) − Dk(X)

≤ 1, k = 0, 1, 2, . . . ,m (8.68)

where

A0(X) = R0(X), C0(X) = x0, B0(X) = 0, and D0(X) = 0

It is to be noted that the constraints have meaning only if Ck(X)−Dk(X) has a constant
sign throughout the feasible region. Thus if Ck(X)−Dk(X) is positive for some feasible
X, it must be positive for all other feasible X. Depending on the positive or negative
nature of the term Ck(X)−Dk(X), Eq. (8.68) can be rewritten as

Ak(X) + Dk(X)
Bk(X) + Ck(X)

≤ 1

or

Bk(X) + Ck(X)
Ak(X) + Dk(X)

≤ 1 (8.69)

Thus any CGP problem can be stated in standard form as

Minimize x0 (8.70)

subject to
Pk(X)
Qk(X)

≤ 1, k = 1, 2, . . . ,m (8.71)

X =

⎧⎪⎪⎨⎪⎪⎩

x0
x1
x2
⋮
xn

⎫⎪⎪⎬⎪⎪⎭
> 𝟎 (8.72)

where Pk(X) and Qk(X) are posynomials of the form

Pk(X) =
∑

j

ckj

n∏
i=0

(xi)akij =
∑

j

pkj(X) (8.73)

Qk(X) =
∑

j

dkj

n∏
i=0

(xi)bkij =
∑

j

qkj(X) (8.74)

�

� �

�

8.11 Complementary Geometric Programming 477

8.11.1 Solution Procedure

1. Approximate each of the posynomials Q(X)† by a posynomial term. Then all
the constraints in Eq. (8.71) can be expressed as a posynomial to be less than or
equal to 1. This follows because a posynomial divided by a posynomial term is
again a posynomial. Thus with this approximation, the problem reduces to an
OGP problem. To approximate Q(X) by a single-term posynomial, we choose
any X

̃
> 𝟎 and let

Uj = qj(X) (8.75)

Δj =
qj(X̃)

Q(X
̃
)

(8.76)

where qj denotes the jth term of the posynomial Q(X). Thus, we obtain, by using
the arithmetic–geometric inequality, Eq. (8.22),

Q(X) =
∑

j

qj(X) ≥ ∏
j

[
qj(X)
qj(X̃)

Q(X
̃
)

]qj(X̃)∕Q(X
̃
)

(8.77)

By using Eq. (8.74), the inequality (8.77) can be restated as

Q(X) ≥ Q
̃
(X,X

̃
) ≡ Q(X

̃
)
∏

i

(
xi

x
̃ i

)∑
j[bijqj(X̃)∕Q(X

̃
)]

(8.78)

where the equality sign holds true if xi = x
̃ i. We can take Q(X,X

̃
) as an approx-

imation for Q(X) at X
̃
.

2. At any feasible point X(1), replace Qk(X) in Eq. (8.71) by their approximations
Q
̃

k(X,X(1)), and solve the resulting OGP problem to obtain the next point X(2)

3. By continuing in this way, we generate a sequence {X(𝛼)}, where X(𝛼 + 1) is an
optimal solution for the 𝛼th OGP problem (OGP

𝛼
):

Minimize x0

subject to
Pk(X)

Q
̃

k(X,X(𝛼))
≤ 1, k = 1, 2, . . . ,m

X =

⎧⎪⎪⎨⎪⎪⎩

x0
x1
x2
⋮
xn

⎫⎪⎪⎬⎪⎪⎭
> 𝟎 (8.79)

It has been proved [8.4] that under certain mild restrictions, the sequence of
points {X(𝛼)} converges to a local minimum of the CGP problem.

†The subscript k is removed for Q(X) for simplicity.

�

� �

�

478 Geometric Programming

8.11.2 Degree of Difficulty

The degree of difficulty of a CGP problem is also defined as

degree of difficulty = N − n − 1

where N indicates the total number of terms appearing in the numerators of Eq. (8.71).
The relation between the degree of difficulty of a CGP and that of the OGP

𝛼
, the

approximating ordinary geometric program, is important. The degree of difficulty of a
CGP is always equal to that of the approximating OGP

𝛼
, solved at each iteration. Thus

a CGP with zero degree of difficulty and an arbitrary number of negative terms can
be solved by a series of solutions to square systems of linear equations. If the CGP
has one degree of difficulty, at each iteration we solve an OGP with one degree of
difficulty, and so on. The degree of difficulty is independent of the choice of X(𝛼) and
is fixed throughout the iterations. The following example is considered to illustrate the
procedure of CGP.

Example 8.6
Minimize x1

subject to

−4x2
1 + 4x2 ≤ 1

x1 + x2 ≤ 1

x1 > 0, x2 > 0

SOLUTION This problem can be stated as a CGP problem as

Minimize x1 (E1)

subject to
4x2

1 + 4x2
1

≤ 1 (E2)

x−1
1

1 + x−1
1 x2

≤ 1 (E3)

x1 > 0 (E4)

x2 > 0 (E5)

Since there are two variables (x1 and x2) and three posynomial terms (one term in the
objective function and one term each in the numerators of the constraint Eqs. (E2) and
(E3)), the degree of difficulty of the CGP is zero. If we denote the denominators of
Eqs. (E2) and (E3) as

Q1(X) = 1 + 4x2
1

Q2(X) = 1 + x−1
1 x2

they can each be approximated by a single-term posynomial with the help of Eq. (8.78)
as

Q
̃

1(X,X̃) =
(

1 + 4x
̃
2
1

)(x1

x
̃ 2

)8x
̃
2
1∕(1+4x

̃
2
1)

�

� �

�

8.11 Complementary Geometric Programming 479

Q
̃

2(X,X̃) =

(
1 +

x
̃ 2

x
̃ 1

)(
x1

x
̃ 1

)−x
̃2∕(x̃1+x

̃2)(
x2

x
̃ 1

)x
̃2∕(x̃1+x

̃2)

Let us start the iterative process from the point X(1) =
{

1
1

}
, which can be seen to be

feasible. By taking X
̃
= X(1), we obtain

Q
̃

1(X,X(1)) = 5x8∕5
1

Q
̃

2(X,X(1)) = 2x−1∕2
1 x1∕2

2

and we formulate the first OGP problem (OGP1) as

Minimize x1

subject to
4
5

x−8∕5
1 x2 ≤ 1

1
2

x−1∕2
1 x−1∕2

2 ≤ 1

x1 > 0

x2 > 0

Since this (OGP1) is a geometric programming problem with zero degree of difficulty,
its solution can be found by solving a square system of linear equations, namely

λ1 = 1

λ1 −
8
5
λ2 −

1
2
λ3 = 0

λ2 −
1
2
λ3 = 0

The solution is λ∗1 = 1, λ∗2 = 5
13
, λ∗3 = 10

13
. By substituting this solution into the dual

objective function, we obtain

v(𝛌∗) =
(4

5

)5∕13(1
2

)10∕13

≃ 0.5385

From the duality relations, we get

x1 ≃ 0.5385 and x2 = 5
4
(x1)8∕15 ≃ 0.4643

Thus the optimal solution of OGP1 is given by

X(1)
opt =

{
0.5385
0.4643

}

�

� �

�

480 Geometric Programming

Next we choose X(2) to be the optimal solution of OGP1 (i.e. X(1)
opt) and approx-

imate Q1 and Q2 about this point, solve OGP2, and so on. The sequence of optimal
solutions of OGP

𝛼
as generated by the iterative procedure is shown below:

Xopt

Iteration number, 𝛼 x1 x2

0 1.0 1.0
1 0.5385 0.4643
2 0.5019 0.5007
3 0.5000 0.5000

The optimal values of the variables for the CGP are x∗1 = 0.5 and x∗2 = 0.5. It can be
seen that in three iterations, the solution of the approximating geometric programming
problems OGP

𝛼
is correct to four significant figures.

8.12 APPLICATIONS OF GEOMETRIC PROGRAMMING

Example 8.7 Determination of Optimum Machining Conditions Geometric pro-
gramming has been applied for the determination of optimum cutting speed and feed
which minimize the unit cost of a turning operation [8.9, 8.10].

Formulation as a Zero-Degree-of-Difficulty Problem
The total cost of turning per piece is given by

f0(X) = machining cost + tooling cost + handling cost

= Kmtm +
tm
T
(Kmtc + Kt) + kmth (E1)

where Km is the cost of operating time ($/min), Kt the tool cost ($/cutting edge),
tm the machining time per piece (min) = 𝜋 DL/(12VF), T the tool life (min/cutting
edge) = (a/VFb)1/c, tc the tool changing time (minutes/workpiece), th the handling
time (min/workpiece), D the diameter of the workpiece (in), L the axial length of the
workpiece (in.), V the cutting speed (ft/min), F the feed (in./revolution), a, b, and c are
constants in tool life equation, and

X =
{

x1
x2

}
=
{

V
F

}
Since the constant term will not affect the minimization, the objective function can be
taken as

f (X) = C01V−1F−1 + C02V1∕c−1Fb∕c−1 (E2)

where

C01 =
Km𝜋 DL

12
and C02 =

𝜋 DL(Kmtc + Kt)
12 a1∕c

(E3)

If the maximum feed allowable on the lathe is Fmax, we have the constraint

C11 F ≤ 1 (E4)

�

� �

�

8.12 Applications of Geometric Programming 481

where
C11 = F−1

max (E5)

Since the total number of terms is three and the number of variables is two, the degree
of difficulty of the problem is zero. By using the data

Km = 0.10, Kt = 0.50 tc = 0.5, th = 2.0, D = 6.0,

L = 8.0, a = 140.0, b = 0.29, c = 0.25, Fmax = 0.005

the solution of the problem (minimize f given in Eq. ((8.79)) subject to the constraint
(E4)) can be obtained as

f ∗ = $1.03 per piece, V∗ = 323 ft∕min, F∗ = 0.005 in.∕rev

Formulation as a One-Degree-of-Difficulty Problem
If the maximum horsepower available on the lathe is given by Pmax, the power required
for machining should be less than Pmax. Since the power required for machining can
be expressed as a1Vb1 Fc1, where a1, b1, and c1 are constants, this constraint can be
stated as follows:

C21Vb1 Fc1 ≤ 1 (E6)

where
C21 = a1P−1

max (E7)

If the problem is to minimize f given by Eq. (E2) subject to the constraints (E4) and
(E6), it will have one degree of difficulty. By taking Pmax = 2.0 and the values of a1,
b1, and c1 as 3.58, 0.91, and 0.78, respectively, in addition to the previous data, the
following result can be obtained:

f ∗ = $1.05 per piece, V∗ = 290.0 ft∕min, F∗ = 0.005 in.∕rev

Formulation as a Two-Degree-of-Difficulty Problem
If a constraint on the surface finish is included as

a2Vb2 Fc2 ≤ Smax

where a2, b2, and c2 are constants and Smax is the maximum permissible surface rough-
ness in microinches, we can restate this restriction as

C31Vb2 Fc2 ≤ 1 (E8)

where
C31 = a2S−1

max (E9)

If the constraint (E8) is also included, the problem will have a degree of dif-
ficulty two. By taking a2 = 1.36× 108, b2 = −1.52, c2 = 1.004, Smax = 100𝜇in.,
Fmax = 0.01, and Pmax = 2.0 in addition to the previous data, we obtain the following
result:

f ∗ = $1.11 per piece, V∗ = 311 ft∕min, F∗ = 0.0046 in.∕rev

�

� �

�

482 Geometric Programming

Example 8.8 Design of a Hydraulic Cylinder The minimum volume design of a
hydraulic cylinder (subject to internal pressure) is considered by taking the piston
diameter (d), force (f), hydraulic pressure (p), stress (s), and the cylinder wall thickness
(t) as design variables [8.11]. The following constraints are considered:

Minimum force required is F, that is,

f = p
𝜋d2

4
≥ F (E1)

Hoop stress induced should be less than S, that is,

s =
pd

2t
≤ S (E2)

Side constraints:

d + 2t ≤ D (E3)

p ≤ P (E4)

t ≥ T (E5)

where D is the maximum outside diameter permissible, P the maximum pressure of the
hydraulic system and T the minimum cylinder wall thickness required. Equations (E1)
to (E5) can be stated in normalized form as

4
𝜋

Fp−1d−2 ≤ 1

1
2

S−1pdt−1 ≤ 1

D−1d + 2D−1t ≤ 1

P−1p ≤ 1

Tt−1 ≤ 1

The volume of the cylinder per unit length (objective) to be minimized is given
by 𝜋t(d+ t).

Example 8.9 Design of a Cantilever Beam Formulate the problem of determin-
ing the cross-sectional dimensions of the cantilever beam shown in Figure 8.2 for
minimum weight. The maximum permissible bending stress is 𝜎y.

x2

x1

l

P

Figure 8.2 Cantilever beam of rectangular cross section.

�

� �

�

8.12 Applications of Geometric Programming 483

SOLUTION The width and depth of the beam are considered as design variables.
The objective function (weight) is given by

f (X) = 𝜌lx1x2 (E1)

where 𝜌 is the weight density and l is the length of the beam. The maximum stress
induced at the fixed end is given by

𝜎 = Mc
I

= Pl
x2

2
1

1
12

x1x3
2

= 6Pl

x1x2
2

(E2)

and the constraint becomes
6Pl
𝜎y

x−1
1 x−2

2 ≤ 1 (E3)

Example 8.10 Design of a Cone Clutch [8.23] Find the minimum volume design
of the cone clutch shown in Figure 1.18 such that it can transmit a specified minimum
torque.

SOLUTION By selecting the outer and inner radii of the cone, R1 and R2, as design
variables, the objective function can be expressed as

f (R1,R2) =
1
3
𝜋h(R2

1 + R1R2 + R2
2) (E1)

where the axial thickness, h, is given by

h =
R1 − R2

tan 𝛼
(E2)

Equations (E1) and (E2) yield

f (R1,R2) = k1(R3
1 − R3

2) (E3)

where
k1 = 𝜋

3 tan 𝛼
(E4)

The axial force applied (F) and the torque developed (T) are given by [8.37]

F = ∫ p dA sin 𝛼 = ∫
R1

R2

p
2𝜋 r dr
sin 𝛼

sin 𝛼 = 𝜋p(R2
1 − R2

2) (E5)

T = ∫ r fp dA = ∫
R1

R2

rfp
2𝜋 r
sin 𝛼

dr =
2𝜋 fp

3 sin 𝛼
(R3

1 − R3
2) (E6)

where p is the pressure, f the coefficient of friction, and A the area of contact. Substi-
tution of p from Eq. (E5) into (E6) leads to

T =
k2(R2

1 + R1R2 + R2
2)

R1 + R2
(E7)

where
k2 =

2Ff

2 sin 𝛼
(E8)

�

� �

�

484 Geometric Programming

Since k1 is a constant, the objective function can be taken as f = R3
1 − R3

2. The min-
imum torque to be transmitted is assumed to be 5k2. In addition, the outer radius R1
is assumed to be equal to at least twice the inner radius R2. Thus the optimization
problem becomes

Minimize f (R1,R2) = R3
1 − R3

2

subject to
R2

1 + R2R2 + R2
2

R1 + R2
≥ 5 (E9)

R1

R2
≥ 2

This problem has been solved using CGP [8.23] and the solution was found iteratively
as shown in Table 8.3. Thus, the final solution is taken as R∗

1 = 4.2874, R∗
2 = 2.1437,

and f * = 68.916.

Example 8.11 Design of a Helical Spring Formulate the problem of minimum
weight design of a helical spring under axial load as a geometric programming
problem. Consider constraints on the shear stress, natural frequency, and buckling of
the spring.

SOLUTION By selecting the mean diameter of the coil and the diameter of the wire
as the design variables, the design vector is given by

X =

{
x1

x2

}
=

{
D

d

}
(E1)

Table 8.3 Results for Example 8.10.

Iteration
number

Starting
design

Ordinary geometric programming
problem

Solution
of OGP

1 x1 = R0 = 40
x2 = R1 = 3
x3 = R2 = 3

Minimize x1
1x0

2x0
3

subject to

0.507x−0.597
1 x3

2x−1.21
3 ≤ 1

1.667(x−1
2 + x−1

3) ≤ 1

x1 = 162.5
x2 = 5.0
x3 = 2.5

2 x1 = R0 = 162.5
x2 = R1 = 5.0
x3 = R2 = 2.5

Minimize x1
1x0

2x0
3

subject to

0.744x−0.912
1 x3

2x−0.2635
3 ≤ 1

3.05(x−0.43
2 x−0.571

3 + x−1.43
2 x0.429

3) ≤ 1

2x−1
2 x3 ≤ 1

x1 = 82.2
x2 = 4.53
x3 = 2.265

3 x1 = R0 = 82.2
x2 = R1 = 4.53
x3 = R2 = 2.265

Minimize x1
1x0

2x0
3

subject to

0.687x−0.876
1 x3

2x−0.372
3 ≤ 1

1.924x0
1x−0.429

2 x−0.571
3 +

1.924x0
1x−1.492

2 x0.429
3 ≤ 1

2x−1
2 x3 ≤ 1

x1 = 68.916
x2 = 4.2874
x3 = 2.1437

�

� �

�

8.12 Applications of Geometric Programming 485

The objective function (weight) of the helical spring can be expressed as

f (X) = 𝜋d2

4
(𝜋D)𝜌(n + Q) (E2)

where n is the number of active turns, Q the number of inactive turns, and 𝜌 the weight
density of the spring. If the deflection of the spring is 𝛿, we have

𝛿 = 8PC3n
Gd

or n = Gd𝛿

8PC3
(E3)

where G is the shear modulus, P the axial load on the spring, and C the spring index
(C = D/d). Substitution of Eq. (E3) into (E2) gives

f (X) = 𝜋
2
𝜌G𝛿

32P
d6

D2
+ 𝜋

2
𝜌Q
4

d2D (E4)

If the maximum shear stress in the spring (𝜏) is limited to 𝜏max, the stress constraint
can be expressed as

𝜏 = 8KPC
𝜋d2

≤ 𝜏max or
8KPC
𝜋d2𝜏max

≤ 1 (E5)

where K denotes the stress concentration factor given by

K ≈ 2
C0.25

(E6)

The use of Eq. (E6) in (E5) results in

16P
𝜋𝜏max

D3∕4

d11∕4
≤ 1 (E7)

To avoid fatigue failure, the natural frequency of the spring (fn) is to be restricted to
be greater than (fn)min. The natural frequency of the spring is given by

fn = 2d
𝜋D2n

(
Gg

32𝜌

)1∕2

(E8)

where g is the acceleration due to gravity. Using g = 9.81 m/s2, G = 8.56× 1010 N/m2,
and (fn)min = 13, Eq. (E8) becomes

13(fn)min𝛿G

288,800P
d3

D
≤ 1 (E9)

Similarly, in order to avoid buckling, the free length of the spring is to be limited as

L ≤ 11.5(D∕2)2

P∕K1
(E10)

Using the relations

K1 = Gd4

8D3n
(E11)

L = nd(1 + Z) (E12)

�

� �

�

486 Geometric Programming

and Z = 0.4, Eq. (E10) can be expressed as

0.0527

(
G𝛿2

P

)
d5

D5
≤ 1 (E13)

It can be seen that the problem given by the objective function of Eq. (E4) and con-
straints of Eqs. (E7), (E9), and (E13) is a geometric programming problem.

Example 8.12 Design of a Lightly Loaded Bearing [8.29] A lightly loaded bearing
is to be designed to minimize a linear combination of frictional moment and angle of
twist of the shaft while carrying a load of 1000 lb. The angular velocity of the shaft is
to be greater than 100 rad/s.

SOLUTION

Formulation as a Zero-Degree-of-Difficulty Problem
The frictional moment of the bearing (M) and the angle of twist of the shaft (𝜙) are
given by

M = 8𝜋√
1 − n2

𝜇 Ω
c

R2L (E1)

𝜙 =
Sel

GR
(E2)

where 𝜇 is the viscosity of the lubricant, n the eccentricity ratio (= e/c), e the eccentric-
ity of the journal relative to the bearing, c the radial clearance, Ω the angular velocity
of the shaft, R the radius of the journal, L the half-length of the bearing, Se the shear
stress, l the length between the driving point and the rotating mass, and G the shear
modulus. The load on each bearing (W) is given by

W = 2𝜇 ΩRL2n

c2(1 − n2)2
[𝜋2(1 − n2) + 16n2]1∕2 (E3)

For the data W = 1000 lb, c/R = 0.0015, n = 0.9, l = 10 in., Se = 30 000 psi,
𝜇 = 10−6 lb-s/in2, and G = 12× 106 psi, the objective function and the constraint
reduce to

f (R, L) = aM + b𝜙 = 0.03ΩR2L + 0.025R−1 (E4)

ΩR−1L3 = 11.6 (E5)

Ω ≥ 100 (E6)

where a and b are constants assumed to be a = b = 1. Eq. (E5) gives

Ω = 11.6RL−3 (E7)

the optimization problem can be stated as

Minimize f (R, L) = 0.45R3L−2 + 0.025R−1 (E8)

subject to
8.62R−1L3 ≤ 1 (E9)

�

� �

�

8.12 Applications of Geometric Programming 487

The solution of this zero-degree-of-difficulty problem can be determined as
R* = 0.212 in., L* = 0.291 in., and f* = 0.17.

Formulation as a One-Degree-of-Difficulty Problem
By considering the objective function as a linear combination of the frictional
moment (M), the angle of twist of the shaft (𝜙), and the temperature rise of the oil (T),
we have

f = aM + b𝜙 + cT (E10)

where a, b, and c are constants. The temperature rise of the oil in the bearing is given
by

T = 0.045
𝜇 ΩR2

c2n
√
(1 − n2)

(E11)

By assuming that 1 in.-lb of frictional moment in bearing is equal to 0.0025 rad of
angle of twist, which, in turn, is equivalent to 1 ∘F rise in temperature, the constants a,
b, and c can be determined. By using Eq. (E7), the optimization problem can be stated
as

Minimize f (R, L) = 0.44R3L−2 + 10R−1 + 0.592RL−3 (E12)

subject to
8.63R−1L3 ≤ 1 (E13)

The solution of this one-degree-of-difficulty problem can be found as R* = 1.29,
L* = 0.53, and f* = 16.2.

Example 8.13 Design of a Two-Bar Truss The two-bar truss shown in Figure 8.3
is subjected to a vertical load 2P and is to be designed for minimum weight [8.33].
The members have a tubular section with mean diameter d and wall thickness t and the
maximum permissible stress in each member (𝜎0) is equal to 60 000 psi. Determine the
values of h and d using geometric programming for the following data: P = 33,000 lb,
t = 0.1 in., b = 30 in., 𝜎0 = 60 000 psi, and 𝜌 (density) = 0.3 lb/in3.

Section A-A

t

d
h

2P

A

AA

b b

A

Figure 8.3 Two-bar truss under load.

�

� �

�

488 Geometric Programming

SOLUTION The objective function is given by

f (d, h) = 2𝜌𝜋dt
√

b2 + h2

= 2(0.3)𝜋d(0.1)
√

900 + h2 = 0.188d
√

900 + h2 (E1)

The stress constraint can be expressed as

𝜎 = P
𝜋dt

√
900 + h2

h
≤ 𝜎0

or
33,000
𝜋d(0.1)

√
900 + h2

h
≤ 60,000

or

1.75

√
900 + h2

dh
≤ 1 (E2)

It can be seen that the functions in Eqs. (E1) and (E2) are not posynomials, due to the
presence of the term

√
900 + h2. The functions can be converted to posynomials by

introducing a new variable y as

y =
√

900 + h2 or y2 = 900 + h2

and a new constraint as
900 + h2

y2
≤ 1 (E3)

Thus the optimization problem can be stated, with x1 = y, x2 = h, and x3 = d as design
variables, as

Minimize f = 0.188yd (E4)

subject to

1.75yh−1d−1 ≤ 1 (E5)

900y−2 + y−2h2 ≤ 1 (E6)

For this zero-degree-of-difficulty problem, the associated dual problem can be stated
as

Minimize v(λ01, λ11, λ21, λ22)

=
(

0.188
λ01

)λ01
(

1.75
λ11

)λ1
(

900
λ21

)λ21
(

1
λ22

)λ22

(λ21 + λ22)λ21+λ22 (E7)

subject to

λ01 = 1 (E8)

λ01 + λ11 − 2λ21 − 2λ22 = 0 (E9)

−λ11 + 2λ22 = 0 (E10)

λ01 − λ11 = 0 (E11)

�

� �

�

8.12 Applications of Geometric Programming 489

The solution of Eqs. (E8) to (E11) gives λ∗01 = 1, λ∗11 = 1, λ∗21 = 1
2
, and λ∗22 = 1

2
. Thus,

the maximum value of v and the minimum value of f is given by

v∗ =
(0.188

1

)1

(1.75)1
(900

0.5

)0.5(1
0.5

)0.5

(0.5 + 0.5)0.5+0.5 = 19.8 = f ∗

The optimum values of xi can be found from Eqs. (8.62) and (8.63):

1 =
0.188y∗d∗

19.8

1 = 1.75y∗h∗−1d∗−1

1
2
= 900y∗−2

1
2
= y∗−2h∗2

These equations give the solution: y* = 42.426, h* = 30 in., and d* = 2.475 in.

Example 8.14 Design of a Four-Bar Mechanism Find the link lengths of the
four-bar linkage shown in Figure 8.4 for minimum structural error [8.24].

SOLUTION Let a, b, c, and d denote the link lengths, 𝜃 the input angle, and𝜙 the out-
put angle of the mechanism. The loop closure equation of the linkage can be expressed
as

2ad cos 𝜃 − 2cd cos𝜙 + (a2 − b2 + c2 + d2)

− 2ac cos(𝜃 − 𝜙) = 0 (E1)

In function-generating linkages, the value of 𝜙 generated by the mechanism is made
equal to the desired value, 𝜙d, only at some values of 𝜃. These are known as precision
points. In general, for arbitrary values of the link lengths, the actual output angle (𝜙i)
generated for a particular input angle (𝜃i) involves some error (𝜀i) compared to the
desired value (𝜙di), so that

𝜙i = 𝜙di + 𝜀i (E2)

where 𝜀i is called the structural error at 𝜃i. By substituting Eq. (E2) into (E1) and
assuming that sin 𝜀i ≈ 𝜀i and cos 𝜀i ≈ 1 for small values of 𝜀i, we obtain

𝜀i =
K + 2ad cos 𝜃i − 2cd cos 𝜃di − 2ac cos 𝜃i cos(𝜙di − 𝜃i)

−2ac sin(𝜙di − 𝜃i) − 2cd sin𝜙di
(E3)

a

d

θ

c

b

ϕ

Figure 8.4 Four-bar linkage.

�

� �

�

490 Geometric Programming

where
K = a2 − b2 + c2 + d2 (E4)

The objective function for minimization is taken as the sum of squares of structural
error at a number of precision or design positions, so that

f =
n∑

i=1

𝜀
2
i (E5)

where n denotes the total number of precision points considered. Note that the error
𝜀i is minimized when f is minimized (𝜀i will not be zero, usually).

For simplicity, we assume that a≪ d and that the error 𝜀i is zero at 𝜃0. Thus 𝜀0 = 0
at 𝜃i = 𝜃0, and Eq. (E3) yields

K = 2cd cos 𝜙di + 2ac cos 𝜃0 cos(𝜙d0 − 𝜃0) − 2ad cos 𝜃0 (E6)

In view of the assumption a≪ d, we impose the constraint as (for convenience)

3a
d

≤ 1 (E7)

where any larger number can be used in place of 3. Thus the objective function for
minimization can be expressed as

f =
n∑

i=1

a2(cos 𝜃i − cos 𝜃0)2 − 2ac(cos 𝜃i − cos 𝜃0)(cos𝜙di − cos𝜙d0)
c2sin2

𝜙di

(E8)

Usually, one of the link lengths is taken as unity. By selecting a and c as the design
variables, the normality and orthogonality conditions can be written as

Δ∗
1 + Δ∗

2 = 1 (E9)

2Δ∗
1 + Δ∗

2 = 0 (E10)

2Δ∗
1 + 0.5Δ∗

2 + Δ∗
3 = 0 (E11)

These equations yield the solution Δ∗
1 = −1,Δ∗

2 = 2, and Δ∗
3 = 1, and the maximum

value of the dual function is given by

v(𝚫∗) =
(

c1

Δ∗
1

)Δ∗
1
(

c2

Δ∗
2

)Δ∗
2
(

c3

Δ∗
3

)Δ∗
3

(E12)

where c1, c2, and c3 denote the coefficients of the posynomial terms in Eqs. (E7) and
(E8).

For numerical computation, the following data are considered:

Precision point, i 1 2 3 4 5 6

Input, 𝜃i (deg) 0 10 20 30 40 45
Desired output, 𝜙di (deg) 30 38 47 58 71 86

If we select the precision point 4 as the point where the structural error is zero
(𝜃0 = 30∘, 𝜙d0 = 58∘), Eq. (E8) gives

f = 0.1563
a2

c2
− 0.76a

c
(E13)

�

� �

�

References and Bibliography 491

subject to
3a
d

≤ 1

Noting that c1 = 0.1563, c2 = 0.76, and c3 = 3/d, we see that Eq. (E12) gives

v(𝚫) =
(0.1563

−1

)−1(−0.76
2

)2(3
d

)1

(1)1 = 2.772
d

Noting that

0.1563
a2

c2
=
(
−2.772

d

)
(−1) = 2.772

d

−0.76
a
c
= −2.772

d
(2) = −5.544

d

and using a = 1, we find that c* = 0.41 and d* = 3.0. In addition, Eqs. (E6) and (E4)
yield

a2 − b2 + c2 + d2

= 2cd cos 𝜙d0 + 2ac cos 𝜃0 cos(𝜙d0 − 𝜃0) − 2ad cos 𝜃0

or b* = 3.662. Thus, the optimal link dimensions are given by a* = 1, b* = 3.662,
c* = 0.41, and d* = 3.0.

REFERENCES AND BIBLIOGRAPHY

8.1 Duffin, R.J., Peterson, E., and Zener, C. (1967). Geometric Programming. New York:
Wiley.

8.2 Passy, U. and Wilde, D.J. (1967). Generalized polynomial optimization. SIAM Journal
of Applied Mathematics 15 (5): 1344–1356.

8.3 Wilde, D.J. and Beightler, C.S. (1967). Foundations of Optimization. Englewood Cliffs,
NJ: Prentice-Hall.

8.4 Avriel, M. and Williams, A.C. (1970). Complementary geometric programming. SIAM
Journal of Applied Mathematics 19 (1): 125–141.

8.5 Stark, R.M. and Nicholls, R.L. (1972). Mathematical Foundations for Design: Civil
Engineering Systems. New York: McGraw-Hill.

8.6 McMillan, C. Jr. (1970). Mathematical Programming: An Introduction to the Design
and Application of Optimal Decision Machines. New York: Wiley.

8.7 Zener, C. (1961). A mathematical aid in optimizing engineering designs. Proceedings
of the National Academy of Science United States of America 47: 537.

8.8 Zener, C. (1971). Engineering Design by Geometric Programming. New York:
Wiley-Interscience.

8.9 Ermer, D.S. (Nov. 1971). Optimization of the constrained machining economics problem
by geometric programming. Journal of Engineering for Industry, Transactions of ASME
93: 1067–1072.

8.10 Hati, S.K. and Rao, S.S. (1976). Determination of optimum machining conditions: deter-
ministic and probabilistic approaches. Journal of Engineering for Industry, Transactions
of ASME 98: 354–359.

8.11 Wilde, D. (1975). Monotonicity and dominance in optimal hydraulic cylinder design.
Journal of Engineering for Industry, Transactions of ASME 97: 1390–1394.

8.12 Templeman, B. (1974). On the solution of geometric programs via separable program-
ming. Operations Research Quarterly 25: 184–185.

�

� �

�

492 Geometric Programming

8.13 Dinkel, J.J. and Kochenberger, G.A. (1974). On a cofferdam design optimization. Math-
ematical Programming 6: 114–117.

8.14 Morris, J. (1975). A transformation for geometric programming applied to the minimum
weight design of statically determinate structure. International Journal of Mechanical
Science 17: 395–396.

8.15 Templeman, B. (1976). Optimum truss design by sequential geometric programming.
Journal of Structural Engineering 3: 155–163.

8.16 Mancini, L.J. and Piziali, R.L. (1976). Optimum design of helical springs by geometric
programming. Engineering Optimization 2: 73–81.

8.17 Ragsdell, K.M. and Phillips, D.T. (1976). Optimum design of a class of welded structures
using geometric programming. Journal of Engineering for Industry 98: 1021–1025.

8.18 Dembo, R.S. (1976). A set of geometric programming test problems and their solutions.
Mathematical Programming 10: 192–213.

8.19 Rijckaert, M.J. and Martens, X.M. (1978). Comparison of generalized geometric
programming algorithms. Journal of Optimization Theory and Applications 26:
205–242.

8.20 Sarma, P.V.L.N., Martens, X.M., Reklaitis, G.V., and Rijckaert, M.J. (1978). A compari-
son of computational strategies for geometric programs. Journal of Optimization Theory
and Applications 26: 185–203.

8.21 Dembo, R.S. (1978). Current state of the art of algorithms and computer software for
geometric programming. Journal of Optimization Theory and Applications 26: 149–183.

8.22 Dembo, R.S. (1982). Sensitivity analysis in geometric programming. Journal of Opti-
mization Theory and Applications 37: 1–22.

8.23 Rao, S.S. (1985). Application of complementary geometric programming to mechanical
design problems. International Journal of Mechanical Engineering Education 13 (1):
19–29.

8.24 Rao, A.C. (1979). Synthesis of 4-bar function generators using geometric programming.
Mechanism and Machine Theory 14: 141–149.

8.25 Avriel, M. and Barrett, J.D. (1980). Optimal design of pitched laminated wood beams.
In: Advances in Geometric Programming (ed. M. Avriel), 407–419. New York: Plenum
Press.

8.26 Petropoulos, P. (1973). Optimal selection of machining rate variables by geometric pro-
gramming. International Journal of Production Research 11: 305–314.

8.27 Agrawal, G.K. (1978). Helical torsion springs for minimum weight by geometric pro-
gramming. Journal of Optimization Theory and Applications 25 (2): 307–310.

8.28 Beightler, S. and Phillips, D.T. (1976). Applied Geometric Programming. New York:
Wiley.

8.29 Beightler, S., Lo, T.-C., and Rylander, H.G. (1970). Optimal design by geometric pro-
gramming. ASME Journal of Engineering for Industry 92 (1): 191–196.

8.30 Sin, Y.T. and Reklaitis, G.V. (1981). On the computational utility of generalized geomet-
ric programming solution methods: Review and test procedure design, pp. 7–14, Results
and interpretation, pp. 15–21. In: (ed. R.W. Mayne and K.M. Ragdsell). Progress in
Engineering Optimization–1981. New York; ASME.

8.31 Avriel, M., Dembo, R., and Passey, U. (1975). Solution of generalized geometric pro-
grams. International Journal for Numerical Methods in Engineering 9: 149–168.

8.32 Computational aspects of geometric programming: (1978). 1. Introduction and basic
notation, pp. 115–120 (A. B. Templeman), 2. Polynomial programming, pp. 121–145
(J. Bradley), 3. Some primal and dual algorithms for posynomial and signomial geomet-
ric programs, pp. 147–160 (J. G. Ecker, W. Gochet, and Y. Smeers), 4. Computational
experiments in geometric programming, pp. 161–173 (R. S. Dembo and M. J. Rijckaert),
Engineering Optimization, Vol. 3, No. 3.

8.33 Morris, J. (1972). Structural optimization by geometric programming. International
Journal of Solids and Structures 8: 847–864.

�

� �

�

Problems 493

8.34 Morris, J. (1973). The optimisation of statically indeterminate structures by means
of approximate geometric programming. In: Proceedings of the 2nd Symposium on
Structural Optimization, AGARD Conference Proceedings 123, 6.1–6.17. Milan:
North Atlantic Treaty Organization, Advisory Group For Aerospace Research and
Development.

8.35 Templeman, B. and Winterbottom, S.K. (1973). Structural design applications of geo-
metric programming. In: Proceedings of the 2nd Symposium on Structural Optimization,
AGARD Conference Proceedings 123, 5.1–5.15. Milan.

8.36 Templeman, B. (1970). Structural design for minimum cost using the method of geo-
metric programming. Institution of Civil Engineers 46: 459–472.

8.37 Budynas, R.G. and Nisbett, J.K. (2015). Shigley’s Mechanical Engineering Design, 10e.
New York: McGraw-Hill.

REVIEW QUESTIONS

8.1 State whether each of the following functions is a polynomial, posynomial, or both.

(a) f = 4 − x2
1 + 6x1x2 + 3x2

2

(b) f = 4 + 2x2
1 + 5x1x2 + x2

2

(c) f = 4 + 2x2
1x−1

2 + 3x−4
2 + 5x−1

1 x3
2

8.2 Answer true or false:

(a) The optimum values of the design variables are to be known before finding the
optimum value of the objective function in geometric programming.

(b) Δ∗
j denotes the relative contribution of the jth term to the optimum value of the

objective function.

(c) There are as many orthogonality conditions as there are design variables in a geo-
metric programming problem.

(d) If f is the primal and v is the dual, f≤ v.

(e) The degree of difficulty of a complementary geometric programming problem is
given by (N− n− 1), where n denotes the number of design variables and N repre-
sents the total number of terms appearing in the numerators of the rational functions
involved.

(f) In a geometric programming problem, there are no restrictions on the number of
design variables and the number of posynomial terms.

8.3 How is the degree of difficulty defined for a constrained geometric programming prob-
lem?

8.4 What is arithmetic–geometric inequality?

8.5 What is normality condition in a geometric programming problem?

8.6 Define a complementary geometric programming problem.

PROBLEMS

Using arithmetic mean–geometric mean inequality, obtain a lower bound v for each
function (f(x)≥ v, where v is a constant) in Problems 8.1–8.3.

8.1 f (x) = x−2

3
+ 2

3
x−3 + 4

3
x3∕2

8.2 f (x) = 1 + x + 1
x
+ 1

x2

8.3 f (x) = 1
2
x−3 + x2 + 2x

�

� �

�

494 Geometric Programming

8.4 An open cylindrical vessel is to be constructed to transport 80 m3 of grain from a ware-
house to a factory. The sheet metal used for the bottom and sides cost $80 and $10 per
square meter, respectively. If it costs $1 for each round trip of the vessel, find the dimen-
sions of the vessel for minimizing the transportation cost. Assume that the vessel has no
salvage upon completion of the operation.

8.5 Find the solution of the problem stated in Problem 8.4 by assuming that the sides cost
$20 per square meter, instead of $10.

8.6 Solve the problem stated in Problem 8.4 if only 10 trips are allowed for transporting the
80 m3 of grain.

8.7 An automobile manufacturer needs to allocate a maximum sum of $2.5× 106 between
the development of two different car models. The profit expected from both the models
is given by x1.5

1 x2, where xi denotes the money allocated to model i (i = 1, 2). Since the
success of each model helps the other, the amount allocated to the first model should
not exceed four times the amount allocated to the second model. Determine the amounts
to be allocated to the two models to maximize the profit expected. Hint: Minimize the
inverse of the profit expected.

8.8 Write the dual of the heat exchanger design problem stated in Problem 1.12.

8.9 Minimize the following function:

f (X) = x1x2x−2
3 + 2x−1

1 x−1
2 x3 + 5x2 + 3x1x−2

2

8.10 Minimize the following function:

f (X) = 1
2

x2
1 + x2 +

3
2

x−1
1 x−1

2

8.11 Minimize f (X) = 20x2x3x4
4 + 20x2

1x−1
3 + 5x2x2

3

subject to

5x−5
2 x−1

3 ≤ 1

10x−1
1 x3

2x−1
4 ≤ 1

xi > 0, i = 1 to 4

8.12 Minimize f (X) = x−2
1 + 1

4
x2

2x3

subject to

3
4

x2
1x−2

2 + 3
8

x2x−2
3 ≤ 1

xi > 0, i = 1, 2, 3

8.13 Minimize f (X) = x−3
1 x2 + x3∕2

1 x−1
1

subject to

x2
1x−2

2 + 1
2

x−2
1 x3

3 ≤ 1

x1 > 0, x2 > 0, x3 > 0

�

� �

�

Problems 495

8.14 Minimize f = x−1
1 x−2

2 x−2
3

subject to

x3
1 + x2

2 + x3 ≤ 1

xi > 0, i = 1, 2, 3

8.15 Prove that the function y = c1ea1x1 + c2ea2x2 +⋯ + cneanxn , ci ≥ 0, i = 1, 2, . . . , n, is a
convex function with respect to x1, x2, . . . , xn.

8.16 Prove that f = ln x is a concave function for positive values of x.

8.17 The problem of minimum weight design of a helical torsional spring subject to a stress
constraint can be expressed as [8.27]

Minimize f (d,D) = 𝜋
2
𝜌E𝜙

14,680M
d6 + 𝜋

2
𝜌Q
4

Dd2

subject to
14.5M

d2.885D0.115𝜎max

≤ 1

where d is the wire diameter, D the mean coil diameter, 𝜌 the density, E is Young’s mod-
ulus, 𝜙 the angular deflection in degrees, M the torsional moment, and Q the number of
inactive turns. Solve this problem using geometric programming approach for the fol-
lowing data: E = 20× 1010 Pa, 𝜎max = 15× 107 Pa, 𝜙 = 20∘, Q = 2, M = 0.3 N-m, and
𝜌 = 7.7× 104 N/m3.

8.18 Solve the machining economics problem given by Eqs. (E2) and (E4) of Example 8.7 for
the given data.

8.19 Solve the machining economics problem given by Eqs. (E2), (E4), and (E6) of
Example 8.7 for the given data.

8.20 Determine the degree of difficulty of the problem stated in Example 8.8.

8.21 A rectangular area of dimensions A and B is to be covered by steel plates with supporting
beams as shown in Figure 8.5. The problem of minimum cost design of the floor sub-
ject to a constraint on the maximum deflection of the floor under a specified uniformly
distributed live load can be stated as [8.36]

Minimize f (X) = cost of plates + cost of beams

= kf 𝛾ABt + kb 𝛾Ak1nZ2∕3 (8.80)

B

A

n Beams, equally spaced

Live load,
W per unit
areaB

n

Figure 8.5 Floor consisting of a plate with supporting beams [8.36].

�

� �

�

496 Geometric Programming

subject to
56.25WB4

EA
t−3n−4 +

(
4.69WBA3

Ek2

)
n−1Z−4∕3 ≤ 1 (8.81)

where W is the live load on the floor per unit area, kf and kb are the unit costs of plates
and beams, respectively, 𝛾 the weight density of steel, t the thickness of plates, n the
number of beams, k1Z2/3 the cross-sectional area of each beam, k2Z4/3 the area moment
of inertia of each beam, k1 and k2 are constants, Z the section modulus of each beam,
and E the elastic modulus of steel. The two terms on the left side of Eq. (8.81) denote the
contributions of steel plates and beams to the deflection of the floor. By assuming the data
as A= 10 m, B= 50 m, W= 1000 kgf/m

2, kb = $0.05/k gf, kf = $0.06/kgf,𝛾 = 7850 kgf/m
3,

E = 2.1× 105 MN/m2, k1 = 0.78, and k2 = 1.95, determine the solution of the problem
(i.e., the values of t*, n*, and Z*).

8.22 Solve the zero-degree-of-difficulty bearing problem given by Eqs. (E8) and (E9) of
Example 8.12.

8.23 Solve the one-degree-of-difficulty bearing problem given by Eqs. (E12) and (E13) of
Example 8.12.

8.24 The problem of minimum volume design of a statically determinate truss consisting of n
members (bars) with m unsupported nodes and subject to q load conditions can be stated
as follows [8.14]:

Minimize f =
n∑

i=1

lixi (8.82)

subject to
F(k)

i

xi𝜎
∗
i

≤ 1, i = 1, 2, . . . , n, k = 1, 2, . . . , q (8.83)

n∑
i=1

F(k)
i li

xiEΔ∗
i

sij ≤ 1, i = 1, 2, . . . , n, k = 1, 2, . . . , q (8.84)

where F(k)
i is the tension in the ith member in the kth load condition, xi the cross-sectional

area of member i, li the length of member i, E is Young’s modulus, 𝜎∗i the maximum
permissible stress in member i, and Δ∗

j the maximum allowable displacement of node j.
Develop a suitable transformation technique and express the problem of Eqs. (8.82) to
(8.84) as a geometric programming problem in terms of the design variables xi.

�

� �

�

9

Dynamic Programming

9.1 INTRODUCTION

In most practical problems, decisions have to be made sequentially at different points
in time, at different points in space, and at different levels, say, for a component, for a
subsystem, and/or for a system. The problems in which the decisions are to be made
sequentially are called sequential decision problems. Since these decisions are to be
made at a number of stages, they are also referred to as multistage decision problems.
Dynamic programming is a mathematical technique well suited for the optimization
of multistage decision problems. This technique was developed by Richard Bellman
in the early 1950s [9.2, 9.6].

The dynamic programming technique, when applicable, represents or decom-
poses a multistage decision problem as a sequence of single-stage decision prob-
lems. Thus, an N-variable problem is represented as a sequence of N single-variable
problems that are solved successively. In most cases, these N subproblems are eas-
ier to solve than the original problem. The decomposition to N subproblems is done
in such a manner that the optimal solution of the original N-variable problem can be
obtained from the optimal solutions of the N one-dimensional problems. It is important
to note that the particular optimization technique used for the optimization of the N
single-variable problems is irrelevant. It may range from a simple enumeration process
to a differential calculus or a nonlinear programming technique.

Multistage decision problems can also be solved by direct application of the clas-
sical optimization techniques. However, this requires the number of variables to be
small, the functions involved to be continuous and continuously differentiable, and the
optimum points not to lie at the boundary points. Further, the problem has to be
relatively simple so that the set of resultant equations can be solved either analyt-
ically or numerically. The nonlinear programming techniques can be used to solve
slightly more complicated multistage decision problems. But their application requires
the variables to be continuous and prior knowledge about the region of the global min-
imum or maximum. In all these cases, the introduction of stochastic variability makes
the problem extremely complex and renders the problem unsolvable except by using
some sort of an approximation such as chance constrained programming.1 Dynamic
programming, on the other hand, can deal with discrete variables, nonconvex, non-
continuous, and nondifferentiable functions. In general, it can also take into account
the stochastic variability by a simple modification of the deterministic procedure. The
dynamic programming technique suffers from a major drawback, known as the curse

1The chance constrained programming is discussed in Chapter 11.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

497

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

498 Dynamic Programming

of dimensionality. However, despite this disadvantage, it is very suitable for the solu-
tion of a wide range of complex problems in several areas of decision making.

9.2 MULTISTAGE DECISION PROCESSES

9.2.1 Definition and Examples

As applied to dynamic programming, a multistage decision process is one in which a
number of single-stage processes are connected in series so that the output of one stage
is the input of the succeeding stage. Strictly speaking, this type of process should be
called a serial multistage decision process since the individual stages are connected
head to tail with no recycle. Serial multistage decision problems arise in many types
of practical problems. A few examples are given below, and many others can be found
in the literature.

Consider a chemical process consisting of a heater, a reactor, and a distillation
tower connected in series. The objective is to find the optimal value of temperature in
the heater, the reaction rate in the reactor, and the number of trays in the distillation
tower such that the cost of the process is minimum while satisfying all the restric-
tions placed on the process. Figure 9.1 shows a missile resting on a launch pad that is
expected to hit a moving aircraft (target) in a given time interval. The target will natu-
rally take evasive action and attempts to avoid being hit. The problem is to generate a
set of commands to the missile so that it can hit the target in the specified time interval.
This can be done by observing the target and, from its actions, generate periodically
a new direction and speed for the missile. Next, consider the minimum cost design
of a water tank. The system consists of a tank, a set of columns, and a foundation.
Here the tank supports the water, the columns support the weights of water and tank,
and the foundation supports the weights of water, tank, and columns. The components
can be seen to be in series and the system has to be treated as a multistage decision
problem. Finally, consider the problem of loading a vessel with stocks of N items.
Each unit of item i has a weight wi and a monetary value ci. The maximum permissi-
ble cargo weight is W. It is required to determine the cargo load that corresponds to
maximum monetary value without exceeding the limitation of the total cargo weight.
Although the multistage nature of this problem is not directly evident, it can be posed
as a multistage decision problem by considering each item of the cargo as a separate
stage.

Missile

Missile tracking
radar

Computer

Radio
command

line

Target-
tracking

radar

Target (jet plane)

Figure 9.1 Ground-radar-controlled missile chasing a moving target.

�

� �

�

9.2 Multistage Decision Processes 499

9.2.2 Representation of a Multistage Decision Process

A single-stage decision process (which is a component of the multistage problem) can
be represented as a rectangular block (Fig. 9.2). A decision process can be charac-
terized by certain input parameters, S (or data), certain decision variables (X), and
certain output parameters (T) representing the outcome obtained as a result of mak-
ing the decision. The input parameters are called input state variables, and the output
parameters are called output state variables. Finally, there is a return or objective func-
tion R, which measures the effectiveness of the decisions made and the output that
results from these decisions. For a single-stage decision process shown in Figure 9.2,
the output is related to the input through a stage transformation function denoted by

T = t(X, S) (9.1)

Since the input state of the system influences the decisions we make, the return
function can be represented as

R = r(X, S) (9.2)

A serial multistage decision process can be represented schematically as shown in
Fig. 9.3. Because of some convenience, which will be seen later, the stages n, n− 1,...,
i,..., 2, 1 are labeled in decreasing order. For the ith stage, the input state vector is
denoted by si+ 1 and the output state vector as si. Since the system is a serial one, the
output from stage i+ 1 must be equal to the input to stage i. Hence the state transfor-
mation and return functions can be represented as

si = ti(si+1, xi) (9.3)

Ri = ri(si+1, xi) (9.4)

where xi denotes the vector of decision variables at stage i. The state transformation
Eqs. (9.3) are also called design equations.

Input S

Decision X

Stage
transformation

T = t(X, S)
Output T

Return, R = r(X, S)

Figure 9.2 Single-stage decision problem.

Sn + 1

Rn Ri R2 R1Rn – 1

Si + 1 Si S3 S2 S1Sn – 1Sn

xn
Stage n

xi
Stage i

x2
Stage 2

x1
Stage 1

xn – 1
Stage n – 1

n – 1n i 2 1

Figure 9.3 Multistage decision problem (initial value problem).

�

� �

�

500 Dynamic Programming

The objective of a multistage decision problem is to find x1, x2,..., xn so as to
optimize some function of the individual statge returns, say, f(R1, R2,..., Rn) and satisfy
Eqs. (9.3) and (9.4). The nature of the n-stage return function, f, determines whether a
given multistage problem can be solved by dynamic programming. Since the method
works as a decomposition technique, it requires the separability and monotonicity of
the objective function. To have separability of the objective function, we must be able
to represent the objective function as the composition of the individual stage returns.
This requirement is satisfied for additive objective functions:

f =
n∑

i=1

Ri =
n∑

i=1

Ri(xi, si+1) (9.5)

where xi are real, and for multiplicative objective functions,

f =
n∏

i=1

Ri =
n∏

i=1

Ri(xi, si+1) (9.6)

where xi are real and nonnegative. On the other hand, the following objective function
is not separable:

f = [R1(x1, s2) + R2(x2, s3)][R3(x3, s4) + R4(x4, s5)] (9.7)

Fortunately, there are many practical problems that satisfy the separability con-
dition. The objective function is said to be monotonic if for all values of a and b that
make

Ri(xi = a, si+1) ≥ Ri(xi = b, si+1)

the following inequality is satisfied:

f (xn, xn−1, . . . , xi+1, xi = a, xi−1, . . . , x1, sn+1)

≥ f (xn, xn−1, . . . , xi+1, xi = b, xi−1, . . . , x1, sn+1), i = 1, 2, . . . , n (9.8)

9.2.3 Conversion of a Nonserial System to a Serial System

According to the definition, a serial system is one whose components (stages) are con-
nected in such a way that the output of any component is the input of the succeeding
component. As an example of a nonserial system, consider a steam power plant con-
sisting of a pump, a feedwater heater, a boiler, a superheater, a steam turbine, and an
electric generator, as shown in Fig. 9.4. If we assume that some steam is taken from
the turbine to heat the feedwater, a loop will be formed as shown in Fig. 9.4a. This
nonserial system can be converted to an equivalent serial system by regrouping the
components so that a loop is redefined as a single element as shown in Fig. 9.4b and c.
Thus, the new serial multistage system consists of only three components: the pump,
the boiler and turbine system, and the electric generator. This procedure can easily be
extended to convert multistage systems with more than one loop to equivalent serial
systems.

�

� �

�

9.3 Concept of Suboptimization and Principle of Optimality 501

Pump

Pump

Pump

(a)

(b)

(c)

Feed
water
heater

Boiler Super
heater

Steam
turbine

Feed
water
heater

Boiler Super
heater

Steam
turbine

Electric
gener-
ator

Electric
gener-
ator

Electric
gener-
ator

Boiler and turbine system

Figure 9.4 Serializing a nonserial system.

9.2.4 Types of Multistage Decision Problems

The serial multistage decision problems can be classified into three categories as
follows.

1. Initial value problem. If the value of the initial state variable, sn + 1, is prescribed,
the problem is called an initial value problem.

2. Final value problem. If the value of the final state variable, s1 is prescribed, the
problem is called a final value problem. Notice that a final value problem can
be transformed into an initial value problem by reversing the directions of si,
i = 1, 2,..., n + 1. The details of this are given in Section 9.7.

3. Boundary value problem. If the values of both the input and output variables
are specified, the problem is called a boundary value problem. The three types
of problems are shown schematically in Fig. 9.5, where the symbol ⇸ is used
to indicate a prescribed state variable.

9.3 CONCEPT OF SUBOPTIMIZATION AND PRINCIPLE OF
OPTIMALITY

A dynamic programming problem can be stated as follows.2 Find x1, x2,..., xn, which
optimizes

f (x1, x2, . . . , xn) =
n∑

i=1

Ri =
n∑

i=1

ri(si+1, xi)

2In the subsequent discussion, the design variables xi and state variables si are denoted as scalars for sim-
plicity, although the theory is equally applicable even if they are vectors.

�

� �

�

502 Dynamic Programming

Sn + 1 Si + 1 Si S2
S1

Sn
n – 1n i 1

xn xi x1xn – 1

Sn + 1 Si + 1 Si S2 S1
Sn n – 1n i 1

xn xi x1xn – 1

Sn + 1 Si + 1 Si S2
S1

Sn
n – 1n i 1

xn xi x1xn – 1

(a)

(b)

(c)

Figure 9.5 Types of multistage problems: (a) initial value problem; (b) final value problem;
(c) boundary value problem.

and satisfies the design equations

si = ti(si+1, xi), i = 1, 2, . . . , n

The dynamic programming makes use of the concept of suboptimization and the
principle of optimality in solving this problem. The concept of suboptimization and the
principle of optimality will be explained through the following example of an initial
value problem.

Example 9.1 Explain the concept of suboptimization in the context of the design
of the water tank shown in Fig. 9.6a. The tank is required to have a capacity of
100 000 liters of water and is to be designed for minimum cost [9.10].

SOLUTION Instead of trying to optimize the complete system as a single unit, it
would be desirable to break the system into components, which could be optimized
more or less individually. For this breaking and component suboptimization, a logical
procedure is to be used; otherwise, the procedure might result in a poor solution. This
concept can be seen by breaking the system into three components: component i (tank),
component j (columns), and component k (foundation). Consider the suboptimization
of component j (columns) without a consideration of the other components. If the cost
of steel is very high, the minimum cost design of component j may correspond to heavy
concrete columns without reinforcement. Although this design may be acceptable for
columns, the entire weight of the columns must be carried by the foundation. This may
result in a foundation that is prohibitively expensive. This shows that the suboptimiza-
tion of component j has adversely influenced the design of the following component
k. This example shows that the design of any interior component affects the designs
of all the subsequent (downstream) components. As such, it cannot be suboptimized
without considering its effect on the downstream components. The following mode
of suboptimization can be adopted as a rational optimization strategy. Since the last
component in a serial system influences no other component, it can be suboptimized

�

� �

�

9.3 Concept of Suboptimization and Principle of Optimality 503

Water tank to carry 100,000 liters
of water (rectangular or circular)

Columns (RCC or steel)

Foundation (Mat or pile)

(a)

(b)

Weight of
water

i Tank j Columns k Foundation

(Ri)
(cost)

(Rj)
(cost)

(Rk)
(cost)

Weight of
water +
tank +

Weight of
water +
tank +
columns

Weight of
water + tank +

columns +
foundation

xi xj xk

Figure 9.6 Water tank system.

independently. Then, the last two components can be considered together as a single
(larger) component and can be suboptimized without adversely influencing any of the
downstream components. This process can be continued to group any number of end
components as a single (larger) end component and suboptimize them. This process
of suboptimization is shown in Fig. 9.7. Since the suboptimizations are to be done in
reverse order, the components of the system are also numbered in the same manner
for convenience (see Fig. 9.3).

The process of suboptimization was stated by Bellman [9.2] as the principle of
optimality:

An optimal policy (or a set of decisions) has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.

Recurrence Relationship Suppose that the desired objective is to minimize the
n-stage objective function f, which is given by the sum of the individual stage
returns:

Minimize f = Rn(xn, sn+1) + Rn−1(xn−1, sn) +⋯ + R1(x1, s2) (9.9)

where the state and decision variables are related as

si = ti(si+1, xi), i = 1, 2, . . . , n (9.10)

Consider the first subproblem by starting at the final stage, i= 1. If the input to this
stage s2 is specified, then according to the principle of optimality, x1 must be selected
to optimize R1. Irrespective of what happens to the other stages, x1 must be selected
such that R1(x1, s2) is an optimum for the input s2. If the optimum is denoted as f ∗1 , we
have

f ∗1 (s2) = opt
x1

[R1(x1, s2)] (9.11)

�

� �

�

504 Dynamic Programming

Component k
(tank)

Component j
(columns)

Original system

Component i
(foundation)

Component k
(tank)

Component j
(columns)

Component i
(foundation)

Component k
(tank)

Component j
(columns)

Component i
(foundation)

Component k
(tank)

Component j
(columns)

Component i
(foundation)

Suboptimize components k, j and i (complete system)

Suboptimize components j and i

Suboptimize component i

Figure 9.7 Suboptimization (principle of optimality).

This is called a one-stage policy since once the input state s2 is specified, the
optimal values of R1, x1, and s1 are completely defined. Thus Eq. (9.11) is a parametric
equation giving the optimum f ∗1 as a function of the input parameter s2.

Next, consider the second subproblem by grouping the last two stages together.
If f ∗2 denotes the optimum objective value of the second subproblem for a specified
value of the input s3, we have

f ∗2 (s3) = opt
x1,x2

[R2(x2, s3) + R1(x1, s2)] (9.12)

The principle of optimality requires that x1 be selected so as to optimize R1 for
a given s2. Since s2 can be obtained once x2 and s3 are specified, Eq. (9.12) can be
written as

f ∗2 (s3) = opt
x2

[R2(x2, s3) + f ∗1 (s2)] (9.13)

Thus f ∗2 represents the optimal policy for the two-stage subproblem. It can be seen
that the principle of optimality reduced the dimensionality of the problem from two
[in Eq. (9.12)] to one [in Eq. (9.13)]. This can be seen more clearly by rewriting Eq.
(9.13) using Eq. (9.10) as

f ∗2 (s3) = opt
x2

[R2(x2, s3) + f ∗1 {t2(x2, s3)}] (9.14)

�

� �

�

9.4 Computational Procedure in Dynamic Programming 505

In this form, it can be seen that for a specified input s3, the optimum is determined
solely by a suitable choice of the decision variable x2. Thus the optimization problem
stated in Eq. (9.12), in which both x2 and x1 are to be simultaneously varied to produce
the optimum f ∗2 , is reduced to two subproblems defined by Eqs. (9.11) and (9.13). Since
the optimization of each of these subproblems involves only a single decision variable,
the optimization is, in general, much simpler.

This idea can be generalized and the ith subproblem defined by

f ∗i (si+1) = opt
xi,xi−1, . . . ,x1

[Ri(xi, si+1) + Ri−1(xi−1, si) +⋯ + R1(x1, s2)] (9.15)

which can be written as

f ∗i (si+1) = opt
xi

[Ri(xi, si+1) + f ∗i−1(si)] (9.16)

where f ∗i−1 denotes the optimal value of the objective function corresponding to the last
i− 1 stages, and si is the input to the stage i− 1. The original problem in Eq. (9.15)
requires the simultaneous variation of i decision variables, x1, x2,..., xi, to determine the
optimum value of fi =

∑i
k=1 Rk for any specified value of the input si+ 1. This problem,

by using the principle of optimality, has been decomposed into i separate problems,
each involving only one decision variable. Eq. (9.16) is the desired recurrence rela-
tionship valid for i = 2, 3,..., n.

9.4 COMPUTATIONAL PROCEDURE IN DYNAMIC
PROGRAMMING

The use of the recurrence relationship derived in Section 9.3 in actual computations
is discussed in this section [9.10]. As stated, dynamic programming begins by subop-
timizing the last component, numbered 1. This involves the determination of

f ∗1 (s2) = opt
x1

[R1(x1, s2)] (9.17)

The best value of the decision variable x1, denoted as x∗1, is that which makes the
return (or objective) function R1 assume its optimum value, denoted by f ∗1 . Both x∗1
and f ∗1 depend on the condition of the input or feed that the component 1 receives
from the upstream, that is, on s2. Since the particular value which s2 will assume after
the upstream components are optimized is not known at this time, this last-stage sub-
optimization problem is solved for a “range” of possible values of s2 and the results
are entered into a graph or a table. This graph or table contains a complete summary of
the results of suboptimization of stage 1. In some cases, it may be possible to express
f ∗1 as a function of s2. If the calculations are to be performed on a computer, the results
of suboptimization have to be stored in the form of a table in the computer. Figure 9.8
shows a typical table in which the results obtained from the suboptimization of stage
1 are entered.

Next, we move up the serial system to include the last two components. In this
two-stage suboptimization, we have to determine

f ∗2 (s3) = opt
x2,x1

[R2(x2, s3) + R1(x1, s2)] (9.18)

�

� �

�

506 Dynamic Programming

(a)

x1

1 s1

s2 x1
* f1

* s1
s2

R1 (x1, s2)

(b) Summary of stage 1

Figure 9.8 Suboptimization of component 1 for various settings of the input state variable s2.

Since all the information about component 1 has already been encoded in the table
corresponding to f ∗1 , this information can then be substituted for R1 in Eq. (9.18) to
get the following simplified statement:

f ∗2 (s3) = opt
x2

[R2(x2, s3) + f ∗1 (s2)] (9.19)

Thus, the number of variables to be considered has been reduced from two (x1 and
x2) to one (x2). A range of possible values of s3 must be considered and for each one,
x∗2 must be found so as to optimize [R2 + f ∗1 (s2)]. The results (x∗2 and f ∗2 for different
s3) of this suboptimization are entered in a table as shown in Fig. 9.9.

Assuming that the suboptimization sequence has been carried on to include i− 1
of the end components, the next step will be to suboptimize the i end components.
This requires the solution of

f ∗i (si+1) = opt
xi,xi−1, . . . ,x1

[Ri + Ri−1 +⋯ + R1] (9.20)

However, again, all the information regarding the suboptimization of i− 1 end
components is known, and has been entered in the table corresponding to f ∗i−1. Hence
this information can be substituted in Eq. (9.20) to obtain

f ∗i (si+1) = opt
xi

[Ri(xi, si+1) + f ∗i−1(si)] (9.21)

Thus, the dimensionality of the i-stage suboptimization has been reduced to 1,
and the equation si = ti (si+ 1, xi) provides the functional relation between xi and si.
As before, a range of values of si+ 1 are to be considered, and for each one, x∗i is to be
found so as to optimize [Ri + f ∗i−1]. A table showing the values of x∗i and f ∗i for each
of the values of si+ 1 is made as shown in Fig. 9.10.

The suboptimization procedure above is continued until stage n is reached. At this
stage only one value of sn+ 1 needs to be considered (for initial value problems), and
the optimization of the n components completes the solution of the problem.

The final thing needed is to retrace the steps through the tables generated, to gather
the complete set of x∗i (i = 1, 2,..., n) for the system. This can be done as follows. The
nth suboptimization gives the values of x∗n and f ∗n for the specified value of sn+ 1 (for
initial value problem). The known design equation sn = tn(sn+ 1, x∗n) can be used to
find the input, s∗n, to the (n− 1)th stage. From the tabulated results for f ∗n−1(sn), the
optimum values f ∗n−1 and x∗n−1 corresponding to s∗n can readily be obtained. Again the
known design equation sn− 1 = tn− 1(sn, x∗n−1) can be used to find the input, s∗n−1, to
the (n− 2)th stage. As before, from the tabulated results of f ∗n−2 (sn− 1), the optimal
values x∗n−2 and f ∗n−2 corresponding to s∗n−1 can be found. This procedure is continued
until the values x∗1 and f ∗1 corresponding to s∗2 are obtained. Then the optimum solution

�

� �

�

9.5 Example Illustrating the Calculus Method of Solution 507

(a)

s3

x2
*

x2
* f2

* s2

R2 + f1
* (s2)

s3 = Fixed at some value

Opt {R2 + f1
* (s2)} = f1

*(s3)
 x2

For each setting of s3, draw
a graph as shown above to
obtain the following:

(b) Summary of stages 2 and 1

x2

s3 s2
2 1 s1

x1

Figure 9.9 Suboptimization of components 1 and 2 for various settings of the input state
variable s3.

vector of the original problem is given by (x∗1, x∗2,..., x∗n) and the optimum value of the
objective function by f ∗n .

9.5 EXAMPLE ILLUSTRATING THE CALCULUS METHOD OF
SOLUTION

Example 9.2 The four-bar truss shown in Fig. 9.11 is subjected to a vertical load
of 2× 105 lb. at joint A as shown. Determine the cross-sectional areas of the members
(bars) such that the total weight of the truss is minimum, and the vertical deflection
of joint A is equal to 0.5 in. Assume the unit weight as 0.01 lb./in3 and the Young’s
modulus as 20× 106 psi.

SOLUTION Let xi denote the area of cross section of member i(i = 1, 2, 3, 4). The
lengths of members are given by l1 = l3 = 100 in., l2 = 120 in., and l4 = 60 in. The

�

� �

�

508 Dynamic Programming

xi

s2

Opt [Ri + fi – 1 (si)] = fi (si + 1)
xi

* *

Ri + fi – 1 (si)*

xi – 1

i – 1 1
si – 1

si + 1 si

x1

s1
i

(a)

For each setting of si + 1, consider a graph as shown below:

si + 1 Fixed at some value

si + 1 si

xixi

*xi
*fi

And obtain the following

(b) Summary of stages i, i – 1, ...2, and 1

Figure 9.10 Suboptimization of components 1, 2,..., i for various settings of the input state
variable si+ 1.

3

2
C A

4

60 in.

80 in.

120 in.

D
B

1 2 × 105 lb

Figure 9.11 Four-bar truss.

�

� �

�

9.5 Example Illustrating the Calculus Method of Solution 509

weight of the truss is given by

f (x1, x2, x3, x4) = 0.01 (100x1 + 120x2 + 100x3 + 60x4)

= x1 + 1.2x2 + x3 + 0.6x4 (E1)

From structural analysis [9.5], the force developed in member i due to a unit load
acting at joint A(pi), the deformation of member i (di), and the contribution of member
i to the vertical deflection of A (𝛿i = pidi) can be determined as follows:

Member i pi di =
(stressi)li

E
=

Ppili
xiE

(in.) 𝛿i = pidi (in.)

1 −1.25 −1.25/x1 1.5625/x1

2 0.75 0.9/x2 0.6750/x2

3 1.25 1.25/x3 1.5625/x3

4 −1.50 −0.9/x4 1.3500/x4

The vertical deflection of joint A is given by

dA =
4∑

i=1

𝛿i =
1.5625

x1
+ 0.6750

x2
+ 1.5625

x3
+ 1.3500

x4
(E2)

Thus, the optimization problem can be stated as

Minimize f (X) = x1 + 1.2x2 + x3 + 0.6x4

subject to

1.5625
x1

+ 0.6750
x2

+ 1.5625
x3

+ 1.3500
x4

= 0.5

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 (E3)

Since the deflection of joint A is the sum of contributions of the various mem-
bers, we can consider the 0.5 in. deflection as a resource to be allocated to the various
activities xi and the problem can be posed as a multistage decision problem as shown
in Fig. 9.12. Let s2 be the displacement (resource) available for allocation to the first
member (stage 1), 𝛿1 the displacement contribution due to the first member, and f ∗1 (s2)
the minimum weight of the first member. Then

f ∗1 (s2) = min[R1 = x1] =
1.5625

s2
(E4)

such that
𝛿1 = 1.5625

x1
and x1 ≥ 0

since 𝛿1 = s2, and

x∗1 = 1.5625
s2

(E5)

�

� �

�

510 Dynamic Programming

Stage 4
(member 4)

s5

R4 = 0.6x4 R2 = 1.2x2 R1 = x1R3 = x3

s4 s3 s2 s1

x1x2x4 x3

Stage 3
(member 3)

Stage 2
(member 2)

Stage 1
(member 1)

Figure 9.12 Example 9.2 as a four-stage decision problem.

Let s3 be the displacement available for allocation to the first two members, 𝛿2
the displacement contribution due to the second member, and f ∗2 (s3) the minimum
weight of the first two members. Then we have, from the recurrence relationship of
Eq. (9.16),

f ∗2 (s3) = min
x2≥0

[R2 + f ∗1 (s2)] (E6)

where s2 represents the resource available after allocation to stage 2 and is given by

s2 = s3 − 𝛿2 = s3 −
0.6750

x2

Hence from Eq. (E4), we have

f ∗1 (s2) = f ∗1

(
s3 −

0.6750
x2

)
=
[

1.5625∕
(

s3 −
0.6750

x2

)]
(E7)

Thus Eq. (E6) becomes

f ∗2 (s3) = min
x2≥0

[
1.2x2 +

1.5625
s3 − 0.6750∕x2

]
(E8)

Let

F(s3, x2) = 1.2x2 +
1.5625

s3 − 0.6750∕x2
= 1.2x2 +

1.5625x2

s3x2 − 0.6750

For any specified value of s3, the minimum of F is given by

𝜕F
𝜕x2

= 1.2 − (1.5625)(0.6750)
(s3x2 − 0.6750)2

= 0 or x∗2 = 1.6124
s3

(E9)

f ∗2 (s3) = 1.2x∗2 +
1.5625

s3 − 0.6750∕x∗2
= 1.9349

s3
+ 2.6820

s3
= 4.6169

s3
(E10)

Let s4 be the displacement available for allocation to the first three members. Let
𝛿3 be the displacement contribution due to the third member and f ∗3 (s4) the minimum
weight of the first three members. Then

f ∗3 (s4) = min
x3≥0

[x3 + f ∗2 (s3)] (E11)

�

� �

�

9.5 Example Illustrating the Calculus Method of Solution 511

where s3 is the resource available after allocation to stage 3 and is given by

s3 = s4 − 𝛿3 = s4 −
1.5625

x3

From Eq. (E10) we have

f ∗2 (s3) =
4.6169

s4 − 1.5625∕x3
(E12)

and Eq. (E11) can be written as

f ∗3 (s4) = min
x3≥0

[
x3 +

4.6169x3

s4x3 − 1.5625

]
(E13)

As before, by letting

F(s4, x3) = x3 +
4.6169x3

s4x3 − 1.5625
(E14)

the minimum of F, for any specified value of s4, can be obtained as

𝜕F
𝜕x3

= 1.0 − (4.6169)(1.5625)
(s4x3 − 1.5625)2

= 0 or x∗3 = 4.2445
s4

(E15)

f ∗3 (s4) = x∗3 +
4.6169x∗3

s4x∗3 − 1.5625
= 4.2445

s4
+ 7.3151

s4
= 11.5596

s4
(E16)

Finally, let s5 denote the displacement available for allocation to the first four
members. If 𝛿4 denotes the displacement contribution due to the fourth member, and
f ∗4 (s5) the minimum weight of the first four members, then

f ∗4 (s5) = min
x4≥0

[0.6x4 + f ∗3 (s4)] (E17)

where the resource available after allocation to the fourth member (s4) is given by

s4 = s5 − 𝛿4 = s5 −
1.3500

x4
(E18)

From Eqs. (E16), (E17) and (E18), we obtain

f ∗4 (s5) = min
x4≥0

[
0.6x4 +

11.5596
s5 − 1.3500∕x4

]
(E19)

By setting

F(s5, x4) = 0.6x4 +
11.5596

s5 − 1.3500∕x4

the minimum of F(s5, x4), for any specified value of s5, is given by

𝜕F
𝜕x4

= 0.6 − (11.5596)(1.3500)
(s5x4 − 1.3500)2

= 0 or x∗4 = 6.44
s5

(E20)

f ∗4 (s5) = 0.6x∗4 +
11.5596

s5 − 1.3500∕x∗4
= 3.864

s5
+ 16.492

s5
= 20.356

s5
(E21)

�

� �

�

512 Dynamic Programming

Since the value of s5 is specified as 0.5 in., the minimum weight of the structure
can be calculated from Eq. (E21) as

f ∗4 (s5 = 0.5) = 20.356
0.5

= 40.712 lb (E22)

Once the optimum value of the objective function is found, the optimum values
of the design variables can be found with the help of Eqs. (E20), (E15), (E9) and (E5)
as

x∗4 = 12.88 in2

s4 = s5 −
1.3500

x∗4
= 0.5 − 0.105 = 0.395 in.

x∗3 = 4.2445
s4

= 10.73 in2

s3 = s4 −
1.5625

x∗3
= 0.3950 − 0.1456 = 0.2494 in.

x∗2 = 1.6124
s3

= 6.47 in2

s2 = s3 −
0.6750

x∗2
= 0.2494 − 0.1042 = 0.1452 in.

x∗1 = 1.5625
s2

= 10.76 in2

9.6 EXAMPLE ILLUSTRATING THE TABULAR METHOD OF
SOLUTION

Example 9.3 Design the most economical reinforced cement concrete (RCC) water
tank (Fig. 9.6a) to store 100 000 liters of water. The structural system consists of a
tank, four columns each 10 m high, and a foundation to transfer all loads safely to the
ground [9.10]. The design involves the selection of the most appropriate types of tank,
columns, and foundation among the seven types of tanks, three types of columns,
and three types of foundations available. The data on the various types of tanks,
columns, and foundations are given in Tables 9.1–9.3, respectively.

SOLUTION The structural system can be represented as a multistage decision pro-
cess as shown in Fig. 9.13. The decision variables x1, x2, and x3 represent the type of
foundation, columns, and the tank used in the system, respectively. Thus, the variable
x1 can take three discrete values, each corresponding to a particular type of foundation
(among mat, concrete pile, and steel pile types). Similarly, the variable x2 is assumed
to take three discrete values, each corresponding to one of the columns (out of RCC
columns, concrete columns, and steel columns). Finally, the variable x3 can take seven
discrete values, each corresponding to a particular type of tank listed in Table 9.1.

Since the input load, that is, the weight of water, is known to be 100 000 kgf, s4
is fixed and the problem can be considered as an initial value problem. We assume

�

� �

�

9.6 Example Illustrating the Tabular Method of Solution 513

Table 9.1 Component 3 (Tank).

Type of tank

Load acting
on the tank,

s4 (kgf) R3 cost ($)

Self-weight of
the component

(kgf)
s3 = s4 +

self-weight (kgf)

(a) Cylindrical RCC tank 100 000 5000 45 000 145 000
(b) Spherical RCC tank 100 000 8000 30 000 130 000
(c) Rectangular RCC tank 100 000 6000 25 000 125 000
(d) Cylindrical steel tank 100 000 9000 15 000 115 000
(e) Spherical steel tank 100 000 15 000 5000 105 000
(f) Rectangular steel tank 100 000 12 000 10 000 110 000
(g) Cylindrical RCC tank with

hemispherical RCC dome
100 000 10 000 15 000 115 000

Table 9.2 Component 2 (Columns).

Type of columns s3 (kgf) R2 cost ($)
Self-weight

(kgf)
s2 = s3 + self-weight

(kgf)

(a) RCC columns 150 000 6000 70 000 220 000
130 000 5000 50 000 180 000
110 000 4000 40 000 150 000
100 000 3000 40 000 140 000

(b) Concrete columns 150 000 8000 60 000 210 000
130 000 6000 50 000 180 000
110 000 4000 30 000 140 000
100 000 3000 15 000 115 000

(c) Steel columns 150 000 15 000 30 000 180 000
130 000 10 000 20 000 150 000
110 000 9000 15 000 125 000
100 000 8000 10 000 110 000

Table 9.3 Component 1 (Foundation).

Type of foundation s2 (kgf) R1 cost ($)
Self-weight

(kgf)
s1 = s2 + self-weight

(kgf)

(a) Mat foundation 220 000 5000 60 000 280 000
200 000 4000 45 000 245 000
180 000 3000 35 000 215 000
140 000 2500 25 000 165 000
100 000 500 20 000 120 000

(b) Concrete pile foundation 220 000 3500 55 000 275 000
200 000 3000 40 000 240 000
180 000 2500 30 000 210 000
140 000 1500 20 000 160 000
100 000 1000 15 000 115 000

(c) Steel pile foundation 220 000 3000 10 000 230 000
200 000 2500 9000 209 000
180 000 2000 8000 188 000
140 000 2000 6000 146 000
100 000 1500 5000 105 000

�

� �

�

514 Dynamic Programming

Weight
of water

3
Tank

2
Columns

1
Foundation

R3 R2 R1

s4 s3

x3 x2 x1

s2 s1

Figure 9.13 Example 9.3 as a three-stage decision problem.

that the theories of structural analysis and design in the various materials provide the
design equations

si = ti(xi, si+1)

which yield information for the various system components as shown in Tables 9.1 to
9.3 (these values are given only for illustrative purpose).

9.6.1 Suboptimization of Stage 1 (Component 1)

For the suboptimization of stage 1, we isolate component 1 as shown in Fig. 9.14a
and minimize its cost R1(x1, s2) for any specified value of the input state s2 to obtain
f ∗1 (s2) as

f ∗1 (s2) = min
x1

[R1(x1, s2)]

Since five settings of the input state variable s2 are given in Table 9.3, we obtain
f ∗1 for each of these values as shown below:

Specific value
of s2 (kgf)

x∗1 (type of foundation
for minimum cost) f ∗1 ($)

Corresponding
value of s1 (kgf)

220 000 (c) 3000 230 000
200 000 (c) 2500 209 000
180 000 (c) 2000 188 000
140 000 (b) 1500 160 000
100 000 (a) 500 120 000

9.6.2 Suboptimization of Stages 2 and 1 (Components 2 and 1)

Here we combine components 2 and 1 as shown in Fig. 9.14b and minimize the cost
(R2 +R1) for any specified value s3 to obtain f ∗2 (s3) as

f ∗2 (s3) = min
x2,x1

[R2(x2, s3) + R1(x1, s2)] = min
x2

[R2(x2, s3) + f ∗1 (s2)]

Since four settings of the input state variable s3 are given in Table 9.2, we can
find f ∗2 for each of these four values. Since this number of settings for s3 is small, the
values of the output state variable s2 that result will not necessarily coincide with the
values of s2 tabulated in Table 9.3. Hence, we interpolate linearly the values of s2 (if it
becomes necessary) for the purpose of present computation. However, if the compu-
tations are done on a computer, more settings, more closely spaced, can be considered
without much difficulty. The suboptimization of stages 2 and 1 gives the following
results:

�

� �

�

9.6 Example Illustrating the Tabular Method of Solution 515

Specific
value of
s3 (kgf)

Value of
x2 (type of
columns)

Cost of
columns,
R2 ($)

Value of
the output state
variable s2 (kgf)

x∗1 (Type of
foundation)

f ∗1
($)

R2 + f ∗1
($)

150 000 (a) 6000 220 000 (c) 3000 9,000
(b) 8000 210 000 (c) 2750** 10 750
(c) 15 000 180 000 (c) 2000 17 000

130 000 (a) 5000 180 000 (c) 2000 7,000
(b) 6000 180 000 (c) 2000 8000
(c) 10 000 150 000 (b) 1625** 11 625

110 000 (a) 4000 150 000 (b) 1625** 5625

(b) 4000 140 000 (b) 1500 5,500
(c) 9000 125 000 (b) 1125** 10 125

100 000 (a) 3000 140 000 (b) 1500 4500

(b) 3000 115 000 (a) 875** 3,875
(c) 8000 110 000 (a) 750** 8750

Notice that the double-starred quantities indicate interpolated values and the
boxed quantities the minimum cost solution for the specified value of s3. Now the
desired quantities (i.e., f ∗2 and x∗2) corresponding to the various discrete values of s3
can be summarized as follows:

Specified
value of
s3 (kgf)

Type of columns corresponding
to minimum cost of
stages 2 and 1, (x∗2)

Minimum
cost of stages
2 and 1, f ∗2 ($)

Value of the
corresponding state

variable, s2 (kgf)

150 000 (a) 9000 220 000
130 000 (a) 7000 180 000
110 000 (b) 5500 140 000
100 000 (b) 3875 115 000

9.6.3 Suboptimization of Stages 3, 2, and 1 (Components 3, 2, and 1)

For the suboptimization of stages 3, 2, and 1, we consider all three components
together as shown in Fig. 9.14c and minimize the cost (R3 +R2 +R1) for any specified
value of s4 to obtain f ∗3 (s4). However, since there is only one value of s4 (initial value
problem) to be considered, we obtain the following results by using the information
given in Table 9.1:

f ∗3 (s4) = min
x3,x2,x1

[R3(x3, s4) + R2(x2, s3) + R1(x1, s2)]

= min
x3

[R3(x3, s4) + f ∗2 (s3)]

Specific
value of
s4 (kgf)

Type
of tank
(x3)

Cost
of tank
R3 ($)

Corresponding
output state,
s3 (kgf)

x∗2 (type of
columns for
minimum cost) f ∗2 ($) R3 + f ∗2 ($)

100 000 (a) 5000 145 000 (a) 8500** 13 500
(b) 8000 130 000 (a) 7000 15 000

(c) 6000 125 000 (a) 6625** 12,625
(d) 9000 115 000 (b) 5875** 14 875
(e) 15 000 105 000 (b) 4687 1

2
** 19 687 1

2
(f) 12 000 110 000 (b) 5500 17 500
(g) 10 000 115 000 (b) 5875** 15 875

�

� �

�

516 Dynamic Programming

R1

R1

f1
* (s2) = min [R1 (x1, s2)]

x1

R2

R1R2R3

1

(a)

(b)

(c)

12

123

s1

s1s2s3

s1
s2s3

s4

x1

x1x2

x1x2x3

s2

f2
* (s3) = min [R2 + R1] = min [R2 + f1* (s2)]

x2 x2

f3
* (s4) = min [R3 + R2 + R1] = min [R3 + f2* (s3)]

x3 x3

Figure 9.14 Various stages of suboptimization of Example 9.3: (a) suboptimization of
component 1; (b) suboptimization of components 1 and 2; (c) suboptimization of components
1, 2, and 3.

Here also the double-starred quantities indicate the interpolated values and the
boxed quantity the minimum cost solution. From the results above, the minimum cost
solution is given by

s4 = 100,000 kgf

x∗3 = type (c) tank

f ∗3 (s4 = 100,000) = $12,625

s3 = 125,000 kgf

�

� �

�

9.7 Conversion of a Final Value Problem into an Initial Value Problem 517

Now, we retrace the steps to collect the optimum values of x∗3, x∗2, and x∗1 and obtain

x∗3 = type (c) tank, s3 = 125,000 kgf

x∗2 = type (a) columns, s2 = 170,000 kgf

x∗1 = type (c) foundation, s1 = 181,000 kgf

and the total minimum cost of the water tank is $12 625. Thus the minimum cost water
tank consists of a rectangular RCC tank, RCC columns, and a steel pile foundation.

9.7 CONVERSION OF A FINAL VALUE PROBLEM INTO AN
INITIAL VALUE PROBLEM

In previous sections the dynamic programming technique has been described with
reference to an initial value problem. If the problem is a final value problem as shown
in Fig. 9.15a, it can be solved by converting it into an equivalent initial value problem.
Let the stage transformation (design) equation be given by

si = ti(si+1, xi), i = 1, 2, . . . , n (9.22)

Assuming that the inverse relations exist, we can write Eqs. (9.22) as

si+1 = ti(si, xi), i = 1, 2, . . . , n (9.23)

where the input state to stage i is expressed as a function of its output state and the
decision variable. It can be noticed that the roles of input and output state variables
are interchanged in Eqs. (9.22) and (9.23). The procedure of obtaining Eq. (9.23) from
Eq. (9.22) is called state inversion. If the return (objective) function of stage i is orig-
inally expressed as

Ri = ri(si+1, xi), i = 1, 2, . . . , n (9.24)

n – 1

n – 1

n

n

i

i

1

1

2

2

sn + 1

si + 1

Starting
point

Starting
point

s3

s3

s2

s2

sn – 1

sn – 1

sn + 1

si + 1

Rn – 1 R2 R1RiRn

Rn – 1R2R1 Ri Rn

sn si

si sn

s1

s1

xn xixn – 1 x2 x1

xnxi xn – 1x2x1

(a)

(b)

Figure 9.15 Conversion of a final value problem to an initial value problem: (a) final value
problem; (b) initial value problem.

�

� �

�

518 Dynamic Programming

Eq. (9.23) can be used to express it in terms of the output state and the decision
variable as

Ri = ri[ti(si, xi), xi] = ri(si, xi), i = 1, 2, . . . , n (9.25)

The optimization problem can now be stated as follows:
Find x1, x2,..., xn so that

f (x1, x2, . . . , xn) =
n∑

i=1

Ri =
n∑

i=1

ri(si, xi) (9.26)

will be optimum where the si are related by Eq. (9.23).
The use of Eq. (9.23) amounts to reversing the direction of the flow of information

through the state variables. Thus the optimization process can be started at stage n and
stages n− 1, n− 2,..., 1 can be reached in a sequential manner. Since s1 is specified
(fixed) in the original problem, the problem stated in Eq. (9.26) will be equivalent to
an initial value problem as shown in Fig. 9.15b. This initial value problem is identical
to the one considered in Fig. 9.3 except for the stage numbers. If the stage numbers
1, 2,..., n are reversed to n, n− 1,..., 1, Fig. 9.15b will become identical to Fig. 9.3.
Once this is done, the solution technique described earlier can be applied for solving
the final value problem shown in Fig. 9.15a.

Example 9.4 A small machine tool manufacturing company entered into a contract
to supply 80 drilling machines at the end of the first month and 120 at the end of the
second month. The unit cost of manufacturing a drilling machine in any month is given
by $(50x + 0.2x2), where x denotes the number of drilling machines manufactured in
that month. If the company manufactures more units than needed in the first month,
there is an inventory carrying cost of $8 for each unit carried to the next month. Find
the number of drilling machines to be manufactured in each month to minimize the
total cost. Assume that the company has enough facilities to manufacture up to 200
drilling machines per month and that there is no initial inventory. Solve the problem
as a final value problem.

SOLUTION The problem can be stated as follows:
Minimize f(x1, x2) = (50x1 + 0.2x2

1)+ (50x2 + 0.2x2
2)+ 8(x1–80) subject to

x1 ≥ 80

x1 + x2 = 200

x1 ≥ 0, x2 ≥ 0

where x1 and x2 indicate the number of drilling machines manufactured in the first
month and the second month, respectively. To solve this problem as a final value
problem, we start from the second month and go backward. If I2 is the inventory at
the beginning of the second month, the optimum number of drilling machines to be
manufactured in the second month is given by

x∗2 = 120 − I2 (E1)

and the cost incurred in the second month by

R2(x∗2, I2) = 8I2 + 50x∗2 + 0.2x∗2
2

�

� �

�

9.8 Linear Programming as a Case of Dynamic Programming 519

By using Eq. (E1), R2 can be expressed as

R2(I2) = 8I2 + 50(120 − I2) + 0.2(120 − I2)2 = 0.2I2
2 − 90I2 + 8880 (E2)

Since the inventory at the beginning of the first month is zero, the cost involved
in the first month is given by

R1(x1) = 50x1 + 0.2x2
1

Thus the total cost involved is given by

f2(I2, x1) = (50x1 + 0.2x2
1) + (0.2I2

2 − 90I2 + 8880) (E3)

But the inventory at the beginning of the second month is related to x1 as

I2 = x1 − 80 (E4)

Eqs. (E3) and (E4) lead to

f = f2(I2) = (50x1 + 0.2x2
1) + 0.2(x1 − 80)2 − 90(x1 − 80) + 8880

= 0.4x2
1 − 72x1 + 17,360 (E5)

Since f is a function of x1 only, the optimum value of x1 can be obtained as

df

dx1
= 0.8x1 − 72 = 0 or x∗1 = 90

As d2f(x∗1)/dx2
1 = 0.8 > 0, the value of x∗1 corresponds to the minimum of f. Thus,

the optimum solution is given by

fmin = f (x∗1) = $14,120

x∗1 = 90 and x∗2 = 110

9.8 LINEAR PROGRAMMING AS A CASE OF DYNAMIC
PROGRAMMING

A linear programming problem with n decision variables and m constraints can be
considered as an n-stage dynamic programming problem with m state variables. In
fact, a linear programming problem can be formulated as a dynamic programming
problem. To illustrate the conversion of a linear programming problem into a dynamic
programming problem, consider the following linear programming problem:

Maximize f (x1, x2, . . . , xn) =
n∑

j=1

cjxj

subject to

n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n (9.27)

�

� �

�

520 Dynamic Programming

This problem can be considered as an n-stage decision problem where the value
of the decision variable xj must be determined at stage j. The right-hand sides of the
constraints, bi, i = 1, 2,..., m, can be treated as m types of resources to be allocated
among different kinds of activities xj. For example, b1 may represent the available
machines, b2 the available time, and so on, in a workshop. The variable x1 may denote
the number of castings produced, x2 the number of forgings produced, x3 the num-
ber of machined components produced, and so on, in the workshop. The constant cj
may represent the profit per unit of xj. The coefficients aij represent the amount of ith
resource bi needed for 1 unit of jth activity xj (e.g., the amount of material required to
produce one casting). Hence when the value of the decision variable xj at the jth stage
is determined, a1j xj units of resource 1, a2j xj units of resource 2,..., amj xj units of
resource m will be allocated to jth activity if sufficient unused resources exist. Thus,
the amounts of the available resources must be determined before allocating them to
any particular activity. For example, when the value of the first activity x1 is determined
at stage 1, there must be sufficient amounts of resources bi for allocation to activity 1.
The resources remaining after allocation to activity 1 must be determined before the
value of x2 is found at stage 2, and so on. In other words, the state of the system (i.e.,
the amounts of resources remaining for allocation) must be known before making a
decision (about allocation) at any stage of the n-stage system. In this problem there
are m state parameters constituting the state vector.

By denoting the optimal value of the composite objective function over n stages
as f ∗n , we can state the problem as

Find

f ∗n = f ∗n (b1, b2, . . . , bm) = max
x1,x2, . . . ,xn

(
n∑

j=1

cjxj

)
(9.28)

such that
n∑

j=1

aijxj ≤ bi, i = 1, 2, . . . ,m (9.29)

xj ≥ 0, j = 1, 2, . . . , n (9.30)

The recurrence relationship (9.16), when applied to this problem yields

f ∗1 (𝛽1, 𝛽2, . . . , 𝛽m) = max
0≤xi≤𝛽

[cixi + f ∗i−1(𝛽1 − a1ixi,

𝛽2 − a2ixi, . . . , 𝛽m − amixi)], i = 2, 3, . . . , n (9.31)

where 𝛽1, 𝛽2,..., 𝛽m are the resources available for allocation at stage i; a1ixi,..., amixi
are the resources allocated to the activity xi, 𝛽1 − a1ixi, 𝛽2 − a2ixi,..., 𝛽m − amixi are the
resources available for allocation to the activity i− 1, and 𝛽 indicates the maximum
value that xi can take without violating any of the constraints stated in Eqs. (9.29). The
value of 𝛽 is given by

𝛽 = min

(
𝛽1

a1i
,
𝛽2

a2i
, . . . ,

𝛽m

ami

)
(9.32)

since any value larger than 𝛽 would violate at least one constraint. Thus at the ith stage,
the optimal values x∗i and f ∗i can be determined as functions of 𝛽1, 𝛽2,..., 𝛽m.

Finally, at the nth stage, since the values of 𝛽1, 𝛽2,..., 𝛽m are known to be b1, b2,...,
bm, respectively, we can determine x∗n and f ∗n . Once x∗n is known, the remaining values,
x∗n−1, x∗n−2,..., x∗1 can be determined by retracing the suboptimization steps.

.

�

� �

�

9.8 Linear Programming as a Case of Dynamic Programming 521

Example 9.53

Maximize f (x1, x2) = 50x1 + 100x2

subject to

10x1 + 5x2 ≤ 2500

4x1 + 10x2 ≤ 2000

x1 + 1.5x2 ≤ 450

x1 ≥ 0, x2 ≥ 0

SOLUTION Since n = 2 and m = 3, this problem can be considered as a two-stage
dynamic programming problem with three state parameters. The first-stage problem
is to find the maximum value of f1:

max f1(𝛽1, 𝛽2, 𝛽3, x1) = max
0≤x1≤𝛽

(50x1)

where 𝛽1, 𝛽2, and 𝛽3 are the resources available for allocation at stage 1, and x1 is a
nonnegative value that satisfies the side constraints 10x1 ≤ 𝛽1, 4x1 ≤ 𝛽2, and x1 ≤ 𝛽3.
Here 𝛽1 = 2500− 5x2, 𝛽2 = 2000− 10x2, and 𝛽3 = 450–1.5x2, and hence the maximum
value 𝛽 that x1 can assume is given by

𝛽 = x∗1 = min

[
2500 − 5x2

10
,

2000 − 10x2

4
, 450 − 1.5x2

]
(E1)

Thus

f ∗1

(
2500 − 5x2

10
,

2000 − 10x2

4
, 450 − 1.5x2

)
= 50x∗1

= 50 min

(
2500 − 5x2

10
,

2000 − 10x2

4
, 450 − 1.5x2

)
The second-stage problem is to find the maximum value of f2:

max f2(𝛽1, 𝛽2, 𝛽3) = max
0≤x2≤𝛽

[
100x2 + f ∗1

(
2500 − 5x2

10
,

2500 − 10x2

4
, 450 − 1.5x2

)]
(E2)

where 𝛽1, 𝛽2, and 𝛽3 are the resources available for allocation at stage 2, which are
equal to 2500, 2000, and 450, respectively. The maximum value that x2 can assume
without violating any constraint is given by

𝛽 = min
(2500

5
,

2000
10

,
450
1.5

)
= 200

3This problem is the same as the one stated in Example 3.2.

�

� �

�

522 Dynamic Programming

Thus, the recurrence relation, Eq. (E2), can be restated as

max f2(2500, 2000,450)

= max
0≤x2≤200

{
100x2 + 50 min

(
2500 − 5x2

10
,

2000 − 10x2

4
, 450 − 1.5x2

)}
Since

min

(
2500 − 5x2

10
,

2000 − 10x2

4
, 450 − 1.5x2

)

=
⎧⎪⎨⎪⎩

2500 − 5x2

10
if 0 ≤ x2 ≤ 125

2000 − 10x2

4
if 125 ≤ x2 ≤ 200

we obtain

max
0≤x2≤200

[
100x2 + 50 min

(
2500 − 5x2

10
,

2000 − 10x2

4
, 450 − 1.5x2

)]

= max

⎧⎪⎪⎨⎪⎪⎩
100x2 + 50

(
2500 − 5x2

10

)
if 0 ≤ x2 ≤ 125

100x2 + 50

(
2000 − 10x2

4

)
if 125 ≤ x2 ≤ 200

= max

⎧⎪⎨⎪⎩
75x2 + 12,500 if 0 ≤ x2 ≤ 125

25,000 − 25x2 if 125 ≤ x2 ≤ 200

Now,

max(75x2 + 12,500) = 21,875 at x2 = 125

max(25,000 − 25x2) = 21,875 at x2 = 125

Hence

f ∗2 (2500, 2000, 450) = 21,875 at x∗2 = 125.0

From Eq. (E1) we have

x∗1 = min

(2500 − 5x∗2
10

,

2000 − 10x∗2
4

, 450 − 1.5x∗2

)
= min(187.5, 187.5, 262.5) = 187.5

Thus the optimum solution of the problem is given by x∗1 = 187.5, x∗2 = 125.0, and
fmax = 21 875.0, which can be seen to be identical with the one obtained earlier.

�

� �

�

9.9 Continuous Dynamic Programming 523

Problem of Dimensionality in Dynamic Programming The application of dynamic
programming for the solution of a linear programming problem has a serious limitation
due to the dimensionality restriction. The number of calculations needed will increase
very rapidly as the number of decision variables and state parameters increases. As
an example, consider a linear programming problem with 100 constraints. This means
that there are 100 state variables. By the procedure outlined in Section 9.4, if a table of
f ∗i is to be constructed in which 100 discrete values (settings) are given to each param-
eter, the table contains 100100 entries. This is a gigantic number, and if the calculations
are to be performed on a high-speed digital computer, it would require 10096 seconds
or about 10092 years4 merely to compute one table of f ∗i . Like this, 100 tables have
to be prepared, one for each decision variable. Thus, it is totally out of the question
to solve a general linear programming problem of any reasonable size5 by dynamic
programming.

These comments are equally applicable for all dynamic programming problems
involving many state variables, since the computations have to be performed for differ-
ent possible values of each of the state variables. Thus, this problem causes not only an
increase in the computational time, but also requires a large computer memory. This
problem is known as the problem of dimensionality or the curse of dimensionality, as
termed by Bellman. This presents a serious obstacle in solving medium- and large-size
dynamic programming problems.

9.9 CONTINUOUS DYNAMIC PROGRAMMING

If the number of stages in a multistage decision problem tends to infinity, the problem
becomes an infinite stage or continuous problem and dynamic programming can still
be used to solve the problem. According to this notion, the trajectory optimization
problems, defined in Section 1.5, can also be considered as infinite-stage or continuous
problems.

An infinite-stage or continuous decision problem may arise in several practical
problems. For example, consider the problem of a missile hitting a target in a speci-
fied (finite) time interval. Theoretically, the target has to be observed and commands to
the missile for changing its direction and speed have to be given continuously. Thus, an
infinite number of decisions have to be made in a finite time interval. Since a stage has
been defined as a point where decisions are made, this problem will be an infinite-stage
or continuous problem. Another example where an infinite-stage or continuous deci-
sion problem arises is in planning problems. Since large industries are assumed to
function for an indefinite amount of time, they have to do their planning on this basis.
They make their decisions at discrete points in time by anticipating a maximum profit
in the long run (essentially over an infinite period of time). In this section we consider
the application of continuous decision problems.

We have seen that the objective function in dynamic programming formulation is
given by the sum of individual stage returns. If the number of stages tends to infin-
ity, the objective function will be given by the sum of infinite terms, which amounts
to having the objective function in the form of an integral. The following examples
illustrate the formulation of continuous dynamic programming problems.

Example 9.6 Consider a manufacturing firm that produces a certain product. The
rate of demand of this product (p) is known to be p = p[x(t), t], where t is the time

4The computer is assumed to be capable of computing 108 values of f ∗i per second.
5As stated in Section 4.7, LP problems with 150 000 variables and 12 000 constraints have been solved in
a matter of a few hours using some special techniques.

�

� �

�

524 Dynamic Programming

of the year and x(t) is the amount of money spent on advertisement at time t. Assume
that the rate of production is exactly equal to the rate of demand. The production cost,
c, is known to be a function of the amount of production (p) and the production rate
(dp/dt) as c = c(p, dp/dt). The problem is to find the advertisement strategy, x(t), so
as to maximize the profit between t1 and t2. The unit selling price (s) of the product
is known to be a function of the amount of production as s = s(p) = a + b/p, where a
and b are known positive constants.

SOLUTION Since the profit is given by the difference between the income from
sales and the expenditure incurred for production and advertisement, the total profit
over the period t1 to t2 is given by

f = ∫
t2

t1

[
p

(
a + b

p

)
− c

(
p,

dp

dt
, t

)
− x(t)

]
dt (E1)

where p = p{x(t), t}. Thus the optimization problem can be stated as follows: Find
x(t), t1 ≤ t≤ t2, which maximizes the total profit, f given by Eq. (E1).

Example 9.7 Consider the problem of determining the optimal temperature distribu-
tion in a plug-flow tubular reactor [9.1]. Let the reactions carried in this type of reactor
be shown as follows:

X1

k1

⇄
k2

X2

k3−−→X3

where X1 is the reactant, X2 the desired product, and X3 the undesired product, and
k1, k2, and k3 are called rate constants. Let x1 and x2 denote the concentrations of the
products X1 and X2, respectively. The equations governing the rate of change of the
concentrations can be expressed as

dx1

dy
+ k1x1 = k2x2 (E1)

dx2

dy
+ k2x2 + k3x2 = k1x1 (E2)

with the initial conditions x1(y = 0) = c1 and x2(y = 0) = c2, where y is the normal-
ized reactor length such that 0≤ y≤ 1. In general, the rate constants depend on the
temperature (t) and are given by

ki = aie
−(bi∕t)

, i = 1, 2, 3 (E3)

where ai and bi are constants.
If the objective is to determine the temperature distribution t(y), 0≤ y≤ 1, to max-

imize the yield of the product X2, the optimization problem can be stated as follows:
Find t (y), 0≤ y≤ 1, which maximizes

x2(1) − x2(0) = ∫
1

y=0
dx2 = ∫

1

0
(k1x1 − k2x2 − k3x2)dy

where x1(y) and x2(y) have to satisfy Eqs. (E1) and (E2). Here it is assumed that the
desired temperature can be produced by some external heating device.

�

� �

�

9.9 Continuous Dynamic Programming 525

The classical method of approach to continuous decision problems is by the
calculus of variations.6 However, the analytical solutions, using calculus of variations,
cannot be obtained except for very simple problems. The dynamic programming
approach, on the other hand, provides a very efficient numerical approximation
procedure for solving continuous decision problems. To illustrate the application of
dynamic programming to the solution of continuous decision problems, consider the
following simple (unconstrained) problem. Find the function y(x) that minimizes the
integral

f = ∫
b

x=a
R

(
dy

dx
, y, x

)
dx (9.33)

subject to the known end conditions y(x = a) = 𝛼, and y(x = b) = 𝛽. We shall see
how dynamic programming can be used to determine y(x) numerically. This approach
will not yield an analytical expression for y(x) but yields the value of y(x) at a finite
number of points in the interval a≤ x≤ b. To start with, the interval (a, b) is divided
into n segments each of length Δx (all the segments are assumed to be of equal length
only for convenience). The grid points defining the various segments are given by

x1 = a, x2 = a + Δx, . . . ,

xi = a + (i − 1)Δx, . . . , xn+1 = a + nΔx = b

If Δx is small, the derivative dy/dx at xi can be approximated by a forward differ-
ence formula as

dy

dx
(xi) ≃

yi+1 − yi

Δx
(9.34)

where yi = y(xi), i = 1, 2,..., n+ 1. The integral in Eq. (9.33) can be approximated as

f ≃
n∑

i=1

R

[
dy

dx
(xi), y(xi), xi

]
Δx (9.35)

Thus, the problem can be restated as
Find y(x2), y(x3),..., y(xn), which minimizes

f ≃ Δx
n∑

i=1

R
{yi+1 − yi

Δx
, yi, xi

}
(9.36)

subject to the known conditions y1 = 𝛼 and yn+ 1 = 𝛽.
This problem can be solved as a final value problem. Let

f ∗i (𝜃) = min
yi+1,yi+2, . . . ,yn

{
n∑

k=1

R
(yk+1 − yk

Δx
, yk, xk

)
Δx

}
(9.37)

where 𝜃 is a parameter representing the various values taken by yi. Then f ∗i (𝜃) can also
be written as

f ∗i (𝜃) = min
yi+1

{
R

{
yi+1 − 𝜃

Δx
, 𝜃, xi

}
Δx + f ∗i+1(yi+1)

}
(9.38)

6See Section 12.2 for additional examples of continuous decision problems and the solution techniques
using calculus of variations.

�

� �

�

526 Dynamic Programming

This relation is valid for i = 1, 2,..., n− 1, and

f ∗n (𝜃) = R

(
𝛽 − 𝜃
Δx

, 𝜃, xn

)
Δx (9.39)

Finally, the desired minimum value is given by f ∗0 (𝜃 = 𝛼).
In Eqs. (9.37) to (9.39), 𝜃 or yi is a continuous variable. However, for simplicity,

we treat 𝜃 or yi as a discrete variable. Hence for each value of i, we find a set of discrete
values that 𝜃 or yi can assume and find the value of f ∗i (𝜃) for each discrete value of 𝜃
or yi. Thus f ∗i (𝜃) will be tabulated for only those discrete values that 𝜃 can take. At the
final stage, we find the values of f ∗0 (𝛼) and y∗1. Once y∗1 is known, the optimal values of
y2, y3,..., yn can be found without any difficulty, as outlined in the previous sections.

It can be seen that the solution of a continuous decision problem by dynamic pro-
gramming involves the determination of a whole family of extremal trajectories as we
move from b toward a. In the last step we find the particular extremal trajectory that
passes through both points (a, 𝛼) and (b, 𝛽). This process is illustrated in Fig. 9.16. In
this figure, f ∗i (𝜃) is found by knowing which of the extremal trajectories that terminate
at xi+ 1 pass through the point (xi, 𝜃). If this procedure is followed, the solution of a
continuous decision problem poses no additional difficulties. Although the simplest
type of continuous decision problem is considered in this section, the same procedure
can be adopted to solve any general continuous decision problem involving the deter-
mination of several functions, y1(x), y2(x),..., yN(x) subject to m constraints (m<N) in
the form of differential Eqs. (9.3).

9.10 ADDITIONAL APPLICATIONS

Dynamic programming has been applied to solve several types of engineering prob-
lems. Some representative applications are given in this section.

9.10.1 Design of Continuous Beams

Consider a continuous beam that rests on n rigid supports and carries a set of pre-
scribed loads P1, P2,..., Pn as shown in Fig. 9.17 [9.11]. The locations of the supports
are assumed to be known and the simple plastic theory of beams is assumed to be appli-
cable. Accordingly, the complete bending moment distribution can be determined once

y

xi

α

β

θ7

θ6

θ5

θ4

θ3

θ2

θ1

xn xn + 1 = bx1 = a x2
x

Figure 9.16 Solution of a continuous dynamic programming problem.

�

� �

�

9.10 Additional Applications 527

P1

l1

0Support
number

span 1 span 2 span i span n

1 2

P2

l2

Pi – 1 Pi + 1

li + 1li – 1

PnPi

li

i – 1 i + 1i n

ln

Figure 9.17 Continuous beam on rigid supports.

the reactant support moments m1, m2,..., mn are known. Once the support moments are
known (chosen), the plastic limit moment necessary for each span can be determined
and the span can be designed. The bending moment at the center of the ith span is
given by −Pili/4 and the largest bending moment in the ith span, Mi, can be computed
as

Mi = max

{
∣mi−1∣, ∣ mi ∣,

||||mi−1 + mi

2
−

Pili
4

||||
}
, i = 1, 2, . . . , n (9.40)

If the beam is uniform in each span, the limit moment for the ith span should
be greater than or equal to Mi. The cross section of the beam should be selected so
that it has the required limit moment. Thus, the cost of the beam depends on the limit
moment it needs to carry. The optimization problem becomes

Find X = {m1,m2, . . . ,mn}T which minimizes
n∑

i=1

Ri(X)

while satisfying the constraints mi ≥Mi, i = 1, 2,..., n, where Ri denotes the cost of
the beam in the ith span. This problem has a serial structure and hence can be solved
using dynamic programming.

9.10.2 Optimal Layout (Geometry) of a Truss

Consider the planar, multibay, pin-jointed cantilever truss shown in Fig. 9.18 [9.11,
9.12, 9.22]. The configuration of the truss is defined by the x and y coordinates of
the nodes. By assuming the lengths of the bays to be known (assumed to be unity in
Fig. 9.18) and the truss to be symmetric about the x axis, the coordinates y1, y2,..., yn
define the layout (geometry) of the truss. The truss is subjected to a load (assumed to
be unity in Fig. 9.18) at the left end. The truss is statically determinate and hence the
forces in the bars belonging to bay i depend only on yi− 1 and yi and not on other coor-
dinates y1, y2,..., yi− 2, yi+ 1,..., yn. Once the length of the bar and the force developed
in it are known, its cross-sectional area can be determined. This, in turn, dictates the
weight/cost of the bar. The problem of optimal layout of the truss can be formulated
and solved as a dynamic programming problem.

For specificness, consider a three-bay truss for which the following relationships
are valid (see Fig. 9.18):

yi+1 = yi + di, i = 1, 2, 3 (9.41)

Since the value of y1 is fixed, the problem can be treated as an initial value prob-
lem. If the y coordinate of each node is limited to a finite number of alternatives that
can take one of the four values 0.25, 0.5, 0.75, 1 (arbitrary units are used), there will

�

� �

�

528 Dynamic Programming

y3

y2

y

y1

P = 1

1
Bay 1

1
Bay 2

1
Bay 3

y4

d3

x

d2

d1

Figure 9.18 Multibay antilever truss.

be 64 possible designs, as shown in Fig. 9.19. If the cost of each bay is denoted by Ri,
the resulting multistage decision problem can be represented as shown in Fig. 9.5a.

9.10.3 Optimal Design of a Gear Train

Consider the gear train shown in Fig. 9.20, in which the gear pairs are numbered from
1 to n. The pitch diameters (or the number of teeth) of the gears are assumed to be
known and the face widths of the gear pairs are treated as design variables [9.19, 9.20].
The minimization of the total weight of the gear train is considered as the objective.
When the gear train transmits power at any particular speed, bending and surface wear
stresses will be developed in the gears. These stresses should not exceed the respective
permissible values for a safe design. The optimization problem can be stated as

Find X = {x1, x2, . . . , xn}T which minimizes
n∑

i=1

Ri(X) (9.42)

subject to
𝜎bi(X) ≤ 𝜎b max, 𝜎wi(X) ≤ 𝜎w max, i = 1, 2, . . . , n

1.00

0.75

0.50

0.25

y4y3y2y1

Figure 9.19 Possible designs of the cantilever truss.

�

� �

�

9.10 Additional Applications 529

x2

x3

x4

Gear pair 3

Gear pair 2

Gear pair 1

Gear pair 4

x1

Figure 9.20 Gear train.

where xi is the face width of gear pair i, Ri the weight of gear pair i, 𝜎bi (𝜎wi) the
bending (surface wear) stress induced in gear pair i, and 𝜎b max (𝜎w max) the maxi-
mum permissible bending (surface wear) stress. This problem can be considered as a
multistage decision problem and can be solved using dynamic programming.

9.10.4 Design of a Minimum-Cost Drainage System

Underground drainage systems for stormwater or foul waste can be designed effi-
ciently for minimum construction cost by dynamic programming [9.14]. Typically,
a drainage system forms a treelike network in plan as shown in Fig. 9.21. The network
slopes downward toward the outfall, using gravity to convey the wastewater to the
outfall. Manholes are provided for cleaning and maintenance purposes at all pipe junc-
tions. A representative three-element pipe segment is shown in Fig. 9.22. The design
of an element consists of selecting values for the diameter of the pipe, the slope of

Manholes

Outfall

Figure 9.21 Typical drainage network.

�

� �

�

530 Dynamic Programming

1 2 3

R1 R2 R3

h0
h1 h2

h3

D1 D2 D3

h0
h1

h2

D3
Element 3

D2
Element 2

D1
Element 1

h3

3210

1 2 3

(a)

(b)

Figure 9.22 Representation of a three-element pipe segment [9.14].

the pipe, and the mean depth of the pipe (Di, hi− 1, and hi). The construction cost of
an element, Ri, includes cost of the pipe, cost of the upstream manhole, and earth-
work related to excavation, backfilling, and compaction. Some of the constraints can
be stated as follows:

1. The pipe must be able to discharge the specified flow.
2. The flow velocity must be sufficiently large.
3. The pipe slope must be greater than a specified minimum value.
4. The depth of the pipe must be sufficient to prevent damage from surface

activities.

The optimum design problem can be formulated and solved as a dynamic pro-
gramming problem.

REFERENCES AND BIBLIOGRAPHY

9.1 Schechter, R.S. (1967). The Variational Method in Engineering. New York:
McGraw-Hill.

9.2 Bellman, R.E. (1957). Dynamic Programming. Princeton, NJ: Princeton University
Press.

9.3 Hadley, G. (1964). Nonlinear and Dynamic Programming. Reading, MA:
Addison-Wesley.

�

� �

�

Review Questions 531

9.4 Lasdon, L.S. (1970). Optimization Theory for Large Systems. New York: Macmillan.

9.5 Neal, B.G. (1964). Structural Theorems and Their Applications. Oxford, UK: Pergamon
Press.

9.6 Bellman, R.E. and Dreyfus, S.E. (1962). AppliedDynamic Programming. Princeton, NJ:
Princeton University Press.

9.7 Nemhauser, G.L. (1966). Introduction to Dynamic Programming. New York: Wiley.

9.8 Vajda, S. (1961). Mathematical Programming. Reading, MA: Addison-Wesley.

9.9 Jacobs, O.L.R. (1967). An Introduction to Dynamic Programming. London: Chapman
& Hall.

9.10 Aguilar, R.J. (1973). Systems Analysis and Design in Engineering, Architecture, Con-
struction and Planning. Englewood Cliffs, NJ: Prentice-Hall.

9.11 Palmer, A.C. (1968). Optimal structure design by dynamic programming. ASCE Journal
of the Structural Division 94 (ST8): 1887–1906.

9.12 Sheppard, D.J. and Palmer, A.C. (1972). Optimal design of transmission towers by
dynamic programming. Computers and Structures 2: 455–468.

9.13 Ferreira, J.A.S. and Vidal, R.V.V. (1984). Optimization of a pump–pipe system by
dynamic programming. Engineering Optimization 7: 241–251.

9.14 Walters, G.A. and Templeman, A.B. (1979). Non-optimal dynamic programming algo-
rithms in the design of minimum cost drainage systems. Engineering Optimization 4:
139–148.

9.15 Gero, J.S., Sheehan, P.J., and Becker, J.M. (1978). Building design using feedforward
nonserial dynamic programming. Engineering Optimization 3: 183–192.

9.16 Gero, J.S. and Radford, A.D. (1978). A dynamic programming approach to the optimum
lighting problem. Engineering Optimization 3: 71–82.

9.17 Duff, W.S. (1976). Minimum cost solar thermal electric power systems: a dynamic
programming based approach. Engineering Optimization 2: 83–95.

9.18 Harley, M.J. and Chidley, T.R.E. (1978). Deterministic dynamic programming for long
term reservoir operating policies. Engineering Optimization 3: 63–70.

9.19 Dhande, S.G. (1974). Reliability Based Design of Gear Trains: A Dynamic Program-
ming Approach, Design Technology Transfer, 413–422. New York: ASME.

9.20 Rao, S.S. and Das, G. (1984). Reliability based optimum design of gear trains. ASME
Journal of Mechanisms, Transmissions, and Automation in Design 106: 17–22.

9.21 Palmer, A.C. and Sheppard, D.J. (1970). Optimizing the shape of pin-jointed structures.
Proceedings of the Institution of Civil Engineers 47: 363–376.

9.22 Kirsch, U. (1981). Optimum Structural Design: Concepts, Methods, and Applications.
New York: McGraw-Hill.

9.23 Borkowski, A. and Jendo, S. (1990). Structural Optimization, Vol. 2—Mathematical Pro-
gramming (eds. M. Save and W. Prager). New York: Plenum Press.

9.24 Cooper, L. and Cooper, M.W. (1981). Introduction to Dynamic Programming. Oxford,
UK: Pergamon Press.

9.25 Larson, R.E. and Casti, J.L. (1978). Principles of Dynamic Programming, Part I—Basic
Analytic and Computational Methods. New York: Marcel Dekker.

9.26 Smith, D.K. and Programming, D. (1991). A Practical Introduction. Chichester, UK:
Ellis Horwood.

9.27 Stoecker, W.F. (1989). Design of Thermal Systems, 3e. New York: McGraw-Hill.

REVIEW QUESTIONS

9.1 What is a multistage decision problem?

9.2 What is the curse of dimensionality?

�

� �

�

532 Dynamic Programming

9.3 State two engineering examples of serial systems that can be solved by dynamic
programming.

9.4 What is a return function?

9.5 What is the difference between an initial value problem and a final value problem?

9.6 How many state variables are to be considered if an LP problem with n variables and m
constraints is to be solved as a dynamic programming problem?

9.7 How can you solve a trajectory optimization problem using dynamic programming?

9.8 Why are the components numbered in reverse order in dynamic programming?

9.9 Define the following terms:

(a) Principle of optimality

(b) Boundary value problem

(c) Monotonic function

(d) Separable function

9.10 Answer true or false:

(a) Dynamic programming can be used to solve nonconvex problems.

(b) Dynamic programming works as a decomposition technique.

(c) The objective function, f = (R1+R2)R3, is separable.

(d) A nonserial system can always be converted to an equivalent serial system by
regrouping the components.

(e) Both the input and the output variables are specified in a boundary value problem.

(f) The state transformation equations are same as the design equations.

(g) The principle of optimality and the concept of suboptimization are the same.

(h) A final value problem can always be converted into an initial value problem.

PROBLEMS

9.1 Four types of machine tools are to be installed (purchased) in a production shop. The
costs of the various machine tools and the number of jobs that can be performed on each
are given below

Machine tool type
Cost of machine

tool ($)
Number of jobs that

can be performed

1 3500 9
2 2500 4
3 2000 3
4 1000 2

If the total amount available is $10 000, determine the number of machine tools of various
types to be purchased to maximize the number of jobs performed. Note: The number of
machine tools purchased must be integers.

9.2 The routes of an airline, which connects 16 cities (A, B,..., P), are shown in Fig. 9.23.
Journey from one city to another is possible only along the lines (routes) shown, with the
associated costs indicated on the path segments. If a person wants to travel from city A to
city P with minimum cost, without any backtracking, determine the optimal path (route)
using dynamic programming.

�

� �

�

Problems 533

4
D H PL

C G OK

B F NJ

A E MI

2 3

8 8

32 3 5

56 1 2

74 6 3

5

1 4 7

6 10 2

Figure 9.23 Possible paths from A to P.

9.3 A system consists of three subsystems in series, with each subsystem consisting of several
components in parallel, as shown in Fig. 9.24. The weights and reliabilities of the various
components are given below:

Subsystem, i
Weight of each

component, wi (lb)
Reliability of each
component, ri

1 4 0.96
2 2 0.92
3 6 0.98

The reliability of subsystem i is given by Ri = 1 − (1 − ri)ni , i = 1, 2, 3, where ni is the
number of components connected in parallel in subsystem i, and the overall reliability

1

Components of
type 1

Subsystem 1 Subsystem 2 Subsystem 3

Components of
type 2

Components of
type 3

1 1

2 2 2

n1 n2 n3

Figure 9.24 Three subsystems connected in series.

�

� �

�

534 Dynamic Programming

of the system is given by R0 = R1R2R3. It was decided to use at least one and not more
than three components in any subsystem. The system is to be transported into space
by a space shuttle. If the total payload is restricted to 20 lb., find the number of com-
ponents to be used in the three subsystems to maximize the overall reliability of the
system.

9.4 The altitude of an airplane flying between two cities A and F, separated by a distance of
2000 miles, can be changed at points B, C, D, and E (Fig. 9.25). The fuel cost involved
in changing from one altitude to another between any two consecutive points is given in
the following table. Determine the altitudes of the airplane at the intermediate points for
minimum fuel cost.

To altitude (ft):
From
altitude (ft): 0 8000 16 000 24 000 32 000 40 000

0 – 4000 4800 5520 6160 6720
8000 800 1600 2680 4000 4720 6080

16 000 320 480 800 2240 3120 4640
24 000 0 160 320 560 1600 3040
32 000 0 0 80 240 480 1600
40 000 0 0 0 0 160 240

9.5 Determine the path (route) corresponding to minimum cost in Problem 9.2 if a person
wants to travel from city D to city M.

9.6 Each of the n lathes available in a machine shop can be used to produce two types of
parts. If z lathes are used to produce the first part, the expected profit is 3z and if z of them
are used to produce the second part, the expected profit is 2.5z. The lathes are subject to
attrition so that after completing the first part, only z/3 out of z remain available for further
work. Similarly, after completing the second part, only 2z/3 out of z remain available for
further work. The process is repeated with the remaining lathes for two more stages.
Find the number of lathes to be allocated to each part at each stage to maximize the total
expected profit. Assume that any nonnegative real number of lathes can be assigned at
each stage.

9.7 A minimum-cost pipeline is to be laid between points (towns) A and E. The pipeline is
required to pass through one node out of B1, B2, and B3, one out of C1, C2, and C3, and
one out ofD1,D2, andD3 (see Fig. 9.26). The costs associated with the various segments
of the pipeline are given below:

40,000

32,000

24,000

A
lti

tu
de

 (
ft

)

16,000

8,000

400
miles

Starting
Point

Stopping
Point

400
miles

400
miles

400
miles

400
miles

A B C D E F

Figure 9.25 Altitudes of the airplane in Example 9.4.

�

� �

�

Problems 535

B1

B2 C2 D2

B3 C3 D3

EA

C1 D1

Figure 9.26 Pipe network.

For the segment starting at A For the segment ending at E

A–B1 10 D1 –E 9
A–B2 15 D2 –E 6
A–B3 12 D3 –E 12

For the segments Bi to Cj and Ci to Dj

To node j

From node i 1 2 3

1 8 12 19
2 9 11 13
3 7 15 14

Find the solution using dynamic programming.

9.8 Consider the problem of controlling a chemical reactor. The desired concentration of
material leaving the reactor is 0.8 and the initial concentration is 0.2. The concentration
at any time t, x(t), is given by

dx
dt

= 1 − x
1 + x

u(t)

where u(t) is a design variable (control function).
Find u(t) which minimizes

f = ∫
T

0
{[x(t) − 0.8]2 + u2(t)} dt

subject to

0 ≤ u(t) ≤ 1

Choose a grid and solve u(t) numerically using dynamic programming.

9.9 It is proposed to build thermal stations at three different sites. The total budget available
is 3 units (1 unit = $10 million) and the feasible levels of investment on any thermal
station are 0, 1, 2, or 3 units. The electric power obtainable (return function) for different
investments is given below:

�

� �

�

536 Dynamic Programming

Thermal Station, i

Return function, Ri(x) 1 2 3

Ri(0) 0 0 0
Ri (1) 2 1 3
Ri (2) 4 5 5
Ri (3) 6 6 6

Find the investment policy for maximizing the total electric power generated.

9.10 Solve the following LP problem by dynamic programming

Maximize f (x1, x2) = 10x1 + 8x2

subject to

2x1 + x2 ≤ 25

3x1 + 2x2 ≤ 45

x2 ≤ 10

x1 ≥ 0, x2 ≥ 0

Verify your solution by solving it graphically.

9.11 A fertilizer company needs to supply 50 tons of fertilizer at the end of the first month, 70
tons at the end of second month, and 90 tons at the end of third month. The cost of pro-
ducing x tons of fertilizer in any month is given by $(4500x+ 20x2). It can produce more
fertilizer in any month and supply it in the next month. However, there is an inventory
carrying cost of $400 per ton per month. Find the optimal level of production in each of
the three periods and the total cost involved by solving it as an initial value problem.

9.12 Solve Problem 9.11 as a final value problem.

9.13 Solve the following problem by dynamic programming:

Maximize
di≥0

3∑
i=1

d2
i

subject to

di = xi+1 − xi, i = 1, 2, 3

xi = 0, 1, 2, . . . , 5, i = 1, 2

x3 = 5, x4 = 0

�

� �

�

10

Integer Programming

10.1 INTRODUCTION

In all the optimization techniques considered so far, the design variables are assumed to
be continuous, which can take any real value. In many situations it is entirely appropri-
ate and possible to have fractional solutions. For example, it is possible to use a plate
of thickness 2.60 mm in the construction of a boiler shell, 3.34 hours of labor time
in a project, and 1.78 lb. of nitrate to produce a fertilizer. Also, in many engineering
systems, certain design variables can only have discrete values. For example, pipes
carrying water in a heat exchanger may be available only in diameter increments of 1

8
in. However, there are practical problems in which the fractional values of the design
variables are neither practical nor physically meaningful. For example, it is not pos-
sible to use 1.6 boilers in a thermal power station, 1.9 workers in a project, and 2.76
lathes in a machine shop. If an integer solution is desired, it is possible to use any of
the techniques described in previous chapters and round off the optimum values of
the design variables to the nearest integer values. However, in many cases, it is very
difficult to round off the solution without violating any of the constraints. Frequently,
the rounding of certain variables requires substantial changes in the values of some
other variables to satisfy all the constraints. Further, the round-off solution may give
a value of the objective function that is very far from the original optimum value. All
these difficulties can be avoided if the optimization problem is posed and solved as an
integer programming problem.

When all the variables are constrained to take only integer values in an optimiza-
tion problem, it is called an all-integer programming problem. When the variables are
restricted to take only discrete values, the problem is called a discrete programming
problem. When some variables only are restricted to take integer (discrete) values,
the optimization problem is called a mixed-integer (discrete) programming problem.
When all the design variables of an optimization problem are allowed to take on
values of either zero or 1, the problem is called a zero–one programming problem.
Among the several techniques available for solving the all-integer and mixed-integer
linear programming problems, the cutting plane algorithm of Gomory [10.7] and
the branch-and-bound algorithm of Land and Doig [10.8] have been quite popular.
Although the zero–one linear programming problems can be solved by the general
cutting plane or the branch-and-bound algorithms, Balas [10.9] developed an efficient
enumerative algorithm for solving those problems. Very little work has been done in
the field of integer nonlinear programming. The generalized penalty function method
and the sequential linear integer (discrete) programming method can be used to solve
all integer and mixed-integer nonlinear programming problems. The various solution
techniques of solving integer programming problems are summarized in Table 10.1.
All these techniques are discussed briefly in this chapter.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

537

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

538 Integer Programming

Table 10.1 Integer programming methods.

Linear programming problems Nonlinear programming problems

All-integer
problem

Mixed-integer
problem

Mixed-integer
problemr

Zero–one
problem

Polynomial
programming

problem

General nonlinear
problem

Cutting plane method
Branch-and-bound method

Cutting plane method
Branch-and-bound method

Balas method
All-integer

problem

Generalized penalty function method
Sequential linear integer (discrete)

programming method

Integer Linear Programming

10.2 GRAPHICAL REPRESENTATION

Consider the following integer programming problem:

Maximize f (X) = 3x1 + 4x2

subject to

3x1 − x2 ≤ 12

3x1 + 11x2 ≤ 66

x1 ≥ 0

x2 ≥ 0

x1 and x2 are integers (10.1)

The graphical solution of this problem, by ignoring the integer requirements, is shown
in Figure 10.1. It can be seen that the solution is x1 = 5 1

2
, x2 = 4 1

2
with a value of

f = 34 1
2
. Since this is a noninteger solution, we truncate the fractional parts and obtain

the new solution as x1 = 5, x2 = 4, and f = 31. By comparing this solution with all other
integer feasible solutions (shown by dots in Figure 10.1), we find that this solution is
optimum for the integer LP problem stated in Eqs. (10.1).

It is to be noted that truncation of the fractional part of a LP problem will
not always give the solution of the corresponding integer LP problem. This can be
illustrated by changing the constraint 3x1 + 11x2 ≤ 66 to 7x1 + 11x2 ≤ 88 in Eqs.
(10.1). With this altered constraint, the feasible region and the solution of the LP
problem, without considering the integer requirement, are shown in Figure 10.2. The
optimum solution of this problem is identical with that of the preceding problem:
namely, x1 = 5 1

2
, x2 = 4 1

2
, and f = 34 1

2
. The truncation of the fractional part of this

solution gives x1 = 5, x2 = 4, and f = 31. Although this truncated solution happened
to be optimum to the corresponding integer problem in the earlier case, it is not so
in the present case. In this case the optimum solution of the integer programming
problem is given by x∗1 = 0, x∗2 = 8, and f* = 32.

�

� �

�

10.2 Graphical Representation 539

6
3x1 + 11x2 = 66

5

4

3

2

1

0
0 1 2 3 4 5 6

(5, 4)

D

B

C

A

x2

x1

f = 31

3x1 – x2 = 12

f = 34 1
2

(5 , 4)1
2

1
2

Figure 10.1 Graphical solution of the problem stated in Eqs. (10.1).

10

8

6

4

2

0 2 4 6 8 10 12

(5, 4)

A

A

x2

x1

f = 31

f = 32

3x1 – x2 = 12

7x1 + 11x2 = 88

f = 34 1
2

(5 , 4)1
2

1
2

Figure 10.2 Graphical solution with modified constraint.

�

� �

�

540 Integer Programming

10.3 GOMORY’S CUTTING PLANE METHOD

10.3.1 Concept of a Cutting Plane

Gomory’s method is based on the idea of generating a cutting plane. To illustrate the
concept of a cutting plane, we again consider the problem stated in Eqs. (10.1). The
feasible region of the problem is denoted by ABCD in Figure 10.1. The optimal solu-
tion of the problem, without considering the integer requirement, is given by point C.
This point corresponds to x1 = 5 1

2
, x2 = 4 1

2
, and f = 34 1

2
, which is not optimal to the

integer programming problem since the values of x1 and x2 are not integers. The fea-
sible integer solutions of the problem are denoted by dots in Figure 10.1. These points
are called the integer lattice points.

In Figure 10.3, the original feasible region is reduced to a new feasible region
ABEFGD by including the additional (arbitrarily selected) constraints. The idea
behind adding these additional constraints is to reduce the original feasible convex
region ABCD to a new feasible convex region (such as ABEFGD) such that an
extreme point of the new feasible region becomes an integer optimal solution to
the integer programming problem. There are two main considerations to be taken
while selecting the additional constraints: (1) the new feasible region should also be
a convex set, and (2) the part of the original feasible region that is sliced off because
of the additional constraints should not include any feasible integer solutions of the
original problem.

In Figure 10.3, the inclusion of the two arbitrarily selected additional constraints
PQ and P′Q′ gives the extreme point F(x1 = 5, x2 = 4, f = 31) as the optimal solution
of the integer programming problem stated in Eqs. (10.1). Gomory’s method is one in
which the additional constraints are developed in a systematic manner.

6

7

Additional (secondary) constraints

5

4

3

2

1

0
0 1 2 3 4 5 6 7

(5, 4)

D

B Q

Q′

P′

E

F

C

P

G

A

x2

x1

f = 31

f = 34 1
2

(5 , 4)1
2

1
2

Figure 10.3 Effect of additional constraints.

�

� �

�

10.3 Gomory’s Cutting Plane Method 541

10.3.2 Gomory’s Method for All-Integer Programming Problems

In this method the given problem [Eqs. (10.1)] is first solved as an ordinary LP problem
by neglecting the integer requirement. If the optimum values of the variables of the
problem happen to be integers, there is nothing more to be done since the integer
solution is already obtained. On the other hand, if one or more of the basic variables
have fractional values, some additional constraints, known as Gomory constraints,
that will force the solution toward an all-integer point will have to be introduced. To
see how the Gomory constraints are generated, let the tableau corresponding to the
optimum (noninteger) solution of the ordinary LP problem be as shown in Table 10.2.
Here it is assumed that there are a total of m+ n variables (n original variables plus m
slack variables). At the optimal solution, the basic variables are represented as xi(i = 1,
2, . . . , m) and the nonbasic variables as yj(j = 1, 2, . . . , n) for convenience.

Gomory’s Constraint. From Table 10.2, choose the basic variable with the largest
fractional value. Let this basic variable be xi. When there is a tie in the fractional values
of the basic variables, any of them can be taken as xi. This variable can be expressed,
from the ith equation of Table 10.2, as

xi = bi −
n∑

j=1

aijyj (10.2)

where b is a noninteger. Let us write

bi = b̂i + 𝛽i (10.3)

aij = âij + 𝛼ij (10.4)

where b̂i and âij denote the integers obtained by truncating the fractional parts from
bi and aij, respectively. Thus 𝛽 i will be a strictly positive fraction (0 <𝛽 i < 1) and 𝛼ij
will be a nonnegative fraction (0≤ 𝛼ij < 1). With the help of Eqs. (10.3) and (10.4),
Eq. (10.2) can be rewritten as

𝛽i −
n∑

j=1

𝛼ijyj = xi − b̂i +
n∑

j=1

âijyj (10.5)

Table 10.2 Optimum noninteger solution of ordinary LP problem.

Coefficient corresponding to:
Basic
variables x1 x2 . . . xi . . . xm y1 y2 . . . yj . . . yn

Objective
function Constants

x1 1 0 0 0 a11 a12 a1j a1n 0 b1

x2 0 1 0 0 a21 a22 a2j a2n 0 b2

⋮
xi 0 0 1 0 ai1 ai2 aij ain 0 bi

⋮
xm 0 0 0 1 am1 am2 amj amn 0 bm

f 0 0 . . . 0 . . . 0 c1 c2 cj cn 1 f

�

� �

�

542 Integer Programming

Since all the variables xi and yj must be integers at an optimal integer solution,
the right-hand side of Eq. (10.5) must be an integer. Thus we obtain

𝛽i −
n∑

j=1

𝛼ijyj = integer (10.6)

Notice that 𝛼ij are nonnegative fractions and yj are nonnegative integers. Hence the
quantity

∑n
j=1 𝛼ijyj will always be a nonnegative number. Since 𝛽 i is a strictly positive

fraction, we have (
𝛽i −

n∑
j=1

𝛼ijyj

)
≤ 𝛽i < 1 (10.7)

As the quantity
(
𝛽i −

∑n
j=1 𝛼ijyj

)
has to be an integer [from Eq. (10.6)], it can be

either a zero or a negative integer. Hence we obtain the desired constraint as

+𝛽i −
n∑

j=1

𝛼ijyj ≤ 0 (10.8)

By adding a nonnegative slack variable si, the Gomory constraint equation
becomes

si −
n∑

j=1

𝛼ijyj = −𝛽i (10.9)

where si must also be an integer by definition.
Computational Procedure. Once the Gomory constraint is derived, the coeffi-

cients of this constraint are inserted in a new row of the final tableau of the ordinary
LP problem (i.e., Table 10.2). Since all yj = 0 in Table 10.2, the Gomory constraint
Eq. (10.9), becomes

si = −𝛽i = negative

which is infeasible. This means that the original optimal solution is not satisfying this
new constraint. To obtain a new optimal solution that satisfies the new constraint, Eq.
(10.9), the dual simplex method discussed in Chapter 4 can be used. The new tableau,
after adding the Gomory constraint, is as shown in Table 10.3.

Table 10.3 Optimal solution with gomory constraint.

Coefficient corresponding to:
Basic
variables x1 x2 . . . xi . . . xm y1 y2 . . . yj . . . yn f si Constants

x1 1 0 0 0 a11 a12 a1j a1n 0 0 b1

x2 0 1 0 0 a21 a22 a2j a2n 0 0 b2

⋮
xi 0 0 1 0 ai1 ai2 aij ain 0 0 bi

⋮
xm 0 0 0 1 am1 am2 amj amn 0 0 bm

f 0 0 0 0 c1 c2 cj cn 1 0 f
si 0 0 0 0 −𝛼i1 −𝛼i2 −𝛼ij −𝛼in 0 1 −𝛽 i

�

� �

�

10.3 Gomory’s Cutting Plane Method 543

After finding the new optimum solution by applying the dual simplex method,
test whether the new solution is all-integer or not. If the new optimum solution is
all-integer, the process ends. On the other hand, if any of the basic variables in the
new solution take on fractional values, a new Gomory constraint is derived from the
new simplex tableau and the dual simplex method is applied again. This procedure
is continued until either an optimal integer solution is obtained or the dual simplex
method indicates that the problem has no feasible integer solution.

Remarks:

1. If there is no feasible integer solution to the given (primal) problem, this can
be detected by noting an unbounded condition for the dual problem.

2. The application of the dual simplex method to remove the infeasibility of Eq.
(10.9) is equivalent to cutting off the original feasible solution toward the opti-
mal integer solution.

3. This method has a serious drawback. This is associated with the round-off
errors that arise during numerical computations. Due to these round-off errors,
we may ultimately get a wrong optimal integer solution. This can be rectified
by storing the numbers as fractions instead of as decimal quantities. However,
the magnitudes of the numerators and denominators of the fractional numbers,
after some calculations, may exceed the capacity of the computer. This diffi-
culty can be avoided by using the all-integer integer programming algorithm
developed by Gomory [10.10].

4. For obtaining the optimal solution of an ordinary LP problem, we start from a
basic feasible solution (at the start of phase II) and find a sequence of improved
basic feasible solutions until the optimum basic feasible solution is found. Dur-
ing this process, if the computations have to be terminated at any stage (for
some reason), the current basic feasible solution can be taken as an approx-
imation to the optimum solution. However, this cannot be done if we apply
Gomory’s method for solving an integer programming problem. This is due to
the fact that the problem remains infeasible in the sense that no integer solu-
tion can be obtained until the whole problem is solved. Thus, we will not be
having any good integer solution that can be taken as an approximate optimum
solution in case the computations have to be terminated in the middle of the
process.

5. From the description given above, the number of Gomory constraints to be
generated might appear to be very large, especially if the solution converges
slowly. If the number of constraints really becomes very large, the size of the
problem also grows without bound since one (slack) variable and one con-
straint are added with the addition of each Gomory constraint. However, it can
be observed that the total number of constraints in the modified tableau will not
exceed the number of variables in the original problem, namely, n + m. The
original problem has m equality constraints in n + m variables and we observe
that there are n nonbasic variables. When a Gomory constraint is added, the
number of constraints and the number of variables will each be increased by
one, but the number of nonbasic variables will remain n. Hence at most n slack
variables of Gomory constraints can be nonbasic at any time, and any additional
Gomory constraint must be redundant. In other words, at most n Gomory con-
straints can be binding at a time. If at all a (n + 1)th constraint is there (with
its slack variable as a basic and positive variable), it must be implied by the
remaining constraints. Hence, we drop any Gomory constraint once its slack
variable becomes basic in a feasible solution.

�

� �

�

544 Integer Programming

Example 10.1
Minimize f = −3x1 − 4x2

subject to

3x1 − x2 + x3 = 12

3x1 + 11x2 + x4 = 66

xi ≥ 0, i = 1 to 4

all xi are integers

This problem can be seen to be same as the one stated in Eqs. (10.1) with the
addition of slack variables x3 and x4.

SOLUTION

Step 1: Solve the LP problem by neglecting the integer requirement of the vari-
ables xi, i = 1 to 4, using the regular simplex method as shown below:

Coefficients of variables
Basic
variables x1 x2 x3 x4 −f bi bi∕ais for ais > 0

x3 3 −1 1 0 0 12

x4 3 11 0 1 0 66 6 ←

Pivot element
−f −3 −4 0 0 1 0

↑
Most negative cj

Result of pivoting:

x3
36
11

Pivot element 0 1 1
11

0 18 11
2
← Smaller one

x2
3
11

1 0 1
11

0 6 22

−f − 21
11

0 0 4
11

1 24

↑
Most negative cj

Result of pivoting:

x1 1 0 11
36

1
36

0 11
2

x2 0 1 − 1
12

1
12

0 9
2

−f 0 0 7
12

5
12

1 69
2

Since all the cost coefficients are nonnegative, the last tableau gives the opti-
mum solution as

x1 = 11
2
, x2 = 9

2
, x3 = 0, x4 = 0, fmin = −69

2

which can be seen to be identical to the graphical solution obtained in Section
10.2.

�

� �

�

10.3 Gomory’s Cutting Plane Method 545

Step 2: Generate a Gomory constraint. Since the solution above is noninteger, a
Gomory constraint has to be added to the last tableau. Since there is a tie between
x1 and x2, let us select x1 as the basic variable having the largest fractional value.
From the row corresponding to x1 in the last tableau, we can write

x1 = 11
2

− 11
36

y1 −
1

36
y2 (E1)

where y1 and y2 are used in place of x3 and x4 to denote the nonbasic variables.
By comparing Eq. (E1) with Eq. (10.2), we find that

i = 1, b1 = 11
2
, b̂1 = 5, 𝛽1 = 1

2
, a11 = 11

36
,

â11 = 0, 𝛼11 = 11
36
, a12 = 1

36
, â12 = 0, and 𝛼12 = 1

36

From Eq. (10.9), the Gomory constraint can be expressed as

s1 − 𝛼11y1 − 𝛼12y2 = −𝛽1 (E2)

where s1 is a new nonnegative (integer) slack variable. Equation (E2) can be writ-
ten as

s1 −
11
36

y1 −
1

36
y2 = −1

2
(E3)

By introducing this constraint, Eq. (E3), into the previous optimum tableau,
we obtain the new tableau shown below:

Coefficients of variables
Basic
variables x1 x2 y1 y2 −f s1 bi bi∕ais for ais > 0

x1 1 0 11
36

1
36

0 0 11
2

x2 0 1 − 1
12

1
12

0 0 9
2

−f 0 0 7
12

5
12

1 0 69
2

s1 0 0 − 11
36

− 1
36

0 1 − 1
2

Step 3: Apply the dual simplex method to find a new optimum solution. For this,
we select the pivotal row r such that br = min(bi < 0) = − 1

2
corresponding to s1

in this case. The first column s is selected such that

cs

−ars

= min
arj<0

(
cj

−arj

)
Here

cj

−arj

= 7
12

× 36
11

= 21
11

for column y1

= 5
12

× 36
1

= 15 for column y2.

Since 21
11

is minimum out of 21
11

and 15, the pivot element will be − 11
36

. The
result of pivot operation is given in the following tableau:

�

� �

�

546 Integer Programming

Coefficients of variables
Basic
variables x1 x2 y1 y2 −f s1 bi bi∕ais for ais > 0

x1 1 0 0 0 0 1 5
x2 0 1 0 1

11
0 − 3

11
51
11

−f 0 0 0 4
11

1 21
11

369
11

y1 0 0 1 1
11

0 − 36
11

18
11

The solution given by the present tableau is x1 = 5, x2 = 4 7
11

, y1 = 1 7
11

, and

f = −33 6
11

, in which some variables are still nonintegers.
Step 4: Generate a new Gomory constraint. To generate the new Gomory con-
straint, we arbitrarily select x2 as the variable having the largest fractional value
(since there is a tie between x2 and y1). The row corresponding to x2 gives

x2 = 51
11

− 1
11

y2 +
3
11

s1

From this equation, the Gomory constraint [Eq. (10.9)] can be written as

s2 −
1

11
y2 +

3
11

s1 = − 7
11

When this constraint is added to the previous tableau, we obtain the following
tableau:

Coefficients of variables
Basic
variables x1 x2 y1 y2 −f s1 s2 bi

x1 1 0 0 0 0 1 0 5
x2 0 1 0 1

11
0 − 3

11
0 51

11

y1 0 0 1 1
11

0 − 36
11

0 18
11

−f 0 0 0 4
11

1 21
11

0 369
11

s2 0 0 0 − 1
11

0 3
11

1 − 7
11

Step 5: Apply the dual simplex method to find a new optimum solution. To carry
the pivot operation, the pivot row is selected to correspond to the most negative
value of bi. This is the s2 row in this case.

Since only arj corresponding to column y2 is negative, the pivot element will
be − 1

11
in the s2 row. The pivot operation on this element leads to the following

tableau:

Coefficients of variables
Basic
variables x1 x2 y1 y2 −f s1 s2 bi

x1 1 0 0 0 0 1 0 5
x2 0 1 0 0 0 0 1 4
y1 0 0 1 0 0 −3 1 1
−f 0 0 0 0 1 3 4 31
y2 0 0 0 1 0 −3 −11 7

The solution given by this tableau is x1 = 5, x2 = 4, y1 = 1, y2 = 7, and
f = −31, which can be seen to satisfy the integer requirement. Hence this is the
desired solution.

�

� �

�

10.3 Gomory’s Cutting Plane Method 547

10.3.3 Gomory’s Method for Mixed-Integer Programming Problems

The method discussed in Section 10.3.2 is applicable to solve all integer programming
problems where both the decision and slack variables are restricted to integer values in
the optimal solution. In the mixed-integer programming problems, only a subset of the
decision and slack variables are restricted to integer values. The procedure for solving
mixed-integer programming problems is similar to that of all-integer programming
problems in many respects.

Solution Procedure. As in the case of an all-integer programming problem, the
first step involved in the solution of a mixed-integer programming problem is to obtain
an optimal solution of the ordinary LP problem without considering the integer restric-
tions. If the values of the basic variables, which were restricted to integer values,
happen to be integers in this optimal solution, there is nothing more to be done. Other-
wise, a Gomory constraint is formulated by taking the integer-restricted basic variable,
which has the largest fractional value in the optimal solution of the ordinary LP prob-
lem.

Let xi be the basic variable that has the largest fractional value in the optimal
solution (as shown in Table 10.2), although it is restricted to take on only integer
values. If the nonbasic variables are denoted as yj, j = 1, 2, . . . , n, the basic variable
xi can be expressed as (from Table 10.2)

xi = bi −
n∑

j=1

aijyj (10.2)

We can write
bi = b̂i + 𝛽i (10.3)

where b̂i is the integer obtained by truncating the fractional part of bi and 𝛽 i is the
fractional part of bi. By defining

aij = a+ij + a−ij (10.10)

where

a+ij =

{
aij if aij ≥ 0

0 if aij < 0
(10.11)

a−ij =

{
0 if aij ≥ 0

aij if aij < 0
(10.12)

Eq. (10.2) can be rewritten as

n∑
j=1

(a+ij + a−ij)yj = 𝛽i + (b̂i − xi) (10.13)

Here, by assumption, xi is restricted to integer values while bi is not an integer.
Since 0 <𝛽 i < 1 and b̂i is an integer, we can have the value of 𝛽 i + (b̂i− xi) either ≥0
or < 0. First, we consider the case where

𝛽i + (b̂i − xi) ≥ 0 (10.14)

In this case, in order for xi to be an integer, we must have

𝛽i + (b̂i − xi) = 𝛽i or 𝛽i + 1 or 𝛽i + 2, . . . (10.15)

�

� �

�

548 Integer Programming

Thus Eq. (10.13) gives
n∑

j=1

(a+ij + a−ij)yj ≥ 𝛽i (10.16)

Since aij are nonpositive and yj are nonnegative by definition, we have

n∑
j=1

a+ij yj ≥
n∑

j=1

(a+ij − a−ij)yj (10.17)

and hence
n∑

j=1

a+ij yj ≥ 𝛽i (10.18)

Next, we consider the case where

𝛽i + (b̂i − xi) < 0 (10.19)

For xi to be an integer, we must have (since 0 <𝛽 i < 1)

𝛽i + (b̂i − xi) = −1 + 𝛽i or − 2 + 𝛽i or − 3 + 𝛽i, . . . (10.20)

Thus Eq. (10.13) yields

n∑
j=1

(a+ij + a−ij)yj ≤ 𝛽i − 1 (10.21)

Since
n∑

j=1

a−ij yj ≤
n∑

j=1

(a+ij + a−ij)yj

we obtain
n∑

j=1

a−ij yj ≤ 𝛽i − 1 (10.22)

Upon dividing this inequality by the negative quantity (𝛽 i − 1), we obtain

1
𝛽i − 1

n∑
j=1

a−ij yj ≥ 1 (10.23)

Multiplying both sides of this inequality by 𝛽 i > 0, we can write the inequality
(10.23) as

𝛽i

𝛽i − 1

n∑
j=1

a−ij yj ≥ 𝛽i (10.24)

Since one of the inequalities in (10.18) and (10.24) must be satisfied, the following
inequality must hold true:

n∑
j=1

a+ij yj +
𝛽i

𝛽i − 1

n∑
j=1

(a−ij)yj ≥ 𝛽i (10.25)

By introducing a slack variable si, we obtain the desired Gomory constraint as

si =
n∑

j=1

a+ij yj +
𝛽i

𝛽i − 1

n∑
j=1

aijyj − 𝛽i (10.26)

�

� �

�

10.3 Gomory’s Cutting Plane Method 549

This constraint must be satisfied before the variable xi becomes an integer. The
slack variable si is not required to be an integer. At the optimal solution of the ordinary
LP problem (given by Table 10.2), all yj = 0 and hence Eq. (10.26) becomes

si = −𝛽i = negative

which can be seen to be infeasible. Hence the constraint Eq. (10.26) is added at the
end of Table 10.2, and the dual simplex method applied. This procedure is repeated
the required number of times until the optimal mixed integer solution is found.

Discussion. In the derivation of the Gomory constraint, Eq. (10.26), we have not
made use of the fact that some of the variables (yj) might be integer variables. We
notice that any integer value can be added to or subtracted from the coefficient of
aik(= a+ik + a−ik) of an integer variable yk provided that we subtract or add, respectively,
the same value to xi in Eq. (10.13), that is,

n∑
j = 1
j ≠ k

aijyj + (aik ± 𝛿)yk = 𝛽i + b̂i − (xi ∓ 𝛿) (10.27)

From Eq. (10.27), the same logic as was used in the derivation of Eqs. (10.18)
and (10.24) can be used to obtain the same final equation, Eq. (10.26). Of course, the
coefficients of integer variables yk will be altered by integer amounts in Eq. (10.26).
It has been established that to cut the feasible region as much as possible (through the
Gomory constraint), we have to make the coefficients of integer variables yk as small
as possible. We can see that the smallest positive coefficient we can have for yj in Eq.
(10.13) is

𝛼ij = aij − âij

and the largest negative coefficient as

1 − 𝛼ij = 1 − aij + âij

where âij is the integer obtained by truncating the fractional part of aij and 𝛼ij is the
fractional part. Thus we have a choice of two expressions, (aij − âij) and (1 − aij + âij),
for the coefficients of yj in Eq. (10.26). We choose the smaller one out of the two to
make the Gomory constraint, Eq. (10.26), cut deeper into the original feasible space.
Thus Eq. (10.26) can be rewritten as

si =
∑

j

a+ij yj +
𝛽i

𝛽i − 1

∑
j

(+a−ij)yj

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

for noninteger variables yj

+
∑

j

(aij − âij)yj

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

for integer variables yj

and for aij − âij ≤ 𝛽i

+
𝛽i

𝛽i − 1

∑
j

(1 − aij + âij)yj − 𝛽i

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

for integer variables yj

and for aij − âij > 𝛽i

where the slack variable si is not restricted to be an integer.

�

� �

�

550 Integer Programming

Example 10.2 Solve the problem of Example 10.1 with x2 only restricted to take
integer values.

SOLUTION Step 1: Solve the LP problem by simplex method by neglecting the
integer requirement. This gives the following optimal tableau:

Coefficients of variables
Basic
variables x1 x2 y1 y2 −f bi

x1 1 0 11
36

1
36

0 11
2

x2 0 1 − 1
12

1
12

0 9
2

−f 0 0 7
12

5
12

1 69
2

The noninteger solution given by this tableau is

x1 = 5
1
2
, x2 = 4

1
2
, y1 = y2 = 0, and fmin = −34

1
2
.

Step 2: Formulate a Gomory constraint. Since x2 is the only variable that is
restricted to take integer values, we construct the Gomory constraint for x2. From the
tableau of step 1, we obtain

x2 = b2 − a21y1 − a22y2

where
b2 = 9

2
, a21 = − 1

12
, and a22 = 1

12

According to Eq. (10.3), we write b2 as b2 = b̂2 + 𝛽2 where b̂2 = 4 and 𝛽2 = 1
2
.

Similarly, we write from Eq. (10.10)

a21 = a+21 + a−21

a22 = a+22 + a−22

where

a+21 = 0, a−21 = − 1
12

(since a21 is negative)

a+22 = 1
12
, a−22 = 0 (since a22 is nonnegative)

The Gomory constraint can be expressed as [from Eq. (10.26)]:

s2 −
2∑

j=1

a+2jyj +
𝛽2

𝛽2 − 1

2∑
j=1

a−2jyj = −𝛽2

where s2 is a slack variable that is not required to take integer values. By substituting
the values of a+ij , a

−
ij , and 𝛽 i, this constraint can be written as

s2 +
1

12
y1 −

1
12

y2 = −1
2

�

� �

�

10.4 Balas’ Algorithm for Zero–One Programming Problems 551

When this constraint is added to the tableau above, we obtain the following:

Coefficients of variablesBasic
variables x1 x2 y1 y2 −f s2 bi

x1 1 0 11
36

1
36

0 0 11
2

x2 0 1 − 1
12

1
12

0 0 9
2

−f 0 0 7
12

5
12

1 0 69
2

s2 0 0 1
12

− 1
12

0 1 − 1
2

Step 3: Apply the dual simplex method to find a new optimum solution. Since − 1
2

is the only negative bi term, the pivot operation has to be done in s2 row. Further,
aij corresponding to y2 column is the only negative coefficient in s2 row and hence
pivoting has to be done on this element, − 1

12
. The result of pivot operation is shown

in the following tableau:

Coefficients of variablesBasic
variables x1 x2 y1 y2 −f s2 bi

x1 1 0 1
3

0 0 1
3

16
3

x2 0 1 0 0 0 1 4
−f 0 0 1 0 1 5 32
y2 0 0 −1 1 0 −12 6

This tableau gives the desired integer solution as

x1 = 5
1
2
, x2 = 4, y2 = 6, y1 = 0, s2 = 0,

and fmin = −32

10.4 BALAS’ ALGORITHM FOR ZERO–ONE PROGRAMMING
PROBLEMS

When all the variables of a LP problem are constrained to take values of 0 or 1 only, we
have a zero–one (or binary) LP problem. A study of the various techniques available
for solving zero–one programming problems is important for the following reasons:

1. As we shall see later in this chapter (Section 10.5), a certain class of integer
nonlinear programming problems can be converted into equivalent zero–one
LP problems,

2. A wide variety of industrial, management, and engineering problems can be
formulated as zero–one problems. For example, in structural control, the prob-
lem of selecting optimal locations of actuators (or dampers) can be formulated
as a zero–one problem. In this case, if a variable is zero or 1, it indicates
the absence or presence of the actuator, respectively, at a particular location
[10.31].

The zero–one LP problems can be solved by using any of the general inte-
ger LP techniques like Gomory’s cutting plane method and Land and Doig’s
branch-and-bound method by introducing the additional constraint that all the

�

� �

�

552 Integer Programming

variables must be less than or equal to 1. This additional constraint will restrict each
of the variables to take a value of either zero (0) or one (1). Since the cutting plane
and the branch-and-bound algorithms were developed primarily to solve a general
integer LP problem, they do not take advantage of the special features of zero–one LP
problems. Thus several methods have been proposed to solve zero–one LP problems
more efficiently. In this section we present an algorithm developed by Balas (in 1965)
for solving LP problems with binary variables only [10.9].

If there are n binary variables in a problem, an explicit enumeration process will
involve testing 2n possible solutions against the stated constraints and the objective
function. In Balas method, all the 2n possible solutions are enumerated, explicitly or
implicitly. The efficiency of the method arises out of the clever strategy it adopts in
selecting only a few solutions for explicit enumeration.

The method starts by setting all the n variables equal to zero and consists of a
systematic procedure of successively assigning to certain variables the value 1, in such
a way that after trying a (small) part of all the 2n possible combinations, one obtains
either an optimal solution or evidence of the fact that no feasible solution exists. The
only operations required in the computation are additions and subtractions, and hence
the round-off errors will not be there. For this reason the method is some times referred
to as additive algorithm.

Standard Form of the Problem. To describe the algorithm, consider the following
form of the LP problem with zero–one variables:

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭ such that f (X) = CTX → minimum (10.28)

subject to

AX + Y = B

xi = 0 or 1

Y ≥ 𝟎

where

C =
⎧⎪⎨⎪⎩

c1
c2
⋮
cn

⎫⎪⎬⎪⎭ ≥ 𝟎, Y =
⎧⎪⎨⎪⎩

y1
y2
⋮
ym

⎫⎪⎬⎪⎭ , B =
⎧⎪⎨⎪⎩

b1
b2
⋮

bm

⎫⎪⎬⎪⎭
A =

⎡⎢⎢⎢⎣
a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮

am1 am2 ⋯ amn

⎤⎥⎥⎥⎦
where Y is the vector of slack variables and ci and aij need not be integers.

Initial Solution. An initial solution for the problem stated in Eqs. (10.28) can be
taken as

f0 = 0

xi = 0, i = 1, 2, . . . , n

Y(0) = B (10.29)

�

� �

�

10.5 Integer Polynomial Programming 553

If B≥ 0, this solution will be feasible and optimal since C≥ 0 in Eqs. (10.28). In
this case there is nothing more to be done as the starting solution itself happens to be
optimal. On the other hand, if some of the components bj are negative, the solution
given by Eqs. (10.29) will be optimal (since C≥ 0) but infeasible. Thus, the method
starts with an optimal (actually better than optimal) and infeasible solution. The algo-
rithm forces this solution toward feasibility while keeping it optimal all the time. This
is the reason why Balas called his method the pseudo dual simplex method. The word
pseudo has been used since the method is similar to the dual simplex method only as
far as the starting solution is concerned and the subsequent procedure has no similarity
at all with the dual simplex method. The details can be found in Ref. [10.9].

Integer Nonlinear Programming

10.5 INTEGER POLYNOMIAL PROGRAMMING

Watters [10.2] has developed a procedure for converting integer polynomial program-
ming problems to zero–one LP problems. The resulting zero–one LP problem can
be solved conveniently by the Balas method discussed in Section 10.4. Consider the
optimization problem:

Find X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭ which minimizes f (X)

subject to the constraints

gj(X) ≤ 0, j = 1, 2, . . . ,m

xi = integer, i = 1, 2, . . . , n (10.30)

where f and gj, j = 1, 2, . . . , m, are polynomials in the variables x1, x2, . . . , xn. A
typical term in the polynomials can be represented as

ck

nk∏
l=1

(xl)akl (10.31)

where ck is a constant, akl a nonnegative constant exponent, and nk the number of vari-
ables appearing in the kth term. We shall convert the integer polynomial programming
problem stated in Eq. (10.30) into an equivalent zero–one LP problem in two stages.
In the first stage we see how an integer variable, xi, can be represented by an equiva-
lent system of zero–one (binary) variables. We consider the conversion of a zero–one
polynomial programming problem into a zero–one LP problem in the second stage.

10.5.1 Representation of an Integer Variable by an Equivalent System of Binary Variables

Let xi be any integer variable whose upper bound is given by ui so that

xi ≤ ui < ∞ (10.32)

We assume that the value of the upper bound ui can be determined from the con-
straints of the given problem.

�

� �

�

554 Integer Programming

We know that in the decimal number system, an integer p is represented as

p = p0 + 101p1 + 102p2 +⋯ , 0 ≤ pi ≤ (10 − 1 = 9)

for i = 0, 1, 2, . . .

and written as p = ⋯ p2p1p0 by neglecting the zeros to the left. For example, we
write the number p= 008076 as 8076 to represent p= 6+ (101)7+ (102)(0)+ (103)8+
(104)0+ (105)0. In a similar manner, the integer p can also be represented in binary
number system as

p = q0 + 21q1 + 22q2 + 23q3 +⋯

where 0≤ qi ≤ (2–1 = 1) for i = 0, 1, 2,
In general, if yi

(0), yi
(1), yi

(2), . . . denote binary numbers (which can take a value
of 0 or 1), the variable xi can be expressed as

xi =
Ni∑

k=0

2ky(k)i (10.33)

where Ni is the smallest integer such that

ui + 1

2
≤ 2Ni (10.34)

Thus the value of Ni can be selected for any integer variable xi once its upper
bound ui is known. For example, for the number 97, we can take ui = 97 and hence
the relation

ui + 1

2
= 98

2
= 49 ≤ 2Ni

is satisfied for Ni ≥ 6. Hence by taking Ni = 6, we can represent ui as

97 = q0 + 21q1 + 22q2 + 23q3 + 24q4 + 25q5 + 26q6

where q0 = 1, q1 = q2 = q3 = q4 = 0, and q5 = q6 = 1. A systematic method of finding
the values of q0, q1, q2, . . . is given below.

Method of Finding q0, q1, q2, Let M be the given positive integer. To find its
binary representation qnqn− 1 . . . q1q0, we compute the following recursively:

b0 = M

b1 =
b0 − q0

2

b2 =
b1 − q1

2
⋮

bk =
bk−1 − qk−1

2
(10.35)

where qk = 1 if bk is odd and qk = 0 if bk is even. The procedure terminates when
bk = 0.

Eq. (10.33) guarantees that xi can take any feasible integer value less than or equal
to ui. The use of Eq. (10.33) in the problem stated in Eq. (10.30) will convert the
integer programming problem into a binary one automatically. The only difference is
that the binary problem will have N1 +N2 +⋯+Nn zero–one variables instead of the
n original integer variables.

�

� �

�

10.5 Integer Polynomial Programming 555

10.5.2 Conversion of a Zero–One Polynomial Programming Problem into a Zero–One
LP Problem

The conversion of a polynomial programming problem into a LP problem is based on
the fact that

xaki

i ≡ xi (10.36)

if xi is a binary variable (0 or 1) and aki is a positive exponent. If aki = 0, then obviously
the variable xi will not be present in the kth term. The use of Eq. (10.36) permits us to
write the kth term of the polynomial, Eq. (10.31), as

ck

nk∏
l=1

(xl)akl = ck

nk∏
l=1

xl = ck(x1, x2, . . . xnk
) (10.37)

Since each of the variables x1, x2, . . . can take a value of either 0 or 1, the product
(x1x2 ⋯ xnk) also will take a value of 0 or 1. Hence by defining a binary variable yk as

yk = x1x2 ⋯ xnk =
nk∏

l=1

xl (10.38)

the kth term of the polynomial simply becomes ckyk. However, we need to add the
following constraints to ensure that yk = 1 when all xi = 1 and zero otherwise:

yk ≥
(

nk∑
i=1

xi

)
− (nk − 1) (10.39)

yk ≤ 1
nk

(
nk∑

i=1

xi

)
(10.40)

It can be seen that if all xi = 1,
∑nk

i=1 xi = nk, and Eqs. (10.39) and (10.40) yield

yk ≥ 1 (10.41)

yk ≤ 1 (10.42)

which can be satisfied only if yk = 1. If at least one xi = 0, we have
∑nk

i=1 xi < nk, and
Eqs. (10.39) and (10.40) give

yk ≥ −(nk − 1) (10.43)

yk < 1 (10.44)

Since nk is a positive integer, the only way to satisfy Eqs. (10.43) and (10.44)
under all circumstances is to have yk = 0.

This procedure of converting an integer polynomial programming problem into
an equivalent zero–one LP problem can always be applied, at least in theory.

�

� �

�

556 Integer Programming

10.6 BRANCH-AND-BOUND METHOD

The branch-and-bound method is very effective in solving mixed-integer linear and
nonlinear programming problems. The method was originally developed by Land and
Doig [10.8] to solve integer linear programming problems and was later modified
by Dakin [10.23]. Subsequently, the method has been extended to solve nonlinear
mixed-integer programming problems. To see the basic solution procedure, consider
the following nonlinear mixed-integer programming problem:

Minimize f (X) (10.45)

subject to
gj(X) ≥ 0, j = 1, 2, . . . , m (10.46)

hk(X) = 0, k = 1, 2, . . . , p (10.47)

xj = integer, j = 1, 2, . . . , n0 (n0 ≤ n) (10.48)

where X = {x1, x2, . . . , xn}T. Note that in the design vector X, the first n0 variables
are identified as the integer variables. If n0 = n, the problem becomes an all-integer
programming problem. A design vector X is called a continuous feasible solution if
X satisfies constraints (10.46) and (10.47). A design vector X that satisfies all the
constraints, Eqs. (10.46) to (10.48), is called an integer feasible solution.

The simplest method of solving an integer optimization problem involves enumer-
ating all integer points, discarding infeasible ones, evaluating the objective function
at all integer feasible points, and identifying the point that has the best objective func-
tion value. Although such an exhaustive search in the solution space is simple to
implement, it will be computationally expensive even for moderate-size problems.
The branch-and-bound method can be considered as a refined enumeration method
in which most of the nonpromising integer points are discarded without testing them.
Also note that the process of complete enumeration can be used only if the problem
is an all-integer programming problem. For mixed-integer problems in which one or
more variables may assume continuous values, the process of complete enumeration
cannot be used.

In the branch-and-bound method, the integer problem is not directly solved.
Rather, the method first solves a continuous problem obtained by relaxing the integer
restrictions on the variables. If the solution of the continuous problem happens to
be an integer solution, it represents the optimum solution of the integer problem.
Otherwise, at least one of the integer variables, say xi, must assume a nonintegral
value. If xi is not an integer, we can always find an integer [xi] such that

[xi] < xi < [xi] + 1 (10.49)

Then two subproblems are formulated, one with the additional upper bound con-
straint

xi ≤ [xi] (10.50)

and another with the lower bound constraint

xi ≥ [xi] + 1 (10.51)

The process of finding these subproblems is called branching.

�

� �

�

10.6 Branch-and-Bound Method 557

The branching process eliminates some portion of the continuous space that is not
feasible for the integer problem, while ensuring that none of the integer feasible solu-
tions are eliminated. Each of these two subproblems are solved again as a continuous
problem. It can be seen that the solution of a continuous problem forms a node and
from each node two branches may originate.

The process of branching and solving a sequence of continuous problems dis-
cussed above is continued until an integer feasible solution is found for one of the two
continuous problems. When such a feasible integer solution is found, the correspond-
ing value of the objective function becomes an upper bound on the minimum value of
the objective function. At this stage we can eliminate from further consideration all
the continuous solutions (nodes) whose objective function values are larger than the
upper bound. The nodes that are eliminated are said to have been fathomed because it
is not possible to find a better integer solution from these nodes (solution spaces) than
what we have now. The value of the upper bound on the objective function is updated
whenever a better bound is obtained.

It can be seen that a node can be fathomed if any of the following conditions are
true:

1. The continuous solution is an integer feasible solution.
2. The problem does not have a continuous feasible solution.
3. The optimal value of the continuous problem is larger than the current upper

bound.

The algorithm continues to select a node for further branching until all the nodes
have been fathomed. At that stage, the particular fathomed node that has the integer
feasible solution with the lowest value of the objective function gives the optimum
solution of the original nonlinear integer programming problem.

Example 10.3 Solve the following LP problem using the branch-and-bound method:

Maximize f = 3x1 + 4x2

subject to
7x1 + 11x2 ≤ 88, 3x1 − x2 ≤ 12, x1 ≥ 0, x2 ≥ 0 (E1)

xi = integer, i = 1, 2 (E2)

SOLUTION The various steps of the procedure are illustrated using graphical
method.

Step 1: First the problem is solved as a continuous variable problem [without
Eq. (E2)] to obtain:

Problem (E1)∶ Fig.10.2; (x∗1 = 5.5, x∗2 = 4.5, f ∗ = 34.5)

Step 2: The branching process, with integer bounds on x1, yields the problems:

Maximize f = 3x1 + 4x2

subject to
7x1 + 11x2 ≤ 88, 3x1 − x2 ≤ 12, x1 ≤ 5, x2 ≥ 0 (E3)

�

� �

�

558 Integer Programming

and
Maximize f = 3x1 + 4x2

subject to
7x1 + 11x2 ≤ 88, 3x1 − x2 ≤ 12, x1 ≥ 6, x2 ≥ 0 (E4)

The solutions of problems (E3) and (E4) are given by

Problem (E3)∶ Fig.10.4; (x∗1 = 5, x∗2 = 4.8182, f ∗ = 34.2727)

Problem (E4)∶ Fig.10.5; no feasible solution exists.

Step 3: The next branching process, with integer bounds on x2, leads to the fol-
lowing problems:

Maximize f = 3x1 + 4x2

subject to
7x1 + 11x2 ≤ 88, 3x1 − x2 ≤ 12, x1 ≤ 5, x2 ≤ 4 (E5)

and
Maximize f = 3x1 + 4x2

subject to
7x1 + 11x2 ≤ 88, 3x1 − x2 ≤ 12, x1 ≤ 5, x2 ≥ 5 (E6)

8

10

6

4

2

0 2 4 6 8 10

B A

x2

f* = 34.2727

x* = (5, 4.8182)

x1 = 5

x1

Figure 10.4 Graphical solution of problem (E3).

�

� �

�

10.6 Branch-and-Bound Method 559

8

10

6

4

2

0 2 4 6 8

No feasible
solution

10

A

x2

x1 = 6

x1

Figure 10.5 Graphical solution of problem (E4).

The solutions of problems (E5) and (E6) are given by

Problem (E5)∶ Fig.10.6; (x∗1 = 5, x∗2 = 4, f ∗ = 31)

Problem (E6)∶ Fig.10.7; (x∗1 = 0, x∗2 = 8, f ∗ = 32)

Since both the variables assumed integer values, the optimum solution of the inte-
ger LP problem, Eqs. (E1) and (E2), is given by (x∗1 = 0, x∗2 = 8, f ∗ = 32).

Example 10.4 Find the solution of the welded beam problem of Section 7.22.3 by
treating it as a mixed-integer nonlinear programming problem by requiring x3 and x4
to take integer values.

SOLUTION The solution of this problem using the branch-and-bound method was
reported in Ref. [10.25]. The optimum solution of the continuous variable nonlinear
programming problem is given by (Figure 10.6)

X∗ = {0.24, 6.22, 8.29, 0.24}T
, f ∗ = 2.38

Next, the branching problems, with integer bounds on x3, are solved and the pro-
cedure is continued until the desired optimum solution is found. The results are shown
in Figure 10.8.

�

� �

�

560 Integer Programming

8

10

6

4

2

0 2 4 6 8 10

C

x2

x1 = 5

x2 = 4

f* = 31

x* = (5, 4)

x1

Figure 10.6 Graphical solution of problem (E5).

8

10

6

4

2

0 2 4 6 8 10

D

x2

x1 = 5

x2 = 5

f* = 32

x* = (0, 8)

x1

A

Figure 10.7 Graphical solution of problem (E6).

�

� �

�

10.7 Sequential Linear Discrete Programming 561

Continuous solution:
x* = {0.24, 6.22, 8.29, 0.24}T, f * = 2.38

Continuous solution:
X* = {0.24, 5.75, 9, 0.24}T, f * = 2.417

X* = {0.74, 1.39, 9, 1}T,
 f * = 7.516

x* = {0.63, 3.83, 4.1, 1}T,
 f * = 5.21

x* = {0.67, 2.84, 5, 1}T,
 f * = 5.47

x* = {0.48, 6.94, 2.89, 2}T,
 f * = 7.62

x* = {0.65, 3.78, 4, 1.05}T,
 f * = 5.36

Continuous solution:
x* = {0.26, 5.89, 89, 0.26}T, f * = 2.46

x3 ≥ 9

Not feasible x

Optimum solution

Not feasible x

Not feasible x

x4 ≥ 1 x4 ≥ 1

x3 ≥ 5

x3 ≤ 8

x4 ≤ 0

x4 ≥ 2x4 ≤ 1

x3 ≤ 4

x4 ≤ 0

Figure 10.8 Solution of the welded beam problem using branch-and-bound method. [10.25].

10.7 SEQUENTIAL LINEAR DISCRETE PROGRAMMING

Let the nonlinear programming problem with discrete variables be stated as follows:

Minimize f (X) (10.52)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (10.53)

hk(X) = 0, k = 1, 2, . . . , p (10.54)

xi ∈ {di1, di2, . . . , diq}, i = 1, 2, . . . , n0 (10.55)

x(l)i ≤ xi ≤ x(u)i , i = n0 + 1, n0 + 2, . . . , n (10.56)

where the first n0 design variables are assumed to be discrete, dij is the jth discrete
value for the variable i, and X = {x1, x2, . . . , xn}T. It is possible to find the solution of
this problem by solving a series of mixed-integer linear programming problems.

The nonlinear expressions in Eqs. (10.52) to (10.54) are linearized about a point
X0 using a first-order Taylor’s series expansion and the problem is stated as

Minimize f (X) ≈ f (X0) + ∇f (X0)𝛿X (10.57)

subject to
gj(X) ≈ gj(X0) + ∇gj(X0)𝛿X ≤ 0, j = 1, 2, . . . , m (10.58)

hk(X) ≈ hk(X0) + ∇hk(X0)𝛿X = 0, k = 1, 2, . . . , p (10.59)

�

� �

�

562 Integer Programming

x0
i + 𝛿xi ∈ {di1, di2, . . . , diq}, i = 1, 2, . . . , n0 (10.60)

x(l)i ≤ x0
i + 𝛿xi ≤ x(u)i , i = n0 + 1, n0 + 2, . . . , n (10.61)

𝛿X = X − X0 (10.62)

The problem stated in Eqs. (10.57) to (10.62) cannot be solved using mixed-
integer linear programming techniques since some of the design variables are discrete
and noninteger. The discrete variables are redefined as [10.26]

xi = yi1di1 + yi2di2 +⋯ + yiqdiq =
q∑

j=1

yijdij, i = 1, 2, . . . , n0 (10.63)

with

yi1 + yi2 +⋯ + yiq =
q∑

j=1

yij = 1 (10.64)

yij = 0 or 1, i = 1, 2, . . . , n0, j = 1, 2, . . . , q (10.65)

Using Eqs. (10.63) to (10.65) in Eqs. (10.57) to (10.62), we obtain

Minimize f (X) ≈ f (X0) +
n0∑

i=1

𝜕f

𝜕xi

(
q∑

j=1

yijdij − x0
i

)

+
n∑

i=n0+1

𝜕f

𝜕xi
(xi − x0

i) (10.66)

subject to

gj(X) ≈ gj(X0) +
n0∑

i=1

𝜕gi

𝜕xi

(
n0∑

l=1

yildil − x0
i

)
+

n∑
i=n0+1

𝜕gj

𝜕xi
(xi − x0

i) ≤ 0,

j = 1, 2, . . . , m (10.67)

hk(X) ≈ hk(X0) +
n0∑

i=1

𝜕hk

𝜕xi

(
n0∑

l=1

yildil − x0
i

)
+

n∑
i=n0+1

𝜕hk

𝜕xi
(xi − x0

i) = 0,

k = 1, 2, . . . , p (10.68)

q∑
j=1

yij = 1, i = 1, 2, . . . , n0 (10.69)

yij = 0 or 1, i = 1, 2, . . . , n0, j = 1, 2, . . . , q (10.70)

x(l)i ≤ x0
i + 𝛿xi ≤ x(u)i , i = n0 + 1, n0 + 2, . . . , n (10.71)

The problem stated in Eqs. (10.66) to (10.71) can now be solved as a mixed-integer
LP problem by treating both yij(i = 1, 2, . . . , n0, j = 1, 2, . . . , q) and xi (i = n0 + 1,
n0 + 2, . . . , n) as unknowns.

�

� �

�

10.7 Sequential Linear Discrete Programming 563

In practical implementation, the initial linearization point X0 is to be selected
carefully. In many cases the solution of the discrete problem is expected to lie in the
vicinity of the continuous optimum. Hence the original problem can be solved as a
continuous nonlinear programming problem (by ignoring the discrete nature of the
variables) using any of the standard nonlinear programming techniques. If the result-
ing continuous optimum solution happens to be a feasible discrete solution, it can
be used as X0. Otherwise, the values of xi from the continuous optimum solution
are rounded (in a direction away from constraint violation) to obtain an initial fea-
sible discrete solution X0. Once the first linearized discrete problem is solved, the
subsequent linearizations can be made using the result of the previous optimization
problem.

Example 10.5 [10.26]
Minimize f (X) = 2x2

1 + 3x2
2

subject to

g(X) = 1
x1

+ 1
x2

− 4 ≤ 0

x1 ∈ {0.3, 0.7, 0.8, 1.2, 1.5, 1.8}

x2 ∈ {0.4, 0.8, 1.1, 1.4, 1.6}

SOLUTION In this example, the set of discrete values of each variable is truncated
by allowing only three values – its current value, the adjacent higher value, and the
adjacent lower value – for simplifying the computations. Using X0 =

{
1.2
1.1

}
, we have

f (X0) = 6.51, g(X0) = −2.26

∇f (X0) =
{

4x1
6x2

}
X0

=
{

4.8
6.6

}
, ∇g(X0) =

⎧⎪⎨⎪⎩
− 1

x2
1

− 1
x2

2

⎫⎪⎬⎪⎭X0

=
{
−0.69
−0.83

}

Now

x1 = y11(0.8) + y12(1.2) + y13(1.5)

x2 = y21(0.8) + y22(1.1) + y23(1.4)

𝛿x1 = y11(0.8 − 1.2) + y12(1.2 − 1.2) + y13(1.5 − 1.2)

𝛿x2 = y21(0.8 − 1.1) + y22(1.1 − 1.1) + y23(1.4 − 1.1)

f ≈ 6.51 + {4.8 6.6}
{
−0.4y11 + 0.3y13
−0.3y21 + 0.3y23

}
g ≈ −2.26 + {−0.69 − 0.83}

{
−0.4y11 + 0.3y13
−0.3y21 + 0.3y23

}
Thus the first approximate problem becomes (in terms of the unknowns y11, y12,

y13, y21, y22, and y23):

Minimize f = 6.51 − 1.92y11 + 1.44y13 − 1.98y21 + 1.98y23

�

� �

�

564 Integer Programming

subject to

−2.26 + 0.28y11 + 0.21y13 + 0.25y21 − 0.25y23 ≤ 0

y11 + y12 + y13 = 1

y21 + y22 + y23 = 1

yij = 0 or 1, i = 1, 2, j = 1, 2, 3

In this problem, there are only nine possible solutions and hence they can all be
enumerated and the optimum solution can be found as

y11 = 1, y12 = 0, y13 = 0, y21 = 1, y22 = 0, y23 = 0

Thus the solution of the first approximate problem, in terms of original variables,
is given by

x1 = 0.8, x2 = 0.8, f (X) = 2.61, and g(X) = −1.5

This point can be used to generate a second approximate problem and the process
can be repeated until the final optimum solution is found.

10.8 GENERALIZED PENALTY FUNCTION METHOD

The solution of an integer nonlinear programming problem, based on the concept of
penalty functions, was originally suggested by Gellatly and Marcal in 1967 [10.5].
This approach was later applied by Gisvold and Moe [10.4] and Shin et al. [10.24]
to solve some design problems that have been formulated as nonlinear mixed-integer
programming problems. The method can be considered as an extension of the inte-
rior penalty function approach considered in Section 7.13. To see the details of the
approach, let the problem be stated as follows:

FindX =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭ =
{

Xd
Xc

}
which minimizes f (X)

subject to the constraints

gj(X) ≥ 0, j = 1, 2, . . . ,m

Xc ∈ Sc and Xd ∈ Sd, (10.72)

where the vector of variables (X) is composed of two vectors Xd and Xc, with Xd repre-
senting the set of integer variables and Xc representing the set of continuous variables.
Notice that Xc will not be there if all the variables are constrained to take only integer
values and Xd will not be there if none of the variables is restricted to take only integer
values. The sets Sc and Sd denote the feasible sets of continuous and integer variables,
respectively. To extend the interior penalty function approach to solve the present prob-
lem, given by Eq. (10.72), we first define the following transformed problem:

Minimize 𝜙k(X, rk, sk)

�

� �

�

10.8 Generalized Penalty Function Method 565

where

𝜙k(X, rk, sk) = f (X) + rk

m∑
j=1

Gj[gj(X)] + skQk(Xd) (10.73)

In this equation, rk is a weighing factor (penalty parameter) and

rk

m∑
j=1

Gj[gj(X)]

is the contribution of the constraints to the 𝜙k function, which can be taken as

rk

m∑
j=1

Gj[gj(X)] = +rk

m∑
j=1

1
gj(X)

(10.74)

It can be noted that this term is positive for all X satisfying the relations gj(X) > 0
and tends to +∞ if any one particular constraint tends to have a value of zero. This
property ensures that once the minimization of the 𝜙k function is started from a fea-
sible point, the point always remains in the feasible region. The term skQk(Xd) can
be considered as a penalty term with sk playing the role of a weighing factor (penalty
parameter). The function Qk(Xd) is constructed so as to give a penalty whenever some
of the variables in Xd take values other than integer values. Thus the function Qk(Xd)
has the property that

Qk(Xd) =

{
0 if Xd ∈ Sd

𝜇 > 0 if Xd ∉ Sd

(10.75)

We can take, for example,

Qk(Xd) =
∑

xi∈Xd

{
4

(
xi − yi

zi − yi

)(
1 −

xi − yi

zi − yi

)}𝛽k

(10.76)

where yi ≤ xi, zi ≥ xi, and 𝛽k ≥ 1 is a constant. Here yi and zi are the two neighboring
integer values for the value xi. The function Qk(Xd) is a normalized, symmetric beta
function integrand. The variation of each of the terms under summation sign in Eq.
(10.76) for different values of 𝛽k is shown in Figure 10.9. The value of 𝛽k has to be
greater than or equal to 1 if the function Qk is to be continuous in its first derivative
over the discretization or integer points.

The use of the penalty term defined by Eq. (10.76) makes it possible to change
the shape of the 𝜙k function by changing 𝛽k, while the amplitude can be controlled by
the weighting factor sk. The 𝜙k function given in Eq. (10.73) is now minimized for a
sequence of values of rk and sk such that for k→∞, we obtain

Min 𝜙k(X, rk, sk) → Min f (X)

gj(X) ≥ 0, j = 1, 2, . . . , m

Qk(Xd) → 0 (10.77)

In most of the practical problems, one can obtain a reasonably good solution
by carrying out the minimization of 𝜙k even for 5 to 10 values of k. The method is
illustrated in Figure 10.10 in the case of a single-variable problem. It can be noticed
from Figure 10.10 that the shape of the 𝜙 function (also called the response function)
depends strongly on the numerical values of rk, sk, and 𝛽k.

�

� �

�

566 Integer Programming

1.0

1.0

0.5

0.5
0

Ri =

βk = 1.0
βk = 2.0

βk = 4.0
βk = 6.0

βk = 8.0

xi−yi
zi−yi

βk
4

xi−yi
zi−yi

1–
xi−yi
zi−yi

Figure 10.9 Contour of typical term in Eq. (10.62) [10.4].

Min ϕ3

Min f

f

ϕ3

f, ϕ3

s3Q3

g1

1 2

(c) Minimization of ϕ3

3 4
x1

x1 x1 x1 x1

Min ϕ1

f
ϕ1

f, ϕ1

s1Q1

g1

1 2

(a) Minimization of ϕ1

3 4
x1

x1 x1 x1 x1

Min ϕ2 f

ϕ2

f, ϕ2

s2Q2 g1

1 2

(b) Minimization of ϕ2

3 4
x1

x1 x1 x1 x1

Figure 10.10 Solution of a single-variable integer problem by penalty function method. x1, discrete variable;
xj

1, jth value of x1 [10.4].

Choice of the Initial Values of rk, sk, and 𝛽k. The numerical values of rk, sk, and
𝛽k have to be chosen carefully to achieve fast convergence. If these values are chosen
such that they give the response surfaces of 𝜙 function as shown in Figure 10.10c,
several local minima will be introduced and the risk in finding the global minimum
point will be more. Hence the initial value of sk (namely, s1) is to be chosen sufficiently
small to yield a unimodal response surface. This can be achieved by setting

skQ′
k ≪ P′

k (10.78)

�

� �

�

10.8 Generalized Penalty Function Method 567

where Q′
k is an estimate of the maximum magnitude of the gradient to the Qk surface

and P′
k is a measure of the gradient of the function Pk defined by

Pk = f (X) + rk

m∑
j=1

Gj[gj(X)] (10.79)

Gisvold and Moe [10.4] have taken the values of Q′
k and P′

k as

Q′
k =

1
2

. 4𝛽k𝛽k(𝛽k − 1)𝛽k−1(2𝛽k − 1)1∕2−𝛽k (10.80)

P′
k =

(
∇PT

k ∇Pk

n

)1∕2

(10.81)

where

∇Pk =
⎧⎪⎨⎪⎩
𝜕Pk∕𝜕x1
𝜕Pk∕𝜕x2

⋮
𝜕Pk∕𝜕xn

⎫⎪⎬⎪⎭ (10.82)

The initial value of s1, according to the requirement of Eq. (10.78), is given by

s1 = c1

P′
1(X1, r1)

Q′
1(X

(d)
1 , 𝛽1)

(10.83)

where X1 is the initial starting point for the minimization of 𝜙1, X(d)
1 the set of starting

values of integer-restricted variables, and c1 a constant whose value is generally taken
in the range 0.001 and 0.1.

To choose the weighting factor r1, the same consideration as discussed in
Section 7.13 are to be taken into account. Accordingly, the value of r1 is chosen as

r1 = c2
f (X1)

+
∑m

j=1 1∕gj(X1)
(10.84)

with the value of c2 ranging between 0.1 and 1.0. Finally, the parameter 𝛽k must be
taken greater than 1 to maintain the continuity of the first derivative of the function
𝜙k over the discretization points. Although no systematic study has been conducted to
find the effect of choosing different values for 𝛽k, the value of 𝛽1 ≃ 2.2 has been found
to give satisfactory convergence in some of the design problems.

Once the initial values of rk, sk, and 𝛽k (for k = 1) are chosen, the subsequent
values also have to be chosen carefully based on the numerical results obtained on
similar formulations. The sequence of values rk are usually determined by using the
relation

rk+1 = c3rk, k = 1, 2, . . . (10.85)

where c3 < 1. Generally, the value of c3 is taken in the range 0.05 to 0.5. To select the
values of sk, we first notice that the effect of the term Qk(Xd) is somewhat similar to
that of an equality constraint. Hence the method used in finding the weighting factors
for equality constraints can be used to find the factor sk+ 1. For equality constraints,
we use

sk+1

sk
=

r1∕2
k

r1∕2
k+1

(10.86)

�

� �

�

568 Integer Programming

From Eqs. (10.85) and (10.86), we can take

sk+1 = c4sk (10.87)

with c4 approximately lying in the range
√

1∕0.5 and
√

1∕0.05 (i.e., 1.4 and 4.5). The
values of 𝛽k can be selected according to the relation

𝛽k+1 = c5𝛽k (10.88)

with c5 lying in the range 0.7 to 0.9.
A general convergence proof of the penalty function method, including the inte-

ger programming problems, was given by Fiacco [10.6]. Hence the present method is
guaranteed to converge at least to a local minimum if the recovery procedure is applied
the required number of times.

Example 10.6 [10.24] Find the minimum weight design of the three-bar truss shown
in Figure 10.11 with constraints on the stresses induced in the members. Treat the areas
of cross section of the members as discrete variables with permissible values of the
parameter Ai𝜎max/P given by 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, and 1.2.

SOLUTION By defining the nondimensional quantities f and xi as

f =
W𝜎max

P𝜌l
, xi =

Ai𝜎max

P
, i = 1, 2, 3

where W is the weight of the truss, 𝜎max the permissible (absolute) value of stress, P
the load, 𝜌 the density, l the depth, and Ai the area of cross section of member i(i = 1,
2, 3), the discrete optimization problem can be stated as follows:

Minimize f = 2x1 + x2 +
√

2x3

subject to

g1(X) = 1 −

√
3x2 + 1.932x3

1.5x1x2 +
√

2x2x3 + 1.319x1x3

≥ 0

g2(X) = 1 −
0.634x1 + 2.828x3

1.5x1x2 +
√

2x2x3 + 1.319x1x3

≥ 0

g3(X) = 1 −
0.5x1 + 2x2

1.5x1x2 +
√

2x2x3 + 1.319x1x3

≥ 0

g4(X) = 1 +
0.5x1 − 2x2

1.5x1x2 +
√

2x2x3 + 1.319x1x3

≥ 0

xi ∈ {0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.2}, i = 1, 2, 3

The optimum solution of the continuous variable problem is given by f * = 2.7336,
x∗1 = 1.1549, x∗2 = 0.4232, and x∗3= 0.0004. The optimum solution of the discrete vari-
able problem is given by f * = 3.0414, x∗1 = 1.2, x∗2 = 0.5, and x∗3 = 0.1.

�

� �

�

References and Bibliography 569

P

P

l

Bar 1,
area A1

Bar 2,
area A2

Bar 3,
area A3

60° 45°

Figure 10.11 Three-bar truss.

10.9 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solution of a binary (zero–one) program-
ming problem is given in Example 17.9.

REFERENCES AND BIBLIOGRAPHY

10.1 Balinski, M.L. (1965). Integer programming: methods, uses, computation. Manage-
ment Science 12: 253–313.

10.2 Watters, L.J. (1967). Reduction of integer polynomial programming problems to
zero–one linear programming problems. Operations Research 15 (6): 1171–1174.

10.3 Retter, S. and Rice, D.B. (1966). Discrete optimizing solution procedures for linear and
nonlinear integer programming problems. Management Science 12: 829–850.

10.4 Gisvold, K.M. and Moe, J. (May 1972). A method for nonlinear mixed-integer pro-
gramming and its application to design problems, Journal of Engineering for Industry.
Transactions of ASME 94: 353–364.

10.5 Gellatly, R.A. and Marcal, P.B. (1967). Investigation of advanced spacecraft structural
design technology. NASA Report 2356–950001.

10.6 Fiacco, A.V. (1970). Penalty methods for mathematical programming in En with gen-
eral constraints sets. Journal of Optimization Theory and Applications 6: 252–268.

10.7 Gomory, R.E. (1960). An algorithm for the mixed integer problem. Rand Report R.M.
25797.

10.8 Land, A.H. and Doig, A. (1960). An automatic method of solving discrete program-
ming problems. Econometrica 28: 497–520.

10.9 Balas, E. (1965). An additive algorithm for solving linear programs with zero–one vari-
ables. Operations Research 13: 517–546.

10.10 Gomory, R.E. (1963). An all-integer integer programming algorithm, Chapter 13 in.
In: Industrial Scheduling (eds. J.F. Muth and G.L. Thompson). Englewood Cliffs, NJ:
Prentice-Hall.

�

� �

�

570 Integer Programming

10.11 Taha, H.A. (1971). Operations Research: An Introduction. New York: Macmillan.

10.12 Zionts, S. (1974). Linear and Integer Programming. Englewood Cliffs, NJ:
Prentice-Hall.

10.13 McMillan, C. Jr. (1970). Mathematical Programming: An Introduction to the Design
and Application of Optimal Decision Machines. New York: Wiley.

10.14 Kwak, N.K. (1973). Mathematical Programming with Business Applications. New
York: McGraw-Hill.

10.15 Greenberg, H. (1971). Integer Programming. New York: Academic Press.

10.16 Dantzig, G.B. and Veinott, A.F. Jr. (eds.) (1968). Mathematics of the Decision Sciences,
Part 1. Providence, R I: American Mathematical Society.

10.17 Garfinkel, R.S. and Nemhauser, G.L. (1972). Integer Programming. New York: Wiley.

10.18 Trauth, C.A. Jr. and Woolsey, R.E. (1969). Integer linear programming: a study in com-
putational efficiency. Management Science 15 (9): 481–493.

10.19 Lawler, E.L. and Bell, M.D. (1966). A method for solving discrete optimization prob-
lems. Operations Research 14: 1098–1112.

10.20 Hansen, P. (1972). Quadratic zero–one programming by implicit enumeration.
In: Numerical Methods for Nonlinear Optimization (ed. F.A. Lootsma), 265–278.
London: Academic Press.

10.21 Meyer, R.R. (1975). Integer and mixed-integer programming models: general proper-
ties. Journal of Optimization Theory and Applications 16: 191–206.

10.22 Karni, R. (1981). Integer linear programming formulation of the material requirements
planning problem. Journal of Optimization Theory and Applications 35: 217–230.

10.23 Dakin, R.J. (1965). A tree-search algorithm for mixed integer programming problems.
Computer Journal 8 (3): 250–255.

10.24 Shin, D.K., Gürdal, Z., and Griffin, O.H. Jr. (1990). A penalty approach for nonlinear
optimization with discrete design variables. Engineering Optimization 16: 29–42.

10.25 Gupta, O.K. and Ravindran, A. (1981). Nonlinear mixed integer programming and dis-
crete optimization. In: Progress in Engineering Optimization (eds. R.W. Mayne and
K.M. Ragsdell), 27–32. New York: ASME.

10.26 Olsen, G.R. and Vanderplaats, G.N. (1989). Method for nonlinear optimization with
discrete variables. AIAA Journal 27 (11): 1584–1589.

10.27 John, K.V., Ramakrishnan, C.V., and Sharma, K.G. (1988). Optimum design of trusses
from available sections: use of sequential linear programming with branch and bound
algorithm. Engineering Optimization 13: 119–145.

10.28 Cooper, M.W. (1981). A survey of methods for pure nonlinear integer programming.
Management Science 27 (3): 353–361.

10.29 Glankwahmdee, A., Liebman, J.S., and Hogg, G.L. (1979). Unconstrained discrete
nonlinear programming. Engineering Optimization 4: 95–107.

10.30 Hager, K. and Balling, R. (1988). New approach for discrete structural optimization.
ASCE Journal of the Structural Division 114 (ST5): 1120–1134.

10.31 Rao, S.S., Pan, T.S., and Venkayya, V.B. (1991). Optimal placement of actuators in
actively controlled structures using genetic algorithms. AIAA Journal 29 (6): 942–943.

10.32 Parker, R.G. and Rardin, R.L. (1988). Discrete Optimization. Boston: Academic Press.

REVIEW QUESTIONS

10.1 Answer true or false:
The integer and discrete programming problems are one and the same.
Gomory’s cutting plane method is applicable to mixed-integer programming problems.
The Balas method was developed for the solution of all-integer programming problems.
The branch-and-bound method can be used to solve zero–one programming problems.
The branch-and-bound method is applicable to nonlinear integer programming problems.

�

� �

�

Problems 571

10.2 Define the following terms:
Cutting plane
Gomory’s constraint
Mixed-integer programming problem
Additive algorithm

10.3 Give two engineering examples of a discrete programming problem.

10.4 Name two engineering systems for which zero–one programming is applicable.

10.5 What are the disadvantages of truncating the fractional part of a continuous solution for
an integer problem?

10.6 How can you solve an integer nonlinear programming problem?

10.7 What is a branch-and-bound method?

10.8 Match the following methods:

(a) Land and Doig Cutting plane method
(b) Gomory Zero–one programming method
(c) Balas Generalized penalty function method
(d) Gisvold and Moe Branch-and-bound method
(e) Reiter and Rice Generalized quadratic programming method

PROBLEMS

Find the solution for Problems 10.1–10.5 using a graphical procedure.

10.1 Minimize f = 4x1 + 5x2
subject to

3x1 + x2 ≥ 2

x1 + 4x2 ≥ 5

3x1 + 2x2 ≥ 7

x1, x2 ≥ 0, integers

10.2 Maximize f = 4x1 + 8x2
subject to

4x1 + 5x2 ≤ 40

x1 + 2x2 ≤ 12

x1, x2 ≥ 0, integers

10.3 Maximize f = 4x1 + 3x2
subject to

3x1 + 2x2 ≤ 18

x1, x2 ≥ 0, integers

10.4 Maximize f = 3x1 − x2
subject to

3x1 − 2x2 ≤ 3

−5x1 − 4x2 ≤ −10

x1, x2 ≥ 0, integers

10.5 Maximize f = 2x1 + x2
subject to

8x1 + 5x2 ≤ 15

x1, x2 ≥ 0, integers

�

� �

�

572 Integer Programming

10.6 Solve the following problem using Gomory’s cutting plane method:
Maximize f = 6x1 + 7x2

subject to

7x1 + 6x2 ≤ 42

5x1 + 9x2 ≤ 45

x1 − x2 ≤ 4

xi ≥ 0 and integer, i = 1, 2

10.7 Solve the following problem using Gomory’s cutting plane method:

Maximize f = x1 + 2x2
subject to

x1 + x2 ≤ 7

2x1 ≤ 11, 2x2 ≤ 7

xi ≥ 0 and integer, i = 1, 2

10.8 Express 187 in binary form.

10.9 Three cities A, B, and C are to be connected by a pipeline. The distances between A and
B, B and C, and C and A are 5, 3, and 4 units, respectively. The following restrictions
are to be satisfied by the pipeline:

1. The pipes leading out of A should have a total capacity of at least 3.

2. The pipes leading out of B or of C should have total capacities of either 2 or 3.

3. No pipe between any two cities must have a capacity exceeding 2.

Only pipes of an integer number of capacity units are available and the cost of a pipe is
proportional to its capacity and to its length. Determine the capacities of the pipe lines
to minimize the total cost.

10.10 Convert the following integer quadratic problem into a zero–one linear programming
problem:

Minimize f = 2x2
1 + 3x2

2 + 4x1x2 − 6x1 − 3x2
subject to

x1 + x2 ≤ 1

2x1 + 3x2 ≤ 4

x1, x2 ≥ 0, integers

10.11 Convert the following integer programming problem into an equivalent zero–one pro-
gramming problem:

Minimize f = 6x1 − x2
subject to

3x1 − x2 ≥ 4

2x1 + x2 ≥ 3

−x1 − x2 ≥ −3

x1, x2 nonnegative integers

10.12 Solve the following zero–one programming problem using an exhaustive enumeration
procedure:

Maximize f = − 10x1 − 5x2 − 3x3
subject to

x1 + 2x2 + x3 ≥ 4

2x1 + x2 + x3 ≤ 6

xi = 0 or 1, i = 1, 2, 3

�

� �

�

Problems 573

10.13 Solve the following binary programming problem using an exhaustive enumeration pro-
cedure:

Minimize f = − 5x1 + 7x2 + 10x3 − 3x4 + x5
subject to

x1 + 3x2 − 5x3 + x4 + 4x5 ≤ 0

2x1 + 6x2 − 3x3 + 2x4 + 2x5 ≥ 4

x2 − 2x3 − x4 + x5 ≤ −2

xi = 0 or 1, i = 1, 2, . . . , 5

10.14 Find the solution of Problem 10.1 using the branch-and-bound method coupled with
the graphical method of solution for the branching problems.

10.15 Find the solution of the following problem using the branch-and-bound method coupled
with the graphical method of solution for the branching problems:

Maximize f = x1 − 4x2
subject to

x1 − x2 ≥ −4, 4x1 + 5x2 ≤ 45

5x1 − 2x2 ≤ 20, 5x1 + 2x2 ≥ 10

xi ≥ 0 and integer, i = 1, 2

10.16 Solve the following mixed integer programming problem using a graphical method:

Minimize f = 4x1 + 5x2
subject to

10x1 + x2 ≥ 10, 5x1 + 4x2 ≥ 20

3x1 + 7x2 ≥ 21, x2 + 12x2 ≥ 12

x1 ≥ 0 and integer, x2 ≥ 0

10.17 Solve Problem 10.16 using the branch-and-bound method coupled with a graphical
method for the solution of the branching problems.

10.18 Convert the following problem into an equivalent zero–one LP problem:

Maximize f = x1x2
subject to

x2
1 + x2

2 ≤ 25, xi ≥ 0 and integer, i = 1, 2

10.19 Consider the discrete variable problem:

Maximize f = x1x2
subject to

x2
1 + x2

2 ≤ 4

x1 ∈ {0.1, 0.5, 1.1, 1.6, 2.0}
x2 ∈ {0.4, 0.8, 1.5, 2.0}

Approximate this problem as a zero–one LP problem at the vector, X0 =
{

1.1
0.8

}
.

10.20 Find the solution of the following problem using a graphical method based on the gen-
eralized penalty function approach:

Minimize f = x
subject to

x− 1≥ 0 with x = {1, 2, 3, . . . }
Select suitable values of rk and sk to construct the 𝜙k function.

10.21 Find the solution of the following binary programming problem using the MATLAB
function bintprog:

Minimize f Tx subject to Ax≤ b and Aeq x = beq

�

� �

�

574 Integer Programming

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

0

0

0

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Aeq = [1 1 1 1 1 1 1 1 1] and beq = {5}

10.22 Find the solution of the following binary programming problem using the MATLAB
function bintprog:

Minimize f Tx subject to Ax≤ b
where

f T = {−2 −3 −1 −4 −3 −2 −2 −1 −3}
x = {x1 x2 x3 x4 x5 x6 x7 x8 x9}T

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 −3 0 −1 −1 0 0 0 0

1 1 0 0 0 0 0 0 0

0 1 0 1 −1 −1 0 0 0

0 −1 0 0 0 −2 −3 −1 −2

0 0 −1 0 2 1 2 −2 1

⎤⎥⎥⎥⎥⎥⎥⎦
, b

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−3

1

−1

−4

5

⎫⎪⎪⎪⎬⎪⎪⎪⎭

�

� �

�

11

Stochastic Programming

11.1 INTRODUCTION

Stochastic or probabilistic programming deals with situations where some or all of
the parameters of the optimization problem are described by stochastic (or random
or probabilistic) variables rather than by deterministic quantities. The sources of ran-
dom variables may be several, depending on the nature and the type of problem. For
instance, in the design of concrete structures, the strength of concrete is a random vari-
able since the compressive strength of concrete varies considerably from sample to
sample. In the design of mechanical systems, the actual dimension of any machined
part is a random variable since the dimension may lie anywhere within a specified
(permissible) tolerance band. Similarly, in the design of aircraft and rockets the actual
loads acting on the vehicle depend on the atmospheric conditions prevailing at the time
of the flight, which cannot be predicted precisely in advance. Hence the loads are to
be treated as random variables in the design of such flight vehicles.

Depending on the nature of equations involved (in terms of random variables) in
the problem, a stochastic optimization problem is called a stochastic linear, geometric,
dynamic, or nonlinear programming problem. The basic idea used in stochastic pro-
gramming is to convert the stochastic problem into an equivalent deterministic prob-
lem. The resulting deterministic problem is then solved by using familiar techniques
such as linear, geometric, dynamic, and nonlinear programming. A review of the basic
concepts of probability theory that are necessary for understanding the techniques of
stochastic programming is given in Section 11.2. The stochastic linear, nonlinear, and
geometric programming techniques are discussed in subsequent sections.

11.2 BASIC CONCEPTS OF PROBABILITY THEORY

The material of this section is by no means exhaustive of probability theory. Rather,
it provides the basic background necessary for the continuity of presentation of this
chapter. The reader interested in further details should consult Parzen [11.1], Ang and
Tang [11.2], or Rao [11.3, 11.23].

11.2.1 Definition of Probability

Every phenomenon in real life has a certain element of uncertainty. For example, the
wind velocity at a particular locality, the number of vehicles crossing a bridge, the
strength of a beam, and the life of a machine cannot be predicted exactly. These phe-
nomena are chance dependent, and one has to resort to probability theory to describe
the characteristics of such phenomena.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

575

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

576 Stochastic Programming

Before introducing the concept of probability, it is necessary to define certain
terms such as experiment and event. An experiment denotes the act of performing
something the outcome of which is subject to uncertainty and is not known exactly.
For example, tossing a coin, rolling a die, and measuring the yield strength of steel
can be called experiments. The number of possible outcomes in an experiment may
be finite or infinite, depending on the nature of the experiment. The outcome is a head
or a tail in the case of tossing a coin, and any one of the numbers 1, 2, 3, 4, 5, and
6 in the case of rolling a die. On the other hand, the outcome may be any positive
real number in the case of measuring the yield strength of steel. An event represents
the outcome of a single experiment. For example, realizing a head on tossing a coin,
getting the number 3 or 5 on rolling a die, and observing the yield strength of steel to
be greater than 20 000 psi in measurement can be called events.

The probability is defined in terms of the likelihood of a specific event. If E
denotes an event, the probability of occurrence of the event E is usually denoted by
P(E). The probability of occurrence depends on the number of observations or trials.
It is given by

P(E) =lim
n→∞

m
n

(11.1)

where m is the number of successful occurrences of the event E and n is the total num-
ber of trials. From Eq. (11.1) we can see that probability is a nonnegative number and

0 ≤ P(E) ≤ 1.0 (11.2)

where P(E)= 0 denotes that the event is impossible to realize while P(E)= 1.0 signifies
that it is certain to realize that event. For example, the probability associated with the
event of realizing both the head and the tail on tossing a coin is zero (impossible event),
while the probability of the event that a rolled die will show up any number between
1 and 6 is 1 (certain event).

Independent Events If the occurrence of an event E1 in no way affects the probabil-
ity of occurrence of another event E2, the events E1 and E2 are said to be statistically
independent. In this case the probability of simultaneous occurrence of both the events
is given by

P(E1E2) = P(E1)P(E2) (11.3)

For example, if P(E1) = P(raining at a particular location) = 0.4 and
P(E2) = P(realizing the head on tossing a coin) = 0.7, obviously E1 and E2 are
statistically independent and

P(E1E2) = P(E1)P(E2) = 0.28

11.2.2 Random Variables and Probability Density Functions

An event has been defined as a possible outcome of an experiment. Let us assume that
a random event is the measurement of a quantity X, which takes on various values in
the range −∞ to ∞. Such a quantity (like X) is called a random variable. We denote a
random variable by a capital letter and the particular value taken by it by a lowercase
letter. Random variables are of two types: (i) discrete and (ii) continuous. If the random
variable is allowed to take only discrete values x1, x2, . . . , xn, it is called a discrete
random variable. On the other hand, if the random variable is permitted to take any real
value in a specified range, it is called a continuous random variable. For example, the
number of vehicles crossing a bridge in a day is a discrete random variable, whereas
the yield strength of steel can be treated as a continuous random variable.

�

� �

�

11.2 BASIC CONCEPTS OF PROBABILITY THEORY 577

Probability Mass Function (for Discrete Random Variables) Corresponding to
each xi that a discrete random variable X can take, we can associate a probability of
occurrence P(xi). We can describe the probabilities associated with the random vari-
able X by a table of values, but it will be easier to write a general formula that permits
one to calculate P(xi) by substituting the appropriate value of xi. Such a formula is
called the probability mass function of the random variable X and is usually denoted
as fX(xi), or simply as f(xi). Thus the function that gives the probability of realizing
the random variable X = xi is called the probability mass function fX(xi). Therefore,

f (xi) = fX(xi) = P(X = xi) (11.4)

Cumulative Distribution Function (Discrete Case) Although a random variable X
is described completely by the probability mass function, it is often convenient to
deal with another, related function known as the probability distribution function. The
probability that the value of the random variable X is less than or equal to some number
x is defined as the cumulative distribution function FX(x).

FX(x) = P(X ≤ x) =
∑

i

fX(xi) (11.5)

where summation expends over those values of i such that xi ≤ x. Since the distribu-
tion function is a cumulative probability, it is also called the cumulative distribution
function.

Example 11.1 Find the probability mass and distribution functions for the number
realized when a fair die is thrown.

SOLUTION Since each face is equally likely to show up, the probability of realizing
any number between 1 and 6 is 1

6
.

P(X = 1) = P(X = 2) = ⋯ = P(X = 6) = 1
6

fX(1) = fX(2) = ⋯ = fX(6) =
1
6

The analytical form of FX (x) is

FX(x) =
x
6

for 1 ≤ x ≤ 6

It can be seen that for any discrete random variable, the distribution function will
be a step function. If the least possible value of a variable X is S and the greatest
possible value is T, then

FX(x) = 0 for all x < S and FX(x) = 1 for all x > T

Probability Density Function (Continuous Case) The probability density function
of a random variable is defined by

fX(x)dx = P(x ≤ X ≤ x + dx) (11.6)

which is equal to the probability of detecting X in the infinitesimal interval (x, x+ dx).
The distribution function of X is defined as the probability of detecting X less than or
equal to x, that is,

FX(x) = ∫
x

−∞
fX(x′) dx′ (11.7)

�

� �

�

578 Stochastic Programming

0

(b)

1

FX (x)

x
0

(a)

fX (x)

x

Figure 11.1 Probability density and distribution functions of a continuous random
variable X: (a) density function; (b) distribution function.

where the condition FX(−∞) = 0 has been used. As the upper limit of the integral goes
to infinity, we have

∫
∞

−∞
fX(x)dx = FX(∞) = 1 (11.8)

This is called the normalization condition. A typical probability density function and
the corresponding distribution functions are shown in Figure 11.1.

11.2.3 Mean and Standard Deviation

The probability density or distribution function of a random variable contains all the
information about the variable. However, in many cases we require only the gross
properties, not entire information about the random variable. In such cases, one com-
putes only the mean and the variation about the mean of the random variable as the
salient features of the variable.

Mean. The mean value (also termed the expected value or average) is used to describe
the central tendency of a random variable.

Discrete Case. Let us assume that there are n trials in which the random vari-
able X is observed to take on the value x1 (n1 times), x2 (n2 times), and so on, and
n1 + n2 +⋯+ nm = n. Then the arithmetic mean of X, denoted as X, is given by

X =
∑m

k=1 xknk

n
=

m∑
k=1

xk

nk

n
=

m∑
k=1

xk fX (xk) (11.9)

where nk/n is the relative frequency of occurrence of xk and is same as the probability
mass function fX(xk). Hence in general, the expected value, E(X), of a discrete random
variable can be expressed as

X = E(X) =
∑

i

xi fX (xi), sum over all i (11.10)

Continuous Case. If fX(x) is the density function of a continuous random variable,
X, the mean is given by

X = 𝜇x = E(X) = ∫
∞

−∞
xf X(x) dx (11.11)

�

� �

�

11.2 BASIC CONCEPTS OF PROBABILITY THEORY 579

σ2
1 < σ2

2

σ2
2

0

fX (x)

x

Figure 11.2 Two density functions with same mean.

Standard Deviation. The expected value or mean is a measure of the central ten-
dency, indicating the location of a distribution on some coordinate axis. A measure
of the variability of the random variable is usually given by a quantity known as the
standard deviation. The mean-square deviation or variance of a random variable X is
defined as

𝜎
2
X = Var(X) = E[(X − 𝜇X)2]

= E[X2 − 2X𝜇X + 𝜇2
X]

= E(X2) − 2𝜇XE(X) + E(𝜇2
X)

= E(X2) − 𝜇2
X (11.12)

and the standard deviation as

𝜎X = +
√

Var(X) =
√

E(X2) − 𝜇2
X (11.13)

The coefficient of variation (a measure of dispersion in nondimensional form) is
defined as

coefficient of variation of X = 𝛾X = standard deviation
mean

=
𝜎X

𝜇X
(11.14)

Figure 11.2 shows two density functions with the same mean 𝜇X but with dif-
ferent variances. As can be seen, the variance measures the breadth of a density
function.

Example 11.2 The number of airplane landings at an airport in a minute (X) and their
probabilities are given by

xi 0 1 2 3 4 5 6

pX(xi) 0.02 0.15 0.22 0.26 0.17 0.14 0.04

Find the mean and standard deviation of X.

�

� �

�

580 Stochastic Programming

SOLUTION

X =
6∑

i=0

xipX(xi) = 0(0.02) + 1(0.15) + 2(0.22) + 3(0.26)

+ 4(0.17) + 5(0.14) + 6(0.04)

= 2.99

X2 =
6∑

i=0

x2
i pX(xi) = 0(0.02) + 1(0.15) + 4(0.22) + 9(0.26)

+ 16(0.17) + 25(0.14) + 36(0.04)

= 11.03

Thus

𝜎
2
X = X2 − (X)2 = 11.03 − (2.99)2 = 2.0899 or 𝜎X = 1.4456

Example 11.3 The force applied on an engine brake (X) is given by

fX(x) =
⎧⎪⎨⎪⎩

x
48
, 0 ≤ x ≤ 8 lb

12 − x
24

, 8 ≤ x ≤ 12 lb

Determine the mean and standard deviation of the force applied on the brake.

SOLUTION

𝜇X = E[X] = ∫
∞

−∞
xf X(x)dx = ∫

8

0
x

x
48

dx + ∫
12

8
x

12 − x
24

dx = 6.6667

E[X2] = ∫
∞

−∞
x2fX(x)dx = ∫

8

0
x2 x

48
dx + ∫

12

8
x2 12 − x

24
dx

= 21.3333 + 29.3333 = 50.6666

𝜎
2
X = E[X2] − (E[X])2 = 50.6666 − (6.6667)2

= 6.2222 or 𝜎X = 2.4944

11.2.4 Function of a Random Variable

If X is a random variable, any other variable Y defined as a function of X will also
be a random variable. If fX(x) and FX(x) denote, respectively, the probability density
and distribution functions of X, the problem is to find the density function fY(y)
and the distribution function FY(y) of the random variable Y. Let the functional
relation be

Y = g(X) (11.15)

�

� �

�

11.2 BASIC CONCEPTS OF PROBABILITY THEORY 581

0

y = g(x)

x

Δx3Δx2Δx1

y

Figure 11.3 Range of integration in Eq. (11.16).

By definition, the distribution function of Y is the probability of realizing Y less
than or equal to y:

FY (y) = P(Y ≤ y) = P(g ≤ y)

= ∫g(x)≤y
fX(x) dx (11.16)

where the integration is to be done over all values of x for which g(x)≤ y.
For example, if the functional relation between y and x is as shown in Figure 11.3,

the range of integration is shown as Δx1 +Δx2 +Δx3 + The probability density
function of Y is given by

fY (y) =
𝜕

𝜕y
[FY (y)] (11.17)

If Y = g(X), the mean and variance of Y are defined, respectively, by

E(Y) = ∫
∞

−∞
g(x)fX(x) dx (11.18)

Var[Y] = ∫
∞

−∞
[g(x) − E(Y)]2fX(x) dx (11.19)

11.2.5 Jointly Distributed Random Variables

When two or more random variables are being considered simultaneously, their joint
behavior is determined by a joint probability distribution function. The probability
distributions of single random variables are called univariate distributions and the
distributions that involve two random variables are called bivariate distributions. In
general, if a distribution involves more than one random variable, it is called a multi-
variate distribution.

Joint Density and Distribution Functions We can define the joint density function
of n continuous random variables X1, X2, . . . , Xn as

fX1, . . . ,Xn
(x1, . . . , xn)dx1 ⋯ dxn = P(x1 ≤ X1 ≤ x1 + dx1,

x2 ≤ X2 ≤ x2 + dx2, . . . , xn ≤ Xn ≤ xn + dxn) (11.20)

�

� �

�

582 Stochastic Programming

If the random variables are independent, the joint density function is given by the
product of individual or marginal density functions as

fX1, . . . ,Xn
(x1, . . . , xn) = fX1

(x1)⋯ fXn
(xn) (11.21)

The joint distribution function

FX1,X2, . . . ,Xn
(x1, x2, . . . , xn)

associated with the density function of Eq. (11.20) is given by

FX1, . . . ,Xn
(x1, . . . , xn)

= P[X1 ≤ x1, . . . ,Xn ≤ xn]

= ∫
x1

−∞
⋯∫

xn

−∞
fX1, . . . ,Xn

(x′1, x
′
2, . . . , x

′
n)dx′1 dx′2 . . . dx′n (11.22)

If X1, X2, . . . , Xn are independent random variables, we have

FX1, . . . ,Xn
(x1, . . . , xn) = FX1

(x1)FX2
(x2)⋯FXn

(xn) (11.23)

It can be seen that the joint density function can be obtained by differentiating the joint
distribution function as

fX1, . . . ,Xn
(x1, . . . , xn) =

𝜕
n

𝜕x1𝜕x2 ⋯ 𝜕xn
FX1, . . . ,Xn

(x1, . . . , xn) (11.24)

Obtaining the Marginal or Individual Density Function from the Joint Density
Function Let the joint density function of two random variables X and Y be denoted
by f(x, y) and the marginal density functions of X and Y by fX(x) and fY(y), respectively.
Take the infinitesimal rectangle with corners located at the points (x, y), (x+ dx, y), (x,
y+ dy), and (x+ dx, y+ dy). The probability of a random point (x′, y′) falling in this
rectangle is fX, Y(x, y) dx dy. The integral of such probability elements with respect to
y (for a fixed value of x) is the sum of the probabilities of all the mutually exclusive
ways of obtaining the points lying between x and x+ dx. Let the lower and upper limits
of y be a1(x) and b1(x). Then

P[x ≤ x′ ≤ x + dx] =
[
∫

b1(x)

a1(x)
fX,Y (x, y)dy

]
dx = fX(x) dx

fX(x) = ∫
y2=b1(x)

y1=a1(x)
fX,Y (x, y) dy (11.25)

Similarly, we can show that

fY (y) = ∫
x2=b2(y)

x1=a2(y)
fX,Y (x, y) dx (11.26)

�

� �

�

11.2 BASIC CONCEPTS OF PROBABILITY THEORY 583

11.2.6 Covariance and Correlation

If X and Y are two jointly distributed random variables, the variances of X and Y are
defined as

E[(X − X)2] = Var[X] = ∫
∞

−∞
(x − X)2fX(x)dx (11.27)

E[(Y − Y)2] = Var[Y] = ∫
∞

−∞
(y − Y)2fY (y)dy (11.28)

and the covariance of X and Y as

E[(X − X)(Y − Y)] = Cov(X, Y)

= ∫
∞

−∞ ∫
∞

−∞
(x − X)(y − Y)fX,Y (x, y)dxdy

= 𝜎X,Y (11.29)

The correlation coefficient, 𝜌X, Y, for the random variables is defined as

𝜌X,Y = Cov(X, Y)
𝜎X𝜎Y

(11.30)

and it can be proved that −1≤ 𝜌X, Y ≤ 1.

11.2.7 Functions of Several Random Variables

If Y is a function of several random variables X1, X2, . . . , Xn, the distribution and
density functions of Y can be found in terms of the joint density function of X1, X2,
. . . , Xn as follows:

Let
Y = g(X1,X2, . . . ,Xn) (11.31)

Then the joint distribution function FY(y), by definition, is given by

FY (y) = P(Y ≤ y)

= ∫x1
∫x2

⋯∫xn

fX1,X2, . . . ,Xn
(x1, x2, . . . , xn)dx1dx2 ⋯ dxn

g(x1, x2, . . . , xn) ≤ y (11.32)

where the integration is to be done over the domain of the n-dimensional (X1, X2, . . . ,
Xn) space in which the inequality g(x1, x2, . . . , xn)≤ y is satisfied. By differentiating
Eq. (11.32), we can get the density function of y, fY(y).

As in the case of a function of a single random variable, the mean and variance of
a function of several random variables are given by

E(Y) = E[g(X1,X2, . . . ,Xn)] = ∫
∞

−∞
⋯∫

∞

−∞
g(x1, x2, . . . , xn)fX1,X2, . . .Xn

× (x1, x2, . . . , xn)dx1dx2 ⋯ dxn (11.33)

�

� �

�

584 Stochastic Programming

and

Var(Y) = ∫
∞

−∞
⋯∫

∞

−∞
[g(x1, x2 . . . , xn) − Y]2

× fX1,X2 . . .Xn
(x1, x2, . . . , xn)dx1dx2 ⋯ dxn (11.34)

In particular, if Y is a linear function of two random variables X1 and X2, we have

Y = a1X1 + a2X2

where a1 and a2 are constants. In this case

E(Y) = ∫
∞

−∞ ∫
∞

−∞
(a1x1 + a2x2)fX1,X2

(x1, x2)dx1 dx2

= a1 ∫
∞

−∞
x1fX1

(x1)dx1 + a2 ∫
∞

−∞
x2fX2

(x2)dx2

= a1E(X1) + a2E(X2) (11.35)

Thus the expected value of a sum is given by the sum of the expected values. The
variance of Y can be obtained as

Var(Y) = E[(a1X1 + a2X2) − (a1X + a2X2)]2

= E[a1(X1 − X1) + a2(X2 − X2)]2

= E[a2
1(X1 − X1)2 + 2a1a2(X1 − X1)(X2 − X2) + a2

2(X2 − X2)2] (11.36)

Noting that the expected values of the first and the third terms are variances, whereas
that the middle term is a covariance, we obtain

Var(Y) = a2
1Var(X1) + a2

2Var(X2) + 2a1a2Cov(X1,X2) (11.37)

These results can be generalized to the case when Y is a linear function of several
random variables. Thus, if

Y =
n∑

i=1

aiXi (11.38)

then

E(Y) =
n∑

i=1

aiE(Xi) (11.39)

Var(Y) =
n∑

i=1

a2
i Var(Xi) +

n∑
i=1

n∑
j=1

aiajCov(Xi,Xj), i ≠ j (11.40)

Approximate Mean and Variance of a Function of Several Random Variables If
Y = g(X1, . . . , Xn), the approximate mean and variance of Y can be obtained as
follows. Expand the function g in a Taylor series about the mean values X1,X2, . . .Xn
to obtain

Y = g(X1,X2, . . .Xn) +
n∑

i=1

(Xi − Xi)
𝜕g

𝜕Xi

+ 1
2

n∑
i=1

n∑
j=1

(Xi − Xi)(Xj − Xj)
𝜕

2g

𝜕Xi𝜕Xj
+ . . . (11.41)

�

� �

�

11.2 BASIC CONCEPTS OF PROBABILITY THEORY 585

where the derivatives are evaluated at X1,X2, . . .Xn. By truncating the series at the
linear terms, we obtain the first-order approximation to Y as

Y ≃ g(X1,X2, . . . ,Xn) +
n∑

i=1

(Xi − Xi)
𝜕g

𝜕Xi

|||||(X1,X2, . . . ,Xn)

(11.42)

The mean and variance of Y given by Eq. (11.42) can now be expressed as (using
Eqs. (11.39) and (11.40))

E(Y) ≃ g(X1,X2, . . . ,Xn) (11.43)

Var(Y) ≃
n∑

i=1

c2
i Var(Xi) +

n∑
i=1

n∑
j=1

cicjCov(Xi,Xj),i ≠ j (11.44)

where ci and cj are the values of the partial derivatives 𝜕g/𝜕Xi and 𝜕g/𝜕Xj, respectively,
evaluated at (X1,X2, . . . ,Xn).

It is worth noting at this stage that the approximation given by Eq. (11.42) is fre-
quently used in most of the practical problems to simplify the computations involved.

11.2.8 Probability Distributions

There are several types of probability distributions (analytical models) for describ-
ing various types of discrete and continuous random variables. Some of the common
distributions are given below:

Discrete case Continuous case

Discrete uniform distribution Uniform distribution
Binomial Normal or Gaussian
Geometric Gamma
Multinomial Exponential
Poisson Beta
Hypergeometric Rayleigh
Negative binomial (or Pascal’s) Weibull

In any physical problem, one chooses a particular type of probability distribution
depending on (i) the nature of the problem, (ii) the underlying assumptions associated
with the distribution, (iii) the shape of the graph between f(x) or F(x) and x obtained
after plotting the available data, and (iv) the convenience and simplicity afforded by
the distribution.

Normal Distribution. The best known and most widely used probability distribution is
the Gaussian or normal distribution. The normal distribution has a probability density
function given by

fX(x) =
1√

2𝜋𝜎X

e−1∕2[(x−𝜇X)∕𝜎X]2 , −∞ < x < ∞ (11.45)

where 𝜇X and 𝜎X are the parameters of the distribution, which are also the mean and
standard deviation of X, respectively. The normal distribution is often identified as
N(𝜇X, 𝜎X).

�

� �

�

586 Stochastic Programming

0

fZ(z)

N(0, 1)Probability
= p = ϕ(z1)

z
z1

Figure 11.4 Standard normal density function.

Standard Normal Distribution A normal distribution with parameters 𝜇X = 0 and
𝜎X = 1, called the standard normal distribution, is denoted as N(0, 1). Thus the density
function of a standard normal variable (Z) is given by

fZ(z) =
1√
2𝜋

e−(z
2∕2)
, −∞ < z <∞ (11.46)

The distribution function of the standard normal variable (Z) is often designated as
𝜙(z) so that, with reference to Figure 11.4,

𝜙(z1) = p and z1 = 𝜙
−1(p) (11.47)

where p is the cumulative probability. The distribution function N(0, 1) [i.e. 𝜙(z)] is
tabulated widely as standard normal tables. For example, Table 11.1, gives the values
of z, f(z), and 𝜙(z) for positive values of z. This is because the density function is
symmetric about the mean value (z = 0) and hence

f (−z) = f (z) (11.48)

𝜙(−z) = 1 − 𝜙(z) (11.49)

By the same token, the values of z corresponding to p< 0.5 can be obtained as

z = 𝜙
−1(p) = −𝜙−1(1 − p) (11.50)

Notice that any normally distributed variable (X) can be reduced to a standard normal
variable by using the transformation

z =
x − 𝜇X

𝜎X
(11.51)

For example, if P(a<X≤ b) is required, we have

P(a < X ≤ b) = 1

𝜎X

√
2𝜋 ∫

b

a
e−(1∕2)[(x−𝜇X)∕𝜎X]2 dx (11.52)

�

� �

�

11.2 BASIC CONCEPTS OF PROBABILITY THEORY 587

Table 11.1 Standard normal distribution table.

z f(z) 𝜙(z)

0.0 0.398 942 0.500 000
0.1 0.396 952 0.539 828
0.2 0.391 043 0.579 260
0.3 0.381 388 0.617 912
0.4 0.368 270 0.655 422
0.5 0.352 065 0.691 463
0.6 0.333 225 0.725 747
0.7 0.312 254 0.758 036
0.8 0.289 692 0.788 145
0.9 0.266 085 0.815 940
1.0 0.241 971 0.841 345
1.1 0.217 852 0.864 334
1.2 0.194 186 0.884 930
1.3 0.171 369 0.903 199
1.4 0.149 727 0.919 243
1.5 0.129 518 0.933 193
1.6 0.110 921 0.945 201
1.7 0.094 049 0.955 435
1.8 0.078 950 0.964 070
1.9 0.065 616 0.971 284
2.0 0.053 991 0.977 250
2.1 0.043 984 0.982 136
2.2 0.035 475 0.986 097
2.3 0.028 327 0.989 276
2.4 0.022 395 0.991 802
2.5 0.017 528 0.993 790
2.6 0.013 583 0.995 339
2.7 0.010 421 0.996 533
2.8 0.007 915 0.997 445
2.9 0.005 952 0.998 134
3.0 0.004 432 0.998 650
3.5 0.000 873 0.999 767
4.0 0.000 134 0.999 968
4.5 0.000 016 0.999 996
5.0 0.000 001 5 0.999 999 7

By using Eq. (11.51) and dx = 𝜎X dz, Eq. (11.52) can be rewritten as

P(a < X ≤ b) = 1√
2𝜋 ∫

(b−𝜇X)∕𝜎X

(a−𝜇X)∕𝜎X

e−z2∕2 dz (11.53)

This integral can be recognized to be the area under the standard normal density curve
between (a−𝜇X)/𝜎X and (b−𝜇X)/𝜎X and hence

P(a < X ≤ b) = 𝜙

(
b − 𝜇X

𝜎X

)
− 𝜙

(
a − 𝜇X

𝜎X

)
(11.54)

Example 11.4 The width of a slot on a duralumin forging is normally distributed. The
specification of the slot width is 0.900± 0.005. The parameters 𝜇 = 0.9 and 𝜎 = 0.003
are known from past experience in production process. What is the percent of scrap
forgings?

�

� �

�

588 Stochastic Programming

SOLUTION If X denotes the width of the slot on the forging, the usable region is
given by

0.895 ≤ x ≤ 0.905

and the amount of scrap is given by

scrap = P(x ≤ 0.895) + P(x ≥ 0.905)

In terms of the standardized normal variable,

scrap = P
(

Z ≤ −0.9 + 0.895
0.003

)
+ P

(
Z ≥ −0.9 + 0.905

0.003

)
= P(Z ≤ −1.667) + P(Z ≥ +1.667)

= [1 − P(Z ≤ 1.667)] + [1 − P(Z ≤ 1.667)]

= 2.0 − 2P(Z ≤ 1.667)

= 2.0 − 2(0.9525) = 0.095

= 9.5%

Joint Normal Density Function If X1, X2, . . . , Xn follow normal distribution, any
linear function, Y = a1X1 + a2X2 +⋯+ anXn, also follows normal distribution with
mean

Y = a1X1 + a2X2 +⋯ + anXn (11.55)

and variance

Var(Y) = a2
1Var(X1) + a2

2Var(X2) +⋯ + a2
nVar(Xn) (11.56)

if X1, X2, . . . , Xn are independent. In general, the joint normal density function for
n-independent random variables is given by

fX1,X2, . . . ,Xn
(x1, x2, . . . , xn) =

1√
(2𝜋)n𝜎1𝜎2 ⋯ 𝜎n

exp
⎡⎢⎢⎣−1

2

n∑
k=1

(
xk − Xk

𝜎k

)2⎤⎥⎥⎦
= fX1

(x1)fX2
(x2)⋯ fX2

(xn) (11.57)

where 𝜎i = 𝜎Xi. If the correlation between the random variables Xk and Xj is not zero,
the joint density function is given by

fX1,X2, . . . ,Xn
(x1, x2, . . . , xn)

= 1√
(2𝜋)n|K| exp

[
−1

2

n∑
j=1

n∑
k=1

{K−1}jk(xj − Xj)(xk − Xk)

]
(11.58)

where

KXjXk
= Kjk = E[(xj − Xj)(xk − Xk)]

= ∫
∞

−∞ ∫
∞

−∞
(xj − Xj)(xk − Xk)fXj,Xk

(xj, xk)dxjdxk

= convariance between Xj and Xk

�

� �

�

11.3 STOCHASTIC LINEAR PROGRAMMING 589

K = correlation matrix =

⎡⎢⎢⎢⎢⎢⎣

K11 K12 ⋯ K1n

K21 K22 ⋯ K2n

⋮

Kn1 Kn2 ⋯ Knn

⎤⎥⎥⎥⎥⎥⎦
(11.59)

and {K−1}jk = jkth element of K−1. It is to be noted that KXjXk
= 0 for j≠ k and = 𝜎2

Xj

for j = k in case there is no correlation between Xj and Xk.

11.2.9 Central Limit Theorem

If X1, X2, . . . , Xn are n mutually independent random variables with finite mean and
variance (they may follow different distributions), the sum

Sn =
n∑

i=1

Xi (11.60)

tends to a normal variable if no single variable contributes significantly to the sum as
n tends to infinity. Because of this theorem, we can approximate most of the physical
phenomena as normal random variables. Physically, Sn may represent, for example, the
tensile strength of a fiber-reinforced material, in which case the total tensile strength
is given by the sum of the tensile strengths of individual fibers. In this case the tensile
strength of the material may be represented as a normally distributed random variable.

11.3 STOCHASTIC LINEAR PROGRAMMING

A stochastic linear programming problem can be stated as follows:

Minimize f (X) = CTX =
n∑

j=1

cjxj (11.61)

subject to

AT
i X =

n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m (11.62)

xj ≥ 0, j = 1, 2, . . . , n (11.63)

where cj, aij, and bi are random variables (the decision variables xj are assumed to be
deterministic for simplicity) with known probability distributions. Several methods
are available for solving the problem stated in Eqs. (11.61)–(11.63). We consider a
method known as the chance-constrained programming technique, in this section.

As the name indicates, the chance-constrained programming technique can be
used to solve problems involving chance constraints, that is, constraints having finite
probability of being violated. This technique was originally developed by Charnes
and Cooper [11.5]. In this method the stochastic programming problem is stated as
follows:

Minimize f (X) =
n∑

j=1

cjxj (11.64)

�

� �

�

590 Stochastic Programming

subject to

P

[
n∑

j=1

aijxj ≤ bi

]
≥ pi, i = 1, 2, . . . ,m (11.65)

xj ≥ 0, j = 1, 2, . . . , n (11.66)

where cj, aij, and bi are random variables and pi are specified probabilities. Notice that
Eq. (11.65) indicate that the ith constraint,

n∑
j=1

aijxj ≤ bi

has to be satisfied with a probability of at least pi where 0≤ pi ≤ 1. For simplicity, we
assume that the design variables xj are deterministic and cj, aij, and bi are random vari-
ables. We shall further assume that all the random variables are normally distributed
with known mean and standard deviations.

Since cj are normally distributed random variables, the objective function f(X)
will also be a normally distributed random variable. The mean and variance of f are
given by

f =
n∑

j=1

cjxj (11.67)

Var(f) = XTVX (11.68)

where cj is the mean value of cj and the matrix V is the covariance matrix of cj
defined as

V =

⎡⎢⎢⎢⎢⎢⎣

Var(c1) Cov(c1, c2) ⋯ Cov(c1, cn)
Cov(c2, c1) Var(c2) ⋯ Cov(c2, cn)
⋮

Cov(cn, c1) Cov(cn, c2) ⋯ Var(cn)

⎤⎥⎥⎥⎥⎥⎦
(11.69)

with Var(cj) and Cov(ci, cj) denoting the variance of cj and covariance between ci
and cj, respectively. A new deterministic objective function for minimization can be
formulated as

F(X) = k1f + k2

√
Var(f) (11.70)

where k1 and k2 are nonnegative constants whose values indicate the relative impor-
tance of f and standard deviation of f for minimization. Thus k2 = 0 indicates that the
expected value of f is to be minimized without caring for the standard deviation of f.
On the other hand, if k1 = 0, it indicates that we are interested in minimizing the vari-
ability of f about its mean value without bothering about what happens to the mean
value of f. Similarly, if k1 = k2 = 1, it indicates that we are giving equal importance
to the minimization of the mean as well as the standard deviation of f. Notice that the
new objective function stated in Eq. (11.70) is a nonlinear function in X in view of the
expression for the variance of f.

The constraints of Eq. (11.65) can be expressed as

P[hi ≤ 0] ≥ pi, i = 1, 2, . . . ,m (11.71)

�

� �

�

11.3 STOCHASTIC LINEAR PROGRAMMING 591

where hi is a new random variable defined as

hi =
n∑

j=1

aijxj − bi =
n+1∑
k=1

qikyk (11.72)

where

qik = aik, k = 1, 2, . . . , n qi,n+1 = bi

yk = xk, k = 1, 2, . . . , n yn+1 = −1

Notice that the constant yn+ 1 is introduced for convenience. Since hi is given by a
linear combination of the normally distributed random variables qik, it will also follow
normal distribution. The mean and the variance of hi are given by

hi =
n+1∑
k=1

qikyk =
n∑

j=1

aijxj − bi (11.73)

Var(hi) = YTViY (11.74)

where

Y =

⎧⎪⎪⎨⎪⎪⎩

y1

y2

⋮

yn+1

⎫⎪⎪⎬⎪⎪⎭
(11.75)

Vi =

⎡⎢⎢⎢⎢⎢⎣

Var(qi1) Cov(qi1, qi2) ⋯ Cov(qi1, qi,n+1)
Cov(qi2, qi1) Var(qi2) ⋯ Cov(qi2, qi,n+1)
⋮

Cov(qi,n+1, qi1) Cov(qi,n+1, qi2) ⋯ Var(qi,n+1)

⎤⎥⎥⎥⎥⎥⎦
(11.76)

This can be written more explicitly as

Var(hi) =
n+1∑
k=1

[
y2

k Var(qik) + 2
n+1∑

l=k+1

ykyl Cov
(
qik, qil

)]

=
n∑

k=1

[
y2

k Var(qik) + 2
n∑

l=k+1

ykyl Cov
(
qik, qil

)]
+ y2

n+1Var(qi,n+1) + 2y2
n+1 Cov(qi,n+1, qi,n+1)

+
n∑

k=1

[2ykyn+1 Cov(qik, qi,n+1)]

=
n∑

k=1

[
x2

k Var(aik) + 2
n∑

l=k+1

xkxl Cov
(
aik, ail

)]

+ Var(bi) − 2
n∑

k=1

xk Cov(aik, bi) (11.77)

�

� �

�

592 Stochastic Programming

Thus the constraints in Eq. (11.71) can be restated as

P

[
hi − hi√
Var(hi)

≤ −hi√
Var(hi)

]
≥ pi, i = 1, 2, . . . ,m (11.78)

where [(hi − hi)]∕
√

Var(hi) represents a standard normal variable with a mean value
of zero and a variance of 1.

Thus if si denotes the value of the standard normal variable at which

𝜙(si) = pi (11.79)

the constraints of Eq. (11.78) can be stated as

𝜙

(
−hi√
Var(hi)

)
≥ 𝜙(si), i = 1, 2, . . . ,m (11.80)

These inequalities will be satisfied only if the following deterministic nonlinear
inequalities are satisfied:

−hi√
Var(hi)

≥ si, i = 1, 2, . . . ,m

or

hi + si

√
Var(hi) ≤ 0, i = 1, 2, . . . ,m (11.81)

Thus the stochastic linear programming problem of Eqs. (11.64)–(11.66) can be stated
as an equivalent deterministic nonlinear programming problem as

Minimize F(X) = k1

n∑
j=1

cjxj + k2

√
XTVX, k1 ≥ 0, k2 ≥ 0,

subject to

hi + si

√
Var(hi) ≤ 0, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n (11.82)

Example 11.5 A manufacturing firm produces two machine parts using lathes,
milling machines, and grinding machines. If the machining times required, maximum
times available, and the unit profits are all assumed to be normally distributed random
variables with the following data, find the number of parts to be manufactured per
week to maximize the profit. The constraints have to be satisfied with a probability of
at least 0.99.

Machining time required per unit (min)

Part I Part II

Maximum time
available

per week (min)

Type of
machine Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

Lathes a11 = 10 𝜎a11 = 6 a12 = 5 𝜎a12 = 4 b1 = 2500 𝜎b1 = 500
Milling machines a21 = 4 𝜎a21 = 4 a22 = 10 𝜎a22 = 7 b2 = 2000 𝜎b2 = 400
Grinding machines a31 = 1 𝜎a31 = 2 a32 = 1.5 𝜎a32 = 3 b3 = 450 𝜎b3 = 50
Profit per unit c1 = 50 𝜎c1 = 20 c2 = 100 𝜎c2 = 50

�

� �

�

11.3 STOCHASTIC LINEAR PROGRAMMING 593

SOLUTION By defining new random variables hi as

hi =
n∑

j=1

aijxj − bi,

we find that hi are also normally distributed. By assuming that there is no correlation
between aij’s and bi’s, the means and variances of hi can be obtained from Eqs. (11.73)
and (11.77) as

h1 = a11x1 + a12x2 − b1 = 10x1 + 5x2 − 2500

h2 = a21x1 + a22x2 − b2 = 4x1 + 10x2 − 2000

h3 = a31x1 + a32x2 − b3 = x1 + 1.5x2 − 450

𝜎
2
h1
= x2

1𝜎
2
a11

+ x2
2𝜎

2
a12

+ 𝜎2
b1
= 36x2

1 + 16x2
2 + 250,000

𝜎
2
h2
= x2

1𝜎
2
a21

+ x2
2𝜎

2
a22

+ 𝜎2
b2
= 16x2

1 + 49x2
2 + 160,000

𝜎
2
h3
= x2

1𝜎
2
a31

+ x2
2𝜎

2
a32

+ 𝜎2
b3
= 4x2

1 + 9x2
2 + 2500

Assuming that the profits are independent random variables, the covariance matrix of
cj is given by

V =
[

Var(c1) 0
0 Var(c2)

]
=

[
400 0
0 2500

]
and the variance of the objective function by

Var(f) = XTVX = 400x2
1 + 2500x2

2

Thus the objective function can be taken as

F = k1(50x1 + 100x2) + k2

√
400x2

1 + 2500x2
2

The constraints can be stated as

P[hi ≤ 0] ≥ pi = 0.99,i = 1, 2, 3

As the value of the standard normal variate (si) corresponding to the probability 0.99
is 2.33 (obtained from Table 11.1), we can state the equivalent deterministic nonlinear
optimization problem as follows:

Minimize F = k1(50x1 + 100x2) + k2

√
400x2

1 + 2500x2
2

subject to

10x1 + 5x2 + 2.33
√

36x2
1 + 16x2

2 + 250,000 − 2500 ≤ 0

4x1 + 10x2 + 2.33
√

16x2
1 + 49x2

2 + 160,000 − 2000 ≤ 0

x1 + 1.5x2 + 2.33
√

4x2
1 + 9x2

2 + 2500 − 450 ≤ 0

x1 ≥ 0, x2 ≥ 0

This problem can be solved by any of the nonlinear programming techniques once the
values of k1 and k2 are specified.

�

� �

�

594 Stochastic Programming

11.4 STOCHASTIC NONLINEAR PROGRAMMING

When some of the parameters involved in the objective function and constraints vary
about their mean values, a general optimization problem has to be formulated as a
stochastic nonlinear programming problem. For the present purpose we assume that
all the random variables are independent and follow normal distribution. A stochastic
nonlinear programming problem can be stated in standard form as

Find X which minimizes f (Y) (11.83)

subject to

P[gj(Y) ≥ 0] ≥ pj, j = 1, 2, . . . ,m (11.84)

where Y is the vector of N random variables y1, y2, . . . , yN and it includes the decision
variables x1, x2, . . . , xn. The case when X is deterministic can be obtained as a special
case of the present formulation. Equation (11.84) denote that the probability of real-
izing gj(Y) greater than or equal to zero must be greater than or equal to the specified
probability pj. The problem stated in Eqs. (11.83) and (11.84) can be converted into
an equivalent deterministic nonlinear programming problem by applying the chance
constrained programming technique as follows.

11.4.1 Objective Function

The objective function f(Y) can be expanded about the mean values of yi, yi, as

f (Y) = f (Y) +
N∑

i=1

(
𝜕f

𝜕yi

||||Y

)
(yi − yi) + higher-order derivative terms (11.85)

If the standard deviations of yi, 𝜎yi, are small, f(Y) can be approximated by the first
two terms of Eq. (11.85):

f (Y) ≃ (Y) −
N∑

i=1

(
𝜕f

𝜕yi

||||Y

)
yi +

N∑
i=1

(
𝜕f

𝜕yi

||||Y

)
yi = 𝜓(Y) (11.86)

If all yi (i = 1, 2, . . . , N) follow normal distribution, 𝜓(Y), which is a linear function
of Y, also follows normal distribution. The mean and the variance of 𝜓 are given by

𝜓 = 𝜓(Y) (11.87)

Var(𝜓) = 𝜎
2
𝜓
=

N∑
i=1

(
𝜕f

𝜕yi

||||Y

)2

𝜎
2
yi

(11.88)

since all yi are independent. For the purpose of optimization, a new objective function
F(Y) can be constructed as

F(Y) = k1𝜓 + k2𝜎𝜓 (11.89)

where k1 ≥ 0 and k2 ≥ 0, and their numerical values indicate the relative importance of
𝜓 and 𝜎

𝜓
for minimization. Another way of dealing with the standard deviation of 𝜓

is to minimize 𝜓 subject to the constraint 𝜎
𝜓
≤ k3𝜓 , where k3 is a constant, along with

the other constraints.

�

� �

�

11.4 STOCHASTIC NONLINEAR PROGRAMMING 595

11.4.2 Constraints

If some parameters are random in nature, the constraints will also be probabilistic and
one would like to have the probability that a given constraint is satisfied to be greater
than a certain value. This is precisely what is stated in Eq. (11.84) also. The constraint
inequality (11.84) can be written as

∫
∞

0
fgj(gj)dgj ≥ pj (11.90)

where fgj(gj) is the probability density function of the random variable gj (a function
of several random variables is also a random variable) whose range is assumed to be
−∞ to ∞. The constraint function gj(Y) can be expanded around the vector of mean

values of the random variables, Y, as

gj(Y) ≃ gj(Y) +
N∑

i−1

(
𝜕gj

𝜕yi

|||||Y

)
(yi − yi) (11.91)

From this equation, the mean value, gj, and the standard deviation, 𝜎gj, of gj can be
obtained as

gj = gj(Y) (11.92)

𝜎gj =
⎧⎪⎨⎪⎩

N∑
i=1

(
𝜕gj

𝜕yi

|||||Y

)2

𝜎
2
yi

⎫⎪⎬⎪⎭
1∕2

(11.93)

By introducing the new variable

𝜃 =
gj − gj

𝜎gj
(11.94)

and noting that

∫
∞

−∞

1√
2𝜋

e−t2∕2dt = 1 (11.95)

Equation (11.90) can be expressed as

∫
∞

−(gj∕𝜎gj)

1√
2𝜋

e−𝜃
2∕2d𝜃 ≥ ∫

∞

−𝜙j(pj)

1√
2𝜋

e−t2∕2dt (11.96)

where 𝜙j(pj) is the value of the standard normal variate corresponding to the probabil-
ity pj. Thus

−
gj

𝜎gj
≤ −𝜙j(pj)

or

−gj + 𝜎gj𝜙j(pj) ≤ 0 (11.97)

�

� �

�

596 Stochastic Programming

AA

t

P

Section A-A

d0

di

d

Figure 11.5 Column under compressive load.

Equation (11.97) can be rewritten as

gj − 𝜙j(pj)
⎡⎢⎢⎣

N∑
i=1

(
𝜕gj

𝜕yi

|||||Y

)2

𝜎
2
yi

⎤⎥⎥⎦
1∕2

≥ 0, j = 1, 2, . . . ,m (11.98)

Thus the optimization problem of Eqs. (11.83) and (11.84) can be stated in its equiv-
alent deterministic form as: minimize F(Y) given by Eq. (11.89) subject to the m
constraints given by Eq. (11.98).

Example 11.6 Design a uniform column of tubular section shown in Figure 11.5 to
carry a compressive load P for minimum cost. The column is made up of a material
that has a modulus of elasticity E and density 𝜌. The length of the column is l. The
stress induced in the column should be less than the buckling stress as well as the yield
stress. The mean diameter is restricted to lie between 2.0 and 14.0 cm, and columns
with thickness outside the range 0.2–0.8 cm are not available in the market. The cost of
the column includes material costs and construction costs and can be taken as 5W+ 2d,
where W is the weight and d is the mean diameter of the column. The constraints have
to be satisfied with a probability of at least 0.95.

The following quantities are probabilistic and follow normal distribution with
mean and standard deviations as indicated:

Compressive load = (P, 𝜎P) = (2500,500) kg

Young′s modulus = (E, 𝜎E) = (0.85 × 106
, 0.085 × 106) kgf∕cm2

�

� �

�

11.4 STOCHASTIC NONLINEAR PROGRAMMING 597

Density = (𝜌, 𝜎
𝜌
) = (0.0025, 0.00025) kgf∕cm3

Yield stress = (f y, 𝜎fy
) = (500, 50) kgf∕cm2

Mean diameter of the section = (d, 𝜎d) = (d, 0.01d)

Column length = (l, 𝜎l) = (250, 2.5) cm

SOLUTION This problem, by neglecting standard deviations of the various quanti-
ties, can be seen to be identical to the one considered in Example 1.1. We will take the
design variables as the mean tubular diameter (d) and the tube thickness (t):

X =
{

x1
x2

}
=

{
d
t

}
Notice that one of the design variables (d) is probabilistic in this case and we assume
that d is unknown since 𝜎d is given in term of (d). By denoting the vector of random
variables as

Y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y1

y2

y3

y4

y5

y6

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P

E

𝜌

fy

l

d

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
the objective function can be expressed as f(Y) = 5 W+ 2d = 5𝜌l𝜋 dt+ 2d. Since

Y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P

E

𝜌

f y

l

d

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2500

0.85 × 106

0.0025

500

250

d

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
f (Y) = 5𝜌l 𝜋dt + 2d = 9.8175dt + 2d

𝜕f

𝜕y1

||||Y
=

𝜕f

𝜕y2

||||Y
=

𝜕f

𝜕y4

||||Y
= 0

𝜕f

𝜕y3

||||Y
= 5𝜋ldt = 3927.0dt

𝜕f

𝜕y5

||||Y
= 5𝜋𝜌dt = 0.03927dt

𝜕f

𝜕y6

||||Y
= 5𝜋𝜌lt + 2 = 9.8175t + 2.0

�

� �

�

598 Stochastic Programming

Equations (11.87) and (11.88) give

𝜓(Y) = 9.8175dt + 2d (E1)

𝜎
2
𝜓
= (3927.0dt)2𝜎2

𝜌
+ (0.03927dt)2𝜎2

l + (9.8175t + 2.0)2𝜎2
d

= 0.9835d
2
t2 + 0.0004d

2
+ 0.003927d

2
t (E2)

Thus the new objective function for minimization can be expressed as

F(d, t) = k1𝜓 + k2𝜎𝜓

= k1(9.8175dt + 2d) + k2(0.9835d
2
t2 + 0.0004d

2
+ 0.003927d

2
t)1∕2 (E3)

where k1 ≥ 0 and k2 ≥ 0 indicate the relative importances of𝜓 and 𝜎
𝜓

for minimization.
By using the expressions derived in Example 1.1, the constraints can be expressed as

P[g1(Y) ≤ 0] = P
(P
𝜋dt

− fy ≤ 0
) ≥ 0.95 (E4)

P[g2(Y) ≤ 0] = P

[
P
𝜋dt

− 𝜋
2E

8l2
(d2 + t2) ≤ 0

]
≥ 0.95 (E5)

P[g3(Y) ≤ 0] = P[−d + 2.0 ≤ 0] ≥ 0.95 (E6)

P[g4(Y) ≤ 0] = P[d − 14.0 ≤ 0] ≥ 0.95 (E7)

P[g5(Y) ≤ 0] = P[−t + 0.2 ≤ 0] ≥ 0.95 (E8)

P[g6(Y) ≤ 0] = P[t − 0.8 ≤ 0] ≥ 0.95 (E9)

The mean values of the constraint functions are given by Eq. (11.92) as

g1 = P

𝜋dt
− f y =

2500

𝜋dt
− 500

g2 = P

𝜋dt
− 𝜋

2E(d
2
+ t2)

8l
2

= 2500

𝜋dt
− 𝜋

2(0.85 × 106)(d
2
+ t2)

8(250)2

g3 = −d + 2.0

g4 = d − 14.0

g5 = −t + 0.2

g6 = t − 0.8

The partial derivatives of the constraint functions can be computed as follows:

𝜕g1

𝜕y2

||||Y
=
𝜕g1

𝜕y3

||||Y
=
𝜕g1

𝜕y5

||||Y
= 0

𝜕g1

𝜕y1

||||Y
= 1

𝜋dt

𝜕g1

𝜕y4

||||Y
= −1

𝜕g1

𝜕y6

||||Y
= − P

𝜋d
2
t
= −2500

𝜋d
2
t

�

� �

�

11.4 STOCHASTIC NONLINEAR PROGRAMMING 599

𝜕g2

𝜕y3

||||Y
=
𝜕g2

𝜕y4

||||Y
= 0

𝜕g2

𝜕y1

||||Y
= 1

𝜋dt

𝜕g2

𝜕y2

||||Y
= −𝜋

2(d
2
+ t2)

8l
2

= −𝜋
2(d

2
+ t2)

500,000

𝜕g2

𝜕y5

||||Y
= 𝜋

2E(d
2
+ t2)

4l
3

= 0.0136𝜋2(d
2
+ t2)

𝜕g2

𝜕y6

||||Y
= − P

𝜋d
2
t
− 𝜋

2E(2d)

8l
2

= −2500

𝜋d
2
t
− 𝜋2(3.4)d

𝜕g3

𝜕yi

||||Y
= 0 for i = 1 to 5

𝜕g3

𝜕y6

||||Y
= −1.0

𝜕g4

𝜕yi

||||Y
= 0 for i = 1 to 5

𝜕g4

𝜕y6

||||Y
= 1.0

𝜕g5

𝜕yi

||||Y
=
𝜕g6

𝜕yi

||||Y
= 0 for i = 1 to 6

Since the value of the standard normal variate 𝜙j(pj) corresponding to the probability
pj = 0.95 is 1.645 (obtained from Table 11.1), the constraints in Eq. (11.98) can be
expressed as follows.

For j = 11:

2500

𝜋dt
− 500 − 1.645

[
𝜎

2
P

𝜋2d
2
t2

+ 𝜎2
fy
+ (2500)

𝜋2d
4
t2
𝜎

2
d

]1∕2

≤ 0

795

dt
− 500 − 1.645

(
25,320

d
2
t2

+ 2500 + 63.3

d
2
t2

)1∕2

≤ 0 (E10)

For j = 2:

2500

𝜋dt
− 16.78(d

2
+ t2) − 1.645

⎡⎢⎢⎣
𝜎

2
P

𝜋2d
2
t2

+
𝜋

4(d
2
+ t2)2𝜎2

E

25 × 1010

+ (0.0136𝜋2)2(d
2
+ t2)2𝜎2

l +

(
2500

𝜋d
2
t
+ 3.4𝜋2d

)2

𝜎
2
d

⎤⎥⎥⎦
1∕2

≤ 0

1The inequality sign is different from that of Eq. (11.98) due to the fact that the constraints are stated as
P[gj(Y)≤ 0]≥ pj.

�

� �

�

600 Stochastic Programming

795

dt
− 16.78(d

2
+ t2) − 1.645

[
25,320

d
2
t2

+ 2.82(d
2
+ t2)2

+ 0.113(d
2
+ t2)2 + 63.20

d
2
t2

+ 0.1126d
4
+ 5.34d

t

]1∕2

≤ 0 (E11)

For j = 3:

−d + 2.0 − 1.645[(10−4)d
2
]1∕2 ≤ 0

−1.01645d + 2.0 ≤ 0 (E12)

For j = 4:

d − 14.0 − 1.645[(10−4)d
2
]1∕2 ≤ 0

0.98335d − 14.0 ≤ 0 (E13)

For j = 5:
−t + 0.2 ≤ 0 (E14)

For j = 6:
t − 0.8 ≤ 0 (E15)

Thus the equivalent deterministic optimization problem can be stated as follows: Min-
imize F(d, t) given by Eq. (E3) subject to the constraints given by Eqs. (E10)–(E15).
The solution of the problem can be found by applying any of the standard nonlinear
programming techniques discussed in Chapter 7. In the present case, since the num-
ber of design variables is only two, a graphical method can also be used to find the
solution.

11.5 STOCHASTIC GEOMETRIC PROGRAMMING

The deterministic geometric programming problem has been considered in
Chapter 8. If the constants involved in the posynomials are random variables, the
chance-constrained programming methods discussed in Sections 11.3 and 11.4 can
be applied to this problem. The probabilistic geometric programming problem can be
stated as follows:

Find X = {x1x2 ⋯ xn}T which minimizes f (Y) (11.99)

subject to

P[gj(Y) > 0] ≥ pj, j = 1, 2, . . . ,m

where Y = {y1, y2, . . . , yN}T is the vector of N random variables (may include the
variables x1, x2, . . . , xn), and f(Y) and gj(Y), j = 1, 2, . . . , m, are posynomials. By
expanding the objective function about the mean values of the random variables yi, yi,
and retaining only the first two terms, we can express the mean and variance of f(Y) as

�

� �

�

11.5 STOCHASTIC GEOMETRIC PROGRAMMING 601

in Eqs. (11.87) and (11.88). Thus, the new objective function, F(Y), can be expressed
as in Eq. (11.89):

F(Y) = k1𝜓 + k2𝜎𝜓 (11.100)

The probabilistic constraints of Eq. (11.99) can be converted into deterministic
form as in Section 11.4:

gj − 𝜙j(pj)
⎡⎢⎢⎣

N∑
i=1

(
𝜕gj

𝜕yi

|||||Y

)2

𝜎
2
yi

⎤⎥⎥⎦
1∕2

≥ 0, j = 1, 2, . . . ,m (11.101)

Thus the optimization problem of Eq. (11.99) can be stated equivalently as fol-
lows: Find Y which minimizes F(Y) given by Eq. (11.100) subject to the constraints
of Eq. (11.101). The procedure is illustrated through the following example.

Example 11.7 Design a helical spring for minimum weight subject to a constraint
on the shear stress (𝜏) induced in the spring under a compressive load P.

SOLUTION By selecting the coil diameter (D) and wire diameter (d) of the spring
as design variables, we have x1 = D and x2 = d. The objective function can be stated
in deterministic form as [11.14, 11.15]:

f (X) = 𝜋
2d2D
4

(Nc + Q)𝜌 (E1)

where Nc is the number of active turns, Q the number of inactive turns, and 𝜌 the
weight density. Noting that the deflection of the spring (𝛿) is given by

𝛿 =
8PC3Nc

Gd
(E2)

where P is the load, C = D/d, and G is the shear modulus. By substituting the expres-
sion of Nc given by Eq. (E2) into Eq. (E1), the objective function can be expressed as

f (X) = 𝜋
2
𝜌G𝛿

32P
d6

D2
+ 𝜋

2
𝜌Q
4

d2D (E3)

The yield constraint can be expressed, in deterministic form, as

𝜏 = 8KPC
𝜋d2

≤ 𝜏max (E4)

where 𝜏max is the maximum permissible value of shear stress and K the shear stress
concentration factor given by (for 2≤C≤ 12):

K = 2
C0.25

(E5)

Using Eq. (E5), the constraint of Eq. (E4) can be rewritten as

16P
𝜋𝜏max

D0.75

d2.75
< 1 (E6)

�

� �

�

602 Stochastic Programming

By considering the design variables to be normally distributed with (d, 𝜎d) = d (1,
0.05) and (D, 𝜎D) = D(1, 0.05), k1 = 1 and k2 = 0 in Eq. (11.100) and using pj = 0.95,
the problem [Eqs. (11.100) and (11.101)] can be stated as follows:

Minimize F(Y) = 0.041𝜋2
𝜌𝛿G

P
d

6

D
2
+ 0.278𝜋2

𝜌Qd
2
D (E7)

subject to

12.24P
𝜋𝜏max

D
0.75

d
2.75

≤ 1 (E8)

The data are assumed as P= 510 N, 𝜌= 78 000 N/m3, 𝛿 = 0.02 m, 𝜏max = 0.306× 109 Pa,
and Q= 2. The degree of difficulty of the problem can be seen to be zero and the
normality and orthogonality conditions yield

𝛿1 + 𝛿2 = 1

6𝛿1 + 2𝛿2 − 2.75𝛿3 = 0

−2𝛿1 + 𝛿2 + 0.75𝛿3 = 0 (E9)

The solution of Eq. (E9) gives 𝛿1 = 0.81, 𝛿2 = 0.19, and 𝛿3 = 1.9, which corresponds
to d = 0.0053 m, D = 0.0358 m, and fmin = 2.266 N.

REFERENCES AND BIBLIOGRAPHY

11.1 Parzen, E. (1960). Modern Probability Theory and Its Applications. New York: Wiley.

11.2 Ang, A.H.S. and Tang, W.H. (1975). Probability Concepts in Engineering Planning
and Design, Vol. I, Basic Principles. New York: Wiley.

11.3 Rao, S.S. (1992). Reliability-Based Design. New York: McGraw-Hill.

11.4 Dantzig, G.B. (1955). Linear programming under uncertainty. Management Science 1:
197–207.

11.5 Charnes, A. and Cooper, W.W. (1959). Chance constrained programming. Management
Science 6: 73–79.

11.6 Sengupta, J.K. and Fox, K.A. (1971). Economic Analysis and Operations
Research: Optimization Techniques in Quantitative Economic Models. Amsterdam:
North-Holland.

11.7 Aguilar, R.J. (1973). Systems Analysis and Design in Engineering, Architecture, Con-
struction and Planning. Englewood Cliffs, NJ: Prentice-Hall.

11.8 Nemhauser, G.L. (1966). Introduction to Dynamic Programming. New York: Wiley.

11.9 Kaufmann, A. and Cruon, R. (1967). Dynamic Programming: Sequential Scientific
Management (trans. H. C. Sneyd). New York: Academic Press.

11.10 Thompson, G.E. (1971). Linear Programming: An Elementary Introduction. New
York: Macmillan.

11.11 Avriel, M. and Wilde, D.J. (1970). Stochastic geometric programming. In: Proceedings
of the Princeton Symposium on Mathematical Programming (ed. H.W. Kuhn), 73–91.
Princeton, NJ: Princeton University Press.

11.12 Kirby, M.J.L. (1970). The current state of chance constrained programming. In: Pro-
ceedings of the Princeton Symposium on Mathematical Programming (ed. H.W. Kuhn),
93–111. Princeton, NJ: Princeton University Press.

�

� �

�

Review Questions 603

11.13 Grassmann, W.K. (1981). Stochastic Systems for Management. New York:
North-Holland.

11.14 Budynas, R.G. and Nisbett, J.K. (2015). Shigley’s Mechanical Engineering Design,
10e. New York: McGraw-Hill.

11.15 Beohar, S.B.L. and Rao, A.C. (1981). Optimum design of helical springs using stochas-
tic geometric programming. In: Progress in Engineering Optimization—1981 (eds.
R.W. Mayne and K.M. Ragsdell), 147–151. New York: ASME.

11.16 Howell, L.L., Rao, S.S., and Midha, A. (1995). Reliability-based optimal design of a
bistable compliant mechanism. Journal of Mechanical Design 116: 1115–1121.

11.17 Crawford, R.H. and Rao, S.S. (1989). Probabilistic analysis of function generating
mechanisms. Journal of Mechanisms Transmissions, and Automation in Design 111:
479–481.

11.18 Hati, S.K. and Rao, S.S. (1976). Determination of optimum machining conditions:
deterministic and probabilistic approaches. Journal of Engineering for Industry 98:
354–359.

11.19 Rao, S.S. (1984). Multiobjective optimization in structural design in the presence of
uncertain parameters and stochastic process. AIAA Journal 22: 1670–1678.

11.20 Rao, S.S. (1986). Automated optimum design of wing structures: a probabilistic
approach. Computers and Structures 24 (5): 799–808.

11.21 Rao, S.S. (1981). Reliability-based optimization under random vibration environment.
Computers and Structures 14: 345–355.

11.22 Rao, S.S. and Reddy, C.P. (1979). Mechanism design by chance constrained program-
ming. Mechanism and Machine Theory 14: 413–424.

11.23 Rao, Singiresu, S. (2015). Reliability Engineering. Upper Saddle River, N.J.: Pearson
Education.

REVIEW QUESTIONS

11.1 Define the following terms:

(a) Mean

(b) Variance

(c) Standard deviation

(d) Probability

(e) Independent events

(f) Joint density function

(g) Covariance

(h) Central limit theorem

(i) Chance constrained programming

11.2 Match the following terms and descriptions:

(a) Marginal density function Describes sum of several random variables
(b) Bivariate distribution Described by probability density function
(c) Normal distribution Describes one random variable
(d) Discrete distribution Describes two random variables
(e) Continuous distribution Described by probability mass function

11.3 Answer true or false:

(a) The uniform distribution can be used to describe only continuous random variables.

(b) The area under the probability density function can have any positive value.

(c) The standard normal variate has zero mean and unit variance.

(d) The magnitude of the correlation coefficient is bounded by one.

�

� �

�

604 Stochastic Programming

(e) Chance constrained programming method can be used to solve only stochastic LP
problems.

(f) Chance constrained programming permits violation of constraints to some extent.

(g) Chance constrained programming assumes the random variables to be normally
distributed.

(h) The design variables need not be random in a stochastic programming problem.

(i) Chance constrained programming always gives rise to a two-part objective function.

(j) Chance constrained programming converts a stochastic LP problem into a deter-
minstic LP problem.

(k) Chance constrained programming converts a stochastic geometric programming
problem into a deterministic geometric programming problem.

(l) The introduction of random variables increases the number of state variables in
stochastic dynamic programming.

11.4 Explain the notation N(𝜇, 𝜎).

11.5 What is a random variable?

11.6 Give two examples of random design parameters.

11.7 What is the difference between probability density and probability distribution func-
tions?

11.8 What is the difference between discrete and continuous random variables?

11.9 How does correlation coefficient relate two random variables?

11.10 Identify possible random variables in a LP problem.

11.11 How do you find the mean and standard deviation of a sum of several random variables?

PROBLEMS

11.1 A contractor plans to use four tractors to work on a project in a remote area. The proba-
bility of a tractor functioning for a year without a break-down is known to be 80%. If X
denotes the number of tractors operating at the end of a year, determine the probability
mass and distribution functions of X.

11.2 The absolute value of the velocity of a molecule in a perfect gas (V) obeys the Maxwell
distribution

fV (v) =
4h3√
𝜋

v2e−h2v2
,v ≥ 0

where h2 = (m/2kT) is a constant (m is the mass of the molecule, k is Boltzmann’s
constant, and T is the absolute temperature). Find the mean and the standard deviation
of the velocity of a molecule.

11.3 Find the expected value and the standard deviation of the number of tractors operating
at the end of one year in Problem 11.1.

11.4 Mass-produced items always show random variation in their dimensions due to small
unpredictable and uncontrollable disturbing influences. Suppose that the diameter, X,
of the bolts manufactured in a production shop follow the distribution

fX(x) = a(x − 0.9)(1.1 − x) for 0.9 ≤ x ≤ 1.1

0 elsewhere

Find the values of a, 𝜇X and 𝜎2
X .

�

� �

�

Problems 605

11.5
.
(a) The voltage V across a constant resistance R is known to fluctuate between 0 and

2 V. If V follows uniform distribution, what is the distribution of the power expended
in the resistance?

(b) Find the distribution of the instantaneous voltage (V) given by V = A cos(𝜔t+𝜙),
where A is a constant, 𝜔 the frequency, t the time, and 𝜙 the random phase angle
uniformly distributed from 0 to 2𝜋 radians.

11.6 The hydraulic head loss (H) in a pipe due to friction is given by the Darcy–Weisbach
equation,

H = f
L

2gD
V2

where f is the friction factor, L the length of pipe, V the velocity of flow in pipe, g the
acceleration due to gravity, and D the diameter of the pipe. If V follows exponential
distribution,

fV (v =
⎧⎪⎨⎪⎩

1
V0

e−(v∕V0) for v ≥ 0

0 for v < 0

where V0 is the mean velocity, derive the density function for the head loss H.

11.7 The joint density function of two random variables X and Y is given by

fX,Y (x, y) =
{

3x2y + 3y2x for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 elsewhere

Find the marginal density functions of X and Y.

11.8 Steel rods, manufactured with a nominal diameter of 3 cm, are considered acceptable
if the diameter falls within the limits of 2.99 and 3.01 cm. It is observed that about
5% are rejected oversize and 5% are rejected undersize. Assuming that the diameters
are normally distributed, find the standard deviation of the distribution. Compute the
proportion of rejects if the permissible limits are changed to 2.985 and 3.015 cm.

11.9 Determine whether the random variables X and Y are dependent or independent when
their joint density function is given by

fX,Y (x, y) =
{

4xy for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

0 elsewhere

11.10 Determine whether the random variables X and Y are dependent or independent when
their joint density function is given by

fX,Y (x, y) =
⎧⎪⎨⎪⎩

1
4𝜋2

[1 − sin(x + y)] for − 𝜋 ≤ x ≤ 𝜋, −𝜋 ≤ y ≤ 𝜋

0 elsewhere

⎫⎪⎬⎪⎭
11.11 The stress level at which steel yields (X) has been found to follow normal distribution.

For a particular batch of steel, the mean and standard deviation of X are found to be
4000 and 300 kgf/cm2, respectively. Find

(a) The probability that a steel bar taken from this batch will have a yield stress between
3000 and 5000 kgf/cm2

(b) The probability that the yield stress will exceed 4500 kgf/cm2

(c) The value of X at which the distribution function has a value of 0.10

�

� �

�

606 Stochastic Programming

V0

R

ϕ

Figure 11.6 Range of a projectile.

11.12 An automobile body is assembled using a large number of spot welds. The number of
defective welds (X) closely follows the distribution

P(X = d) = e−22d

d!
,d = 0, 1, 2, . . .

Find the probability that the number of defective welds is less than or equal to 2.

11.13 The range (R) of a projectile is given by

R =
V2

0

g
sin 2𝜙

where V0 is the initial velocity of the projectile, g the acceleration due to gravity, and
𝜙 the angle from the horizontal as shown in Figure 11.6. If the mean and standard
deviations of V0 and𝜙 are given by V0 = 100 ft∕s, 𝜎V0

= 10 ft∕s,𝜙= 30∘, and 𝜎
𝜙
= 3∘,

find the first-order mean and standard deviation of the range R, assuming that V0 and 𝜙
are statistically independent. Evaluate also the second-order mean range. Assume that
g = 32.2 ft./s2.

11.14 Maximize f = 4x1 + 2x2 + 3x3 + c4x4
subject to

x1 + x3 + x4 ≤ 24

3x1 + x2 + 2x3 + 4x4 ≤ 48

2x1 + 2x2 + 3x3 + 2x4 ≤ 36

xi ≥ 0, i = 1 to 4

where c4 is a discrete random variable that can take values of 4, 5, 6, or 7 with probabil-
ities of 0.1, 0.2, 0.3, and 0.4, respectively. Using the simplex method, find the solution
that maximizes the expected value of f.

11.15 Find the solution of Problem 11.14 if the objective is to maximize the variance of f.

11.16 A manufacturing firm can produce 1, 2, or 3 units of a product in a month, but the
demand is uncertain. The demand is a discrete random variable that can take a value of
1, 2, or 3 with probabilities 0.2, 0.2, and 0.6, respectively. If the unit cost of production
is $400, unit revenue is $1000, and unit cost of unfulfilled demand is $0, determine the
output that maximizes the expected total profit.

11.17 A factory manufactures products A, B, and C. Each of these products is processed
through three different production stages. The times required to manufacture 1 unit
of each of the three products at different stages and the daily capacity of the stages are
probabilistic with means and standard deviations as indicated below.

�

� �

�

Problems 607

Time per unit (min) for product
A B C

Stage capacity
(min/d)

Stage Mean
Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

1 4 1 8 3 4 4 1720 172
2 12 2 0 0 8 2 1840 276
3 4 2 16 4 0 0 1680 336

The profit per unit is also a random variable with the following data:

Profit($)

Product Mean Standard deviation

A 6 2
B 4 1
C 10 3

Assuming that all amounts produced are absorbed by the market, determine the daily
number of units to be manufactured of each product for the following cases.

(a) The objective is to maximize the expected profit.

(b) The objective is to maximize the standard deviation of the profit.

(c) The objective is to maximize the sum of expected profit and the standard deviation
of the profit.

Assume that all the random variables follow normal distribution and the constraints
have to be satisfied with a probability of 0.95.

11.18 In a belt-and-pulley drive, the belt embraces the shorter pulley 165∘ and runs over it at
a mean speed of 1700 m/min with a standard deviation of 51 m/min. The density of the
belt has a mean value of 1 g/cm3 and a standard deviation of 0.05 g/cm3. The mean
and standard deviations of the permissible stress in the belt are 25 and 2.5kgf/cm2,
respectively. The coefficient of friction (𝜇) between the belt and the pulley is given
by 𝜇 = 0.25 and 𝜎

𝜇
= 0.05. Assuming a coefficient of variation of 0.02 for the belt

dimensions, find the width and thickness of the belt to maximize the mean horsepower
transmitted. The minimum permissible values for the width and the thickness of the
belt are 10.0 and 0.5 cm, respectively. Assume that all the random variables follow nor-
mal distribution and the constraints have to be satisfied with a minimum probability of
0.95. Hint: Horsepower transmitted = (T1 −T2)𝜈/75, where T1 and T2 are the tensions
on the tight side and slack sides of the belt in kgf and 𝜈 is the linear velocity of the
belt in m/s:

T1 = Tmax − Tc = Tmax −
wv2

g
and

T1

T2
= e𝜇𝜃

where Tmax is the maximum permissible tension, Tc the centrifugal tension, w the weight
of the belt per meter length, g the acceleration due to gravity in m/s2, and 𝜃 the angle
of contact between the belt and the pulley.

�

� �

�

608 Stochastic Programming

11.19 An article is to be restocked every three months in a year. The quarterly demand U is
random and its law of probability in any of the quarters is as given below:

U Probability mass function, PU (u)

0 0.2
1 0.3
2 0.4
3 0.1
>3 0.0

The cost of stocking an article for a unit of time is 4, and when the stock is exhausted,
there is a scarcity charge of 12. The orders that are not satisfied are lost, in other words,
are not carried forward to the next period. Further, the stock cannot exceed three articles,
owing to the restrictions on space. Find the annual policy of restocking the article so as
to minimize the expected value of the sum of the cost of stocking and of the scarcity
charge.

11.20 A close-coiled helical spring, made up of a circular wire of diameter d, is to be designed
to carry a compressive load P. The permissible shear stress is 𝜎max and the permissible
deflection is 𝛿max. The number of active turns of the spring is n and the solid height of
the spring has to be greater than h. Formulate the problem of minimizing the volume
of the material so as to satisfy the constraints with a minimum probability of p. Take
the mean diameter of the coils (D) and the diameter of the wire (d) as design variables.
Assume d, D, P, 𝜎max, 𝛿max, h, and the shear modulus of the material, G, to be normally
distributed random variables. The coefficient of variation of d and D is k. The maximum
shear stress, 𝜎, induced in the spring is given by

𝜎 = 8PDK
𝜋d3

where K is the Wahl’s stress factor defined by

K = 4D − d
4(D − d)

+ 0.615d
D

and the deflection (𝛿) by

𝛿 = 8PD3n

Gd4

Formulate the optimization problem for the following data:

G = N(840,000, 84,000) kgf ∕cm2
, 𝛿max = N(2, 0.1) cm,

𝜎max = N(3000,150) kgf∕cm2
,

P = N(12, 3) kgf , n = 8, h = N(2.0, 0.4) cm, k = 0.05,

p = 0.99

11.21 Solve Problem 11.20 using a graphical technique.

�

� �

�

12

Optimal Control and Optimality
Criteria Methods

12.1 INTRODUCTION

In this chapter we give a brief introduction to the following techniques of optimization:

1. Calculus of variations
2. Optimal control theory
3. Optimality criteria methods

If an optimization problem involves the minimization (or maximization) of a func-
tional subject to the constraints of the same type, the decision variable will not be
a number, but it will be a function. The calculus of variations can be used to solve
this type of optimization problems. An optimization problem that is closely related
to the calculus of variations problem is the optimal control problem. An optimal con-
trol problem involves two types of variables: the control and state variables, which
are related to each other by a set of differential equations. Optimal control theory
can be used for solving such problems. In some optimization problems, especially
those related to structural design, the necessary conditions of optimality, for special-
ized design conditions, are used to develop efficient iterative techniques to find the
optimum solution. Such techniques are known as optimality criteria methods.

12.2 CALCULUS OF VARIATIONS

12.2.1 Introduction

The calculus of variations is concerned with the determination of extrema (maxima
and minima) or stationary values of functionals. A functional can be defined as a func-
tion of several other functions. Hence the calculus of variations can be used to solve
trajectory optimization problems.1 The subject of calculus of variations is almost as
old as the calculus itself. The foundations of this subject were laid down by Bernoulli
brothers and later important contributions were made by Euler, Lagrange, Weirstrass,
Hamilton, and Bolzane. The calculus of variations is a powerful method for the solu-
tion of problems in several fields, such as statics and dynamics of rigid bodies, general
elasticity, vibrations, optics, and optimization of orbits and controls. We shall see some
of the fundamental concepts of calculus of variations in this section.

1See Section 1.5 for the definition of a trajectory optimization problem.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

609

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

610 Optimal Control and Optimality Criteria Methods

12.2.2 Problem of Calculus of Variations

A simple problem in the theory of the calculus of variations with no constraints can
be stated as follows:

Find a function u(x) that minimizes the functional (integral)

A = ∫
x2

x1

F(x, u, u′, u′′) dx (12.1)

where A and F can be called functionals (functions of other functions). Here x is the
independent variable,

u = u(x), u′ = du(x)
dx

, and u′′ = d2u(x)
dx2

In mechanics, the functional usually possesses a clear physical meaning. For
example, in the mechanics of deformable solids, the potential energy (𝜋) plays the
role of the functional (𝜋 is a function of the displacement components u, v, and w,
which, in turn, are functions of the coordinates x, y, and z).

The integral in Eq. (12.1) is defined in the region or domain [x1, x2]. Let the values
of u be prescribed on the boundaries as u(x1) = u1 and u(x2) = u2. These are called the
boundary conditions of the problem. One of the procedures that can be used to solve
the problem in Eq. (12.1) will be as follows:

1. Select a series of trial or tentative solutions u(x) for the given problem and
express the functional A in terms of each of the tentative solutions.

2. Compare the values of A given by the different tentative solutions.
3. Find the correct solution to the problem as that particular tentative solution

which makes the functional A assume an extreme or stationary value.

The mathematical procedure used to select the correct solution from a number of
tentative solutions is called the calculus of variations.

Stationary Values of Functionals Any tentative solution u(x) in the neighborhood
of the exact solution u(x) may be represented as (Figure 12.1)

u(x)
tentative
solution

= u(x)
exact

solution

+ 𝛿u(x)
variation

of u

(12.2)

Tentative
solution

Exact
solution

u(x)

δu(x)

x
x2x1

u1

u2

x

u(x)

Figure 12.1 Tentative and exact solutions.

�

� �

�

12.2 Calculus of Variations 611

The variation in u (i.e. 𝛿u) is defined as an infinitesimal, arbitrary change in u for
a fixed value of the variable x (i.e. for 𝛿x = 0). Here 𝛿 is called the variational operator
(similar to the differential operator d). The operation of variation is commutative with
both integration and differentiation, that is,

𝛿

(
∫ F dx

)
= ∫ (𝛿F) dx (12.3)

𝛿

(du
dx

)
= d

dx
(𝛿u) (12.4)

Also, we define the variation of a function of several variables or a functional in
a manner similar to the calculus definition of a total differential:

𝛿F = 𝜕F
𝜕u
𝛿u + 𝜕F

𝜕u′
𝛿u′ + 𝜕F

𝜕u′′
𝛿u′′ + 𝜕F

𝜕x
𝛿x

↑

0 (12.5)

(since we are finding variation of F for a fixed value of x, i.e. 𝛿x = 0).
Now, let us consider the variation in A(𝛿A) corresponding to variations in the

solution (𝛿u). If we want the condition for the stationariness of A, we take the nec-
essary condition as the vanishing of first derivative of A (similar to maximization or
minimization of simple functions in ordinary calculus).

𝛿A = ∫
x2

x1

(
𝜕F
𝜕x
𝛿u + 𝜕F

𝜕u′
𝛿u′ + 𝜕F

𝜕u′′
𝛿u′′

)
dx = ∫

x2

x1

𝛿F dx = 0 (12.6)

Integrate the second and third terms by parts to obtain

∫
x2

x1

𝜕F
𝜕u′

𝛿u′ dx = ∫
x2

x1

𝜕F
𝜕u′

𝛿

(
𝜕u
𝜕x

)
dx = ∫

x2

x1

𝜕F
𝜕u′

𝜕

𝜕x
(𝜕u) dx

= 𝜕F
𝜕u′

𝛿u
||||x2

x1

− ∫
x2

x1

d
dx

(
𝜕F
𝜕u′

)
𝛿u dx (12.7)

∫
x2

x1

𝜕F
𝜕u′′

𝛿u′′ dx = ∫
x2

x1

𝜕F
𝜕u′′

𝜕

𝜕x
(𝛿u′)dx = 𝜕F

𝜕u′′
𝛿u′

||||x2

x1

− ∫
x2

x1

d
dx

(
𝜕F
𝜕u′′

)
𝛿u′ dx

= 𝜕F
𝜕u′′

𝛿u′
||||x2

x1

− d
dx

(
𝜕F
𝜕u′′

)
𝛿u

||||x2

x1

+ ∫
x2

x1

d2

dx2

(
𝜕F
𝜕u′′

)
𝛿u dx (12.8)

Thus

𝛿A = ∫
x2

x1

[
𝜕F
𝜕u

− d
dx

(
𝜕F
𝜕u′

)
+ d2

dx2

(
𝜕F
𝜕u′′

)]
𝛿u dx

+
[
𝜕F
𝜕u′

− d
dx

(
𝜕F
𝜕u′′

)]
𝛿u

||||x2

x1

+
[(

𝜕F
𝜕u′′

)
𝛿u′

]||||x2

x1

= 0 (12.9)

�

� �

�

612 Optimal Control and Optimality Criteria Methods

y(x)

(xB, yB)

y

s

A

x

B

Figure 12.2 Curve of minimum time of descent.

Since 𝛿u is arbitrary, each term must vanish individually:

𝜕F
𝜕u

− d
dx

(
𝜕F
𝜕u′

)
+ d2

dx2

(
𝜕F
𝜕u′′

)
= 0 (12.10)[

𝜕F
𝜕u′

− d
dx

(
𝜕F
𝜕u′′

)]
𝛿u

||||x2

x1

= 0 (12.11)

𝜕F
𝜕u′′

𝛿u′
||||x2

x1

= 0 (12.12)

Equation (12.10) will be the governing differential equation for the given prob-
lem and is called Euler equation or Euler–Lagrange equation. Equations (12.11) and
(12.12) give the boundary conditions.

The conditions [
𝜕F
𝜕u′

− d
dx

(
𝜕F
𝜕u′′

)]||||x2

x1

= 0 (12.13)

𝜕F
𝜕u′′

||||x2

x1

= 0 (12.14)

are called natural boundary conditions (if they are satisfied, they are called free bound-
ary conditions). If the natural boundary conditions are not satisfied, we should have

𝛿u(x1) = 0, 𝛿u(x2) = 0 (12.15)

𝛿u′(x1) = 0, 𝛿u′(x2) = 0 (12.16)

in order to satisfy Eqs. (12.11) and (12.12). These are called geometric or forced
boundary conditions.

Example 12.1 Brachistochrone Problem In June 1696, Johann Bernoulli set the
following problem before the scholars of his time. “Given two points A and B in a
vertical plane, find the path from A to B along which a particle of mass m will slide
under the force of gravity, without friction, in the shortest time” (Figure 12.2). The
term brachistochrone derives from the Greek brachistos (shortest) and chronos (time).

If s is the distance along the path and 𝜈 the velocity, we have

𝜈 = ds
dt

=
(dx2 + dy2)1∕2

dt
=

[1 + (y′)2]1∕2

dt
dx

dt = 1
𝜈
[1 + (y′)2]1∕2 dx

�

� �

�

12.2 Calculus of Variations 613

Since potential energy is converted to kinetic energy as the particle moves down
the path, we can write

1
2
mv2 = mgx

Hence

dt =
[

1 + (y′)2

2gx

]1∕2

dx (E1)

and the integral to be stationary is

t = ∫
xB

0

[
1 + (y′)2

2gx

]1∕2

dx (E2)

The integrand is a function of x and y′ and so is a special case of Eq. (12.1). Using
the Euler–Lagrange equation,

d
dx

(
𝜕F
𝜕y′

)
− 𝜕F
𝜕y

= 0 with F =
[

1 + (y′)
2gx

]1∕2

we obtain
d
dx

(
y′

{x[1 + (y′)2]}1∕2

)
= 0

Integrating yields

y′ =
dy

dx
=
(

C1x

1 − C1x

)1∕2

(E3)

where C1 is a constant of integration. The ordinary differential Eq. (E3) yields on
integration the solution to the problem as

y(x) = C1 sin−1(x∕C1) − (2C1x − x2)1∕2 + C2 (E4)

Example 12.2 Design of a Solid Body of Revolution for Minimum Drag Next we
consider the problem of determining the shape of a solid body of revolution for mini-
mum drag. In the general case, the forces exerted on a solid body translating in a fluid
depend on the shape of the body and the relative velocity in a very complex manner.
However, if the density of the fluid is sufficiently small, the normal pressure (p) acting
on the solid body can be approximately taken as [12.3]

p = 2𝜌v2 sin2
𝜃 (E1)

where 𝜌 is the density of the fluid, v the velocity of the fluid relative to the solid body,
and 𝜃 the angle between the direction of the velocity of the fluid and the tangent to the
surface as shown in Figure 12.3.

Since the pressure (p) acts normal to the surface, the x-component of the force
acting on the surface of a slice of length dx and radius y(x) shown in Figure 12.4 can
be written as

dP = (normal pressure) (surface area) sin 𝜃

= (2𝜌v2 sin2
𝜃) (2𝜋y

√
1 + (y′)2 dx) sin 𝜃 (E2)

�

� �

�

614 Optimal Control and Optimality Criteria Methods

dx

θ
p

y

L

R

x

Figure 12.3 Solid body of revolution translating in a fluid medium.

θ

θ

p

x
x

y(x)

dx√1 + (y′)2

Figure 12.4 Element of surface area acted on by the pressure p.

where y′ = dy/dx. The total drag force, P, is given by the integral of Eq. (E2) as

P = ∫
L

0
4𝜋𝜌v2y sin3

𝜃

√
1 + (y′)2 dx (E3)

where L is the length of the body. To simplify the calculations, we assume that y′≪ 1
so that

sin 𝜃 =
y′√

1 + (y′)2
≃ y′ (E4)

Thus Eq. (E3) can be approximated as

P = 4𝜋𝜌v2 ∫
L

0
(y′)3y dx (E5)

Now the minimum drag problem can be stated as follows.

�

� �

�

12.2 Calculus of Variations 615

Find y(x) which minimizes the drag P given by Eq. (E5) subject to the condition
that y(x) satisfies the end conditions

y(x = 0) = 0 and y(x = L) = R (E6)

By comparing the functional P of Eq. (E5) with A of Eq. (12.1), we find that

F(x, y, y′, y′′) = 4𝜋𝜌v2(y′)3y (E7)

The Euler–Lagrange equation, Eq. (12.10), corresponding to this functional can
be obtained as

(y′)3 − 3
d
dx

[y(y′)2] = 0 (E8)

The boundary conditions, Eqs. (12.11) and (12.12), reduce to

[3y(y′)2]𝛿y|x2=L
x1=0 = 0 (E9)

Equation (E8) can be written as

(y′)3 − 3[y′(y′)2 + y(2)y′y′′] = 0

or
(y′)3 + 3yy′y′′ = 0 (E10)

This equation, when integrated once, gives

y(y′)3 = k3
1 (E11)

where k3
1 is a constant of integration. Integrating Eq. (E11), we obtain

y(x) = (k1x + k2)3∕4 (E12)

The application of the boundary conditions, Eq. (E6), gives the values of the con-
stants as

k1 = R4∕3

L
and k2 = 0

Hence the shape of the solid body having minimum drag is given by the equation

y(x) = R
(x

L

)3∕4

12.2.3 Lagrange Multipliers and Constraints

If the variable x is not completely independent but has to satisfy some condition(s) of
constraint, the problem can be stated as follows:

Find the function y(x) such that the integral

A = ∫
x2

x1

F

(
x, y,

dy

dx

)
dx → minimum

subject to the constraint

g

(
x, y,

dy

dx

)
= 0 (12.17)

where g may be an integral function. The stationary value of a constrained calculus of
variations problem can be found by the use of Lagrange multipliers. To illustrate the
method, let us consider a problem known as isoperimetric problem given below.

�

� �

�

616 Optimal Control and Optimality Criteria Methods

Example 12.3 Optimum Design of a Cooling Fin Cooling fins are used on radi-
ators to increase the rate of heat transfer from a hot surface (wall) to the surround-
ing fluid. Often, we will be interested in finding the optimum tapering of a fin (of
rectangular cross section) of specified total mass which transfers the maximum heat
energy.

The configuration of the fin is shown in Figure 12.5. If T0 and T∞ denote the wall
and the ambient temperatures, respectively, the temperature of the fin at any point,
T (x), can be nondimensionalized as

t(x) =
T(x) − T∞

T0 − T∞
(E1)

so that t(0) = 1 and t (∞) = 0.
To formulate the problem, we first write the heat balance equation for an elemental

length, dx, of the fin:

heat inflow by conduction = heat outflow by conduction and convection

that is, (
−kA

dt
dx

)
x
=
(
−kA

dt
dx

)
x+dx

+ hS (t − t∞) (E2)

where k is the thermal conductivity, A the cross-sectional area of the fin= 2y(x) per unit
width of the fin, h the heat transfer coefficient, S the surface area of the fin element
= 2

√
1 + (y′)2dx per unit width, and 2y(x) the depth of the fin at any section x. By

writing (
−kA

dt
dx

)
x+dx

=
(
−kA

dt
dx

)
x
+ d

dx

(
−kA

dt
dx

)
dx (E3)

and noting that t∞ = 0, we can simplify Eq. (E2) as

d
dx

(
ky

dt
dx

)
= ht

√
1 + (y′)2 (E4)

Assuming that y′≪ 1 for simplicity, this equation can be written as

k
d
dx

(
y

dt
dx

)
= ht (E5)

L

x

y

dx

dx√1 + (y′)2

Heat outflow
by conduction

Heat inflow
by conduction

Heat overflow
by convection

Ambient temperature = T∞ or t∞ = 0

Temperature
of wall = T0

t0 = 1

y(x)

Figure 12.5 Geometry of a cooling fin.

�

� �

�

12.2 Calculus of Variations 617

The amount of heat dissipated from the fin to the surroundings per unit time is
given by

H = 2∫
L

0
ht dx (E6)

by assuming that the heat flow from the free end of the fin is zero. Since the mass of
the fin is specified as m, we have

2∫
L

0
𝜌y dx − m = 0 (E7)

where 𝜌 is the density of fin.
Now the problem can be stated as follows: Find t (x) that maximizes the integral

in Eq. (E6) subject to the constraint Eq. (E7). Since y(x) in Eq. (E7) is also not known,
it can be expressed in terms of t(x) using the heat balance Eq. (E5). By integrating
Eq. (E5) between the limits x and L, we obtain

−ky(x) dt
dx

(x) = h∫
L

x
t(x) dx (E8)

by assuming the heat flow from the free end to be zero. Equation (E8) gives

y(x) = −h
k

1
dt∕dx ∫

L

x
t(x) dx (E9)

By substituting Eq. (E9) in Eq. (E7), the variational problem can be restated as
Find y(x) which maximizes

H = 2h∫
L

0
t(x) dx (E10)

subject to the constraint

g(x, t, t′) = 2𝜌
h
k ∫

L

0

1
dt∕dx

[
∫

L

x
t(x) dx

]
dx + m = 0 (E11)

This problem can be solved by using the Lagrange multiplier method. The func-
tional I to be extremized is given by

I = ∫
L

0
(H + 𝜆g) dx = 2h∫

L

0

[
t(x) + 𝜆𝜌

k
1

dt∕dx ∫
L

x
t(x) dx

]
dx (E12)

where 𝜆 is the Lagrange multiplier.
By comparing Eq. (E12) with Eq. (12.1) we find that

F(x, t, t′) = 2ht + 2h𝜆𝜌
k

1
t′ ∫

L

x
t(x) dx (E13)

The Euler–Lagrange equation, Eq. (12.10), gives

h − 𝜆h𝜌
k

[
2t′′

(t′)3 ∫
L

x
t(x) dx + t(x)

(t′)2
− ∫

x

0

dx
t′

]
= 0 (E14)

�

� �

�

618 Optimal Control and Optimality Criteria Methods

This integrodifferential equation has to be solved to find the solution t (x). In this
case we can verify that

t(x) = 1 − x

(
𝜆𝜌

k

)1∕2

(E15)

satisfies Eq. (E14). The thickness profile of the fin can be obtained from Eq. (E9) as

y(x) = −h
k

1
t′ ∫

L

x
t(x) dx = h

k

(
k
𝜆𝜌

)1∕2

∫
L

x

[
1 −

(
𝜆𝜌

k

)1∕2

x

]
dx

= h
(k𝜆𝜌)1∕2

[
L −

(
𝜆𝜌

k

)1∕2
L2

2
− x +

(
𝜆𝜌

k

)1∕2
x2

2

]
= c1 + c2x + c3x2 (E16)

where

c1 = h
(k𝜆𝜌)1∕2

[
L −

(
𝜆𝜌

k

)1∕2
L2

2

]
(E17)

c2 = h
(k𝜆𝜌)1∕2

(E18)

c3 = h
2(k𝜆𝜌)1∕2

(
𝜆𝜌

k

)1∕2

= h
2k

(E19)

The value of the unknown constant 𝜆 can be found by using Eq. (E7) as

m = 2𝜌∫
L

0
y(x) dx = 2𝜌

(
c1L + c2

L2

2
+ c3

L3

3

)
that is,

m
2𝜌L

= c1 + c2
L
2
+ c3

L2

3
= hL

2(k𝜌𝜆)1∕2
− 1

3
hL2

k
(E20)

Equation (E20) gives

𝜆
1∕2 = hL

(k𝜌)1∕2

1

(m∕𝜌L) + 2
3
(hL2∕k)

(E21)

Hence the desired solution can be obtained by substituting Eq. (E21) in Eq. (E16).

12.2.4 Generalization

The concept of including constraints can be generalized as follows. Let the problem
be to find the functions u1(x, y, z), u2(x, y, z), . . . , un(x, y, z) that make the functional

∫V
f

(
x, y, z, u1, u2, . . . , un,

𝜕u1

𝜕x
, . . .

)
dV (12.18)

stationary subject to the m constraints

g1

(
x, y, z, u1, u2, . . . , un,

𝜕u1

𝜕x
, . . .

)
= 0

⋮

g1

(
x, y, z, u1, u2, . . . , un,

𝜕u1

𝜕x
, . . .

)
= 0 (12.19)

�

� �

�

12.3 Optimal Control Theory 619

The Lagrange multiplier method consists in taking variations in the functional

A = ∫V
(f + 𝜆1g1 + 𝜆2g2 +⋯ + 𝜆mgm) dV (12.20)

where 𝜆i are now functions of position. In the special case where one or more of the
gi are integral conditions, the associated 𝜆i are constants.

12.3 OPTIMAL CONTROL THEORY

The basic optimal control problem can be stated as follows:

Find the control vector u =
⎧⎪⎨⎪⎩

u1
u2
⋮

um

⎫⎪⎬⎪⎭
which minimizes the functional, called the performance index,

J = ∫
T

0
f0(x, u, t) dt (12.21)

where

x =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭
is called the state vector, t the time parameter, T the terminal time, and f0 is a function
of x, u, and t. The state variables xi and the control variables ui are related as

dxi

dt
= fi(x1, x2, . . . , xn; u1, u2, . . . , um; t), i = 1, 2, . . . , n

or
.
x = f(x,u, t) (12.22)

In many problems, the system is linear and Eq. (12.22) can be stated as

.
x = [A]x + [B]u (12.23)

where [A] is an n× n matrix and [B] is an n×m matrix. Further, while finding the
control vector u, the state vector x is to be transferred from a known initial vector x0 at
t = 0 to a terminal vector xT at t = T, where some (or all or none) of the state variables
are specified.

12.3.1 Necessary Conditions for Optimal Control

To derive the necessary conditions for the optimal control, we consider the following
simple problem:

Find u which minimizes J = ∫
T

0
f0(x, u, t) dt (12.24)

subject to
.
x = f (x, u, t) (12.25)

�

� �

�

620 Optimal Control and Optimality Criteria Methods

with the boundary condition x(0) = k1. To solve this optimal control problem, we
introduce a Lagrange multiplier 𝜆 and define an augmented functional J* as

J∗ = ∫
T

0
{f0(x, u, t) + 𝜆[f (x, u, t) −

.
x]} dt (12.26)

Since the integrand
F = f0 + 𝜆(f −

.
x) (12.27)

is a function of the two variables x and u, we can write the Euler–Lagrange equations
[with u1 = x, u′1 = 𝜕x/𝜕t = .

x, u2 = u and u′2 = 𝜕u/𝜕t = .
u in Eq. (12.10)] as

𝜕F
𝜕x

− d
dt

(
𝜕F
𝜕

.
x

)
= 0 (12.28)

𝜕F
𝜕u

− d
dt

(
𝜕F
𝜕

.
u

)
= 0 (12.29)

In view of relation (12.27), Eqs. (12.28) and (12.29) can be expressed as

𝜕f0
𝜕x

+ 𝜆
𝜕f

𝜕x
+

.
𝜆 = 0 (12.30)

𝜕f

𝜕u
+ 𝜆

𝜕f

𝜕u
= 0 (12.31)

A new functional H, called the Hamiltonian, is defined as

H = f0 + 𝜆f (12.32)

and Eqs. (12.30) and (12.31) can be rewritten as

−𝜕H
𝜕x

=
.
𝜆 (12.33)

𝜕H
𝜕u

= 0 (12.34)

Equations (12.33) and (12.34) represent two first-order differential equations. The
integration of these equations leads to two constants whose values can be found from
the known boundary conditions of the problem. If two boundary conditions are speci-
fied as x(0) = k1 and x(T) = k2, the two integration constants can be evaluated without
any difficulty. On the other hand, if only one boundary condition is specified as, say,
x(0) = k1, the free-end condition is used as 𝜕F/𝜕

.
x = 0 or 𝜆 = 0 at t = T.

Example 12.4 Find the optimal control u that makes the functional

J = ∫
1

0
(x2 + u2) dt (E1)

stationary with
.
x = u (E2)

and x(0) = 1. Note that the value of x is not specified at t = 1.

SOLUTION The Hamiltonian can be expressed as

H = f0 + 𝜆u = x2 + u2 + 𝜆u (E3)

�

� �

�

12.3 Optimal Control Theory 621

and Eqs. (12.33) and (12.34) give

−2x =
.
𝜆 (E4)

2u + 𝜆 = 0 (E5)

Differentiation of Eq. (E5) leads to

2
.
u +

.
𝜆 = 0 (E6)

Equations (E4) and (E6) yield
.
u = x (E7)

Since
.
x = u [Eq. (E2)], we obtain

..
x = .

u = x

that is,
..
x − x = 0 (E8)

The solution of Eq. (E8) is given by

x(t) = c1 sinh t + c2 cosh t (E9)

where c1 and c2 are constants. By using the initial condition x(0) = 1, we obtain c2 = 1.
Since x is not fixed at the terminal point t = T = 1, we use the condition 𝜆 = 0 at t = 1
in Eq. (E5) and obtain u(t = 1) = 0. But

u = .
x = c1 cosh t + sinh t (E10)

Thus
u(1) = 0 = c1 cosh 1 + sinh 1

or
c1 = − sinh 1

cosh 1
(E11)

and hence the optimal control is

u(t) = − sinh 1
cosh 1

⋅ cosh t + sinh t

= − sinh 1 ⋅ cosh t + cosh 1 ⋅ sinh t
cosh 1

= − sinh (1 − t)
cosh 1

(E12)

The corresponding state trajectory is given by

x(t) = .
u = cosh (1 − t)

cosh 1
(E13)

12.3.2 Necessary Conditions for a General Problem

We shall now consider the basic optimal control problem stated earlier:
Find the optimal control vector u that minimizes

J = ∫
T

0
f0(x, u, t) dt (12.35)

subject to
.
xi = fi(x,u, t), i = 1, 2, . . . , n (12.36)

�

� �

�

622 Optimal Control and Optimality Criteria Methods

Now we introduce a Lagrange multiplier pi, also known as the adjoint variable,
for the ith constraint equation in (12.36) and form an augmented functional J* as

J∗ = ∫
T

0

[
f0 +

n∑
i=1

pi(fi −
.
xi)

]
dt (12.37)

The Hamiltonian functional, H, is defined as

H = f0 +
n∑

i=1

pi fi (12.38)

such that

J∗ = ∫
T

0

(
H −

n∑
i=1

pi
.
xi

)
dt (12.39)

Since the integrand

F = H −
n∑

i= 1

pi
.
xi (12.40)

depends on x, u, and t, there are n+m dependent variables (x and u) and hence the
Euler–Lagrange equations become

𝜕F
𝜕xi

− d
dt

(
𝜕F
𝜕

.
xi

)
= 0, i = 1, 2, . . . , n (12.41)

𝜕F
𝜕uj

− d
dt

(
𝜕F
𝜕

.
uj

)
= 0, j = 1, 2, . . . ,m (12.42)

In view of relation (12.40), Eqs. (12.41) and (12.42) can be rewritten as

−𝜕H
𝜕xi

= pi, i = 1, 2, . . . , n (12.43)

𝜕H
𝜕ui

= 0, j = 1, 2, . . . ,m (12.44)

Equations (12.43) are knowns as adjoint equations.
The optimum solutions for x, u, and p can be obtained by solving Eqs. (12.36),

(12.43), and (12.44). There are totally 2n+m equations with nxi’s, npi’s, and muj’s as
unknowns. If we know the initial conditions xi (0), i = 1, 2, . . . , n, and the terminal
conditions xj (T), j = 1, 2, . . . , l, with l< n, we will have the terminal values of the
remaining variables, namely xj (T), j = l+ 1, l+ 2, . . . , n, free. Hence we will have to
use the free end conditions

pj(T) = 0, j = l + 1, l + 2, . . . , n (12.45)

Equation (12.45) are called the transversality conditions.

12.4 OPTIMALITY CRITERIA METHODS

The optimality criteria methods are based on the derivation of an appropriate criteria
for specialized design conditions and developing an iterative procedure to find the opti-
mum design. The optimality criteria methods were originally developed by Prager and

�

� �

�

12.4 Optimality Criteria Methods 623

his associates for distributed (continuous) systems [12.6] and extended by Venkayya,
Khot, and Berke for discrete systems [12.7–12.10]. The methods were first presented
for linear elastic structures with stress and displacement constraints and later extended
to problems with other types of constraints. We will present the basic approach using
only displacement constraints.

12.4.1 Optimality Criteria with a Single Displacement Constraint

Let the optimization problem be stated as follows:

Find X which minimize f (X) =
n∑

i=1

cixi (12.46)

subject to
n∑

i=1

ai

xi
= ymax (12.47)

where ci are constants, ymax is the maximum permissible displacement, and ai depends
on the force induced in member i due to the applied loads, length of member i, and
Young’s modulus of member i. The Lagrangian function can be defined as

L(X, 𝜆) =
n∑

i=1

cixi + 𝜆

(
n∑

i=1

ai

xi
− ymax

)
(12.48)

At the optimum solution, we have

𝜕L
𝜕xk

= ck − 𝜆
ak

x2
k

+ 𝜆
n∑

i=1

1
xi

𝜕ai

𝜕xk
= 0, k = 1, 2, . . . , n (12.49)

It can be shown that the last term in Eq. (12.49) is zero for statically determinate
as well as indeterminate structures [12.8] so that Eq. (12.49) reduces to

ck − 𝜆
ak

x2
k

= 0, k = 1, 2, . . . , n (12.50)

or

𝜆 =
ckx2

k

ak
(12.51)

Equation (12.51) indicates that the quantity ckxk
2/ak is the same for all the design

variables. If all the design variables are to be changed, this relation can be used.
However, in practice, only a subset of design variables are involved in Eq. (12.49).
Thus, it is convenient to divide the design variables into two sets: active variables
[those determined by the displacement constraint of Eq. (12.51)] and passive vari-
ables (those determined by other considerations). Assuming that the first n variables
denote the active variables, we can rewrite Eqs. (12.46) and (12.47) as

f = f +
n∑

i=1

cixi (12.52)

n∑
i=1

ai

xi
= ymax − y = y∗ (12.53)

�

� �

�

624 Optimal Control and Optimality Criteria Methods

where f and y denote the contribution of the passive variables to f and y, respectively.
Equation (12.51) now gives

xk =
√
𝜆

√
ak

ck
, k = 1, 2, . . . , n (12.54)

Substituting Eq. (12.54) into Eq. (12.53), and solving for 𝜆, we obtain

√
𝜆 = 1

y∗

n∑
k=1

√
akck (12.55)

Using Eq. (12.55) in Eq. (12.54) results in

xk =
1
y∗

√
ak

ck

n∑
i=1

√
aici, k = 1, 2, . . . , n (12.56)

Equation (12.56) is the optimality criteria that must be satisfied at the optimum
solution of the problem stated by Eqs. (12.46) and (12.47). This equation can be used
to iteratively update the design variables xk as

x(j+1)
k =

(
1
y∗

√
ak

ck

n∑
i=1

√
aici

)(j)

, k = 1, 2, . . . , n (12.57)

where the superscript j denotes the iteration cycle. In each iteration, the components
ak and ck are assumed to be constants (in general, they depend on the design
vector).

12.4.2 Optimality Criteria with Multiple Displacement Constraints

When multiple displacement constraints are included, as in the case of a structure sub-
jected to multiple-load conditions, the optimization problem can be stated as follows:

Find a set of active variables X = {x1 x2 . . . xn}T which minimizes

f (X) = f0 +
n∑

i=1

cixi (12.58)

subject to

yj =
n∑

i=1

aji

xi
= y∗j , j = 1, 2, . . . , J (12.59)

where J denotes the number of displacement (equality) constraints, y∗j the maximum
permissible value of the displacement yj, and aji is a parameter that depends on the
force induced in member i due to the applied loads, length of member i, and Young’s
modulus of member i. The Lagrangian function corresponding to Eqs. (12.58) and
(12.59) can be expressed as

L(X, 𝜆1, . . . , 𝜆J) = f0 +
n∑

i=1

cixi +
J∑

j=1

𝜆i

(
n∑

i=1

aji

xi
− y∗j

)
(12.60)

�

� �

�

12.4 Optimality Criteria Methods 625

and the necessary conditions of optimality are given by

𝜕L
𝜕xk

= ck −
J∑

j=1

𝜆j

aji

x2
k

= 0, k = 1, 2, . . . , n (12.61)

Equation (12.61) can be rewritten as

xk =

[
J∑

j=1

(
𝜆j

aji

ck

)]1∕2

, k = 1, 2, . . . , n (12.62)

Note that Eq. (12.62) can be used to iteratively update the variable xk as

x(j+1)
k =

⎧⎪⎨⎪⎩
[

J∑
j=1

(
𝜆j

aji

ck

)]1∕2⎫⎪⎬⎪⎭
(j)

, k = 1, 2, . . . , n (12.63)

where the values of the Lagrange multipliers 𝜆j are also not known at the beginning.
Several computational methods can be used to solve Eq. (12.63) [12.7, 12.8].

12.4.3 Reciprocal Approximations

In some structural optimization problems, it is convenient and useful to consider the
reciprocals of member cross-sectional areas (1/Ai) as the new design variables (zi). If
the problem deals with the minimization of weight of a statically determinate structure
subject to displacement or stress constraints, the objective function and its gradient
can be expressed as explicit functions of the variables zi and the constraints can be
expressed as linear functions of the variables zi. If the structure is statically indeter-
minate, the objective function remains a simple function of zi but the constraints may
not be linear in terms of zi; however, a first-order Taylor series (linear) approximation
of the constraints denote a very high-quality approximation of these constraints. With
reciprocal variables, the optimization problem with a single displacement constraint
can be stated as follows:

Find Z = {z1 z2 ⋯ zn}T which minimizes f (Z) (12.64)

subject to
g(Z) = 0 (12.65)

The necessary condition of optimality can be expressed as

𝜕f

𝜕zi
+ 𝜆

𝜕g

𝜕zi
= 0, i = 1, 2, . . . , n (12.66)

Assuming f to be linear in terms of the areas of cross section (original variables,
xi = Ai) and g to be linear in terms of zi, we have

𝜕f

𝜕zi
=
𝜕f

𝜕xi

𝜕xi

𝜕zi
= − 1

z2
i

𝜕f

𝜕xi
(12.67)

and Eqs. (12.66) and (12.67) yield

xi =
(
𝜆
𝜕g∕𝜕zi

𝜕f∕𝜕xi

)1∕2

, i = 1, 2, . . . , n (12.68)

�

� �

�

626 Optimal Control and Optimality Criteria Methods

To find 𝜆 we first find the linear approximation of g at a reference point (trial
design) Z0 (or X0) as

g(Z) ≈ g(Z0) +
n∑

i=1

𝜕g

𝜕zi

||||Z0

(zi − z0i) ≈ g0 +
n∑

i=1

𝜕g

𝜕zi

||||Z0

zi (12.69)

where

g0 = g(Z0) −
n∑

i=1

𝜕g

𝜕zi

||||Z0

z0i = g(X0) +
n∑

i=1

𝜕g

𝜕xi

||||X0

x0i (12.70)

and z0i is the ith component of Z0 with x0i = 1/z0i. By setting Eq. (12.69) equal to zero
and substituting Eq. (12.68) for xi, we obtain

𝜆 =

[
1
g0

n∑
i=1

(
𝜕f

𝜕xi

𝜕g

𝜕zi

)1∕2
]2

(12.71)

Equations (12.71) and (12.68) can now be used iteratively to find the optimal
solution of the problem. The procedure is explained through the following example.

Example 12.5 The problem of minimum weight design subject to a constraint on
the vertical displacement of node S(U1) of the three-bar truss shown in Figure 12.6
can be stated as follows:

Find X =
{

x1
x2

}
which minimizes

f (X) = 𝜌(2
√

2 l)x1 + 𝜌lx2 = 80.0445x1 + 28.3x2 (E1)

subject to
U1

Umax
− 1 ≤ 0

S

Bar 1
(x1)

Bar 2
(x2) Bar 3

(x1)

45°

P1 = 300 lb

Umax = 0.001″

E = 30 × 106 psi

ρ = 0.283 lb/in3
l = 100″

l = 100″ l = 100″

U1

U2

Figure 12.6 Three-bar truss.

�

� �

�

12.4 Optimality Criteria Methods 627

or
g(X) = 1

x1 +
√

2x2

− 1 ≤ 0 (E2)

where 𝜌 is the weight density, E is Young’s modulus, Umax the maximum permissible
displacement, x1 the area of cross section of bars 1 and 3, x2 the area of cross section
of bar 2, and the vertical displacement of node S is given by

U1 =
P1l

E
1

x1 +
√

2x2

(E3)

Find the solution of the problem using the optimality criteria method.

SOLUTION The partial derivatives of f and g required by Eqs. (12.68) and (12.71)
can be computed as

𝜕f

𝜕x1
= 80.0445,

𝜕f

𝜕x2
= 28.3

𝜕g

𝜕zi
=
𝜕g

𝜕xi

𝜕xi

𝜕zi
=
𝜕g

𝜕xi
(−x2

i), i = 1, 2

𝜕g

𝜕x1
= −1

(x1 +
√

2x2)2
,
𝜕g

𝜕x2
=

−
√

2

(x1 +
√

2x2)2

At any design Xi, Eq. (12.70) gives

g0 = g(Xi) +
𝜕g

𝜕x1

||||Xi

xi1 +
𝜕g

𝜕x2

||||Xi

xi2

= 1

xi1 +
√

2 xi2

− 1 −
xi1

(xi1 +
√

2xi2)2
−

√
2xi2

(xi1 +
√

2xi2)2

Thus the values of 𝜆 and (x1, x2) can be determined iteratively using Eqs. (12.71)
and (12.68). Starting from the initial design (x1, x2) = (2.0, 2.0) in.2, the results
obtained are shown in Table 12.1.

Table 12.1 Results for Example 12.5a.

Starting values g0 𝜆 Solution from Eq. (12.68)

x1 x2 [Eq. (12.70)] [Eq. (12.71)] x1 x2

0.20000E+ 01 0.20000E+ 01 −0.10000E+ 01 0.40022E+ 02 0.29289E+ 00 0.58579E+ 00
0.29289E+ 00 0.58579E+ 00 −0.10000E+ 01 0.31830E+ 02 0.16472E+ 00 0.65886E+ 00
0.16472E+ 00 0.65886E+ 00 −0.10000E+ 01 0.26475E+ 02 0.86394E− 01 0.69115E+ 00
0.10000E+ 00 0.69115E+ 00 −0.10000E+ 01 0.23898E+ 02 0.50714E− 01 0.70102E+ 00
0.10000E+ 00 0.70102E+ 00 −0.10000E+ 01 0.23846E+ 02 0.50011E− 01 0.70117E+ 00
0.10000E+ 00 0.70117E+ 00 −0.10000E+ 01 0.23845E+ 02 0.50000E− 01 0.70117E+ 00
0.10000E+ 00 0.70117E+ 00 −0.10000E+ 01 0.23845E+ 02 0.50000E− 01 0.70117E+ 00

aWith lower bounds on x1 and x2 as 0.1.

�

� �

�

628 Optimal Control and Optimality Criteria Methods

REFERENCES AND BIBLIOGRAPHY

12.1 Schechter, R.S. (1967). The Variational Method in Engineering. New York:
McGraw-Hill.

12.2 Denn, M.M. (1969). Optimization by Variational Methods. New York: McGraw-Hill.

12.3 Forray, M.J. (1968). Variational Calculus in Science and Engineering. New York:
McGraw-Hill.

12.4 Bryson, A.E. and Ho, Y.C. (1975). Applied Optimal Control. New York: Wiley.

12.5 Shamaly, A., Christensen, G.S., and El-Hawary, M.E. (1981). Optimal control of a
large turboalternator. Journal of Optimization Theory and Applications 34: 83–97.

12.6 Prager, W. (1968). Optimality criteria in structural design. Proceedings of the National
Academy of Sciences of the United States of America 61 (3): 794–796.

12.7 Venkayya, V.B., Khot, N.S., and Reddy, V.S. (1968). Energy Distribution in Optimum
Structural Design, AFFDL-TR-68-156 .

12.8 Berke, L. (1972). Convergence Behavior of Optimality Criteria Based Iterative Proce-
dures, AFFDL-TM-72-1-FBR, Jan.

12.9 Venkayya, V.B. (1978). Structural optimization using optimality criteria: a review and
some recommendations. International Journal for Numerical Methods in Engineering
13: 203–228.

12.10 Khot, N.S. (1981). Algorithms based on optimality criteria to design minimum weight
structures. Engineering Optimization 5: 73–90.

12.11 Hati, S.K. and Rao, S.S. (1983). Determination of optimum profile of one-dimensional
cooling fins. Journal of Vibration, Acoustics, Stress and Reliability in Design 105:
317–320.

REVIEW QUESTIONS

12.1 Answer true or false:

(a) Design variables of an optimal control problem include both state and control
variables.

(b) Reciprocal approximations consider reciprocals of member areas as design
variables.

(c) Optimality criteria methods can be used for the optimization of nonlinear structures
with displacement constraints.

(d) A variational operator is similar to a differential operator.

(e) Calculus of variations can be used only for finding the extrema of functionals with
no constraints.

(f) Optimality criteria methods can be used to solve any optimization problem.

12.2 Define the following terms:

(a) Brachistochrone

(b) State vector

(c) Performance index

(d) Adjoint equations

(e) Transversality condition

(f) Optimality criteria methods

(g) Functional

(h) Hamiltonian

�

� �

�

Problems 629

12.3 Match the following terms and descriptions:

(a) Adjoint variables Linear elastic structures
(b) Optimality criteria methods Lagrange multipliers
(c) Calculus of variations Necessary conditions of optimality
(d) Optimal control theory Optimization of functionals
(e) Governing equations Hamiltonian used

12.4 What are the characteristics of a variational operator?

12.5 What are Euler–Lagrange equations?

12.6 Which method can be used to solve a trajectory optimization problem?

12.7 What is an optimality criteria method?

12.8 What is the basis of optimality criteria methods?

12.9 What are the advantages of using reciprocal approximations in structural optimization?

12.10 What is the difference between free and forced boundary conditions?

12.11 What type of problems require introduction of Lagrange multipliers?

12.12 Where are reciprocal approximations used? Why?

PROBLEMS

12.1 Find the curve connecting two points A(0, 0) and B(2, 0) such that the length of the line
is a minimum and the area under the curve is 𝜋/2.

12.2 Prove that the shortest distance between two points is a straight line. Show that the nec-
essary conditions yield a minimum and not a maximum.

12.3 Find the function x(t) that minimizes the functional

A = ∫
T

0

[
x2 + 2xt +

(dx
dt

)2
]

dt

with the condition that x(0) = 2.

12.4 Find the closed plane curve of length L that encloses a maximum area.

12.5 The potential energy of an elastic circular annular plate of radii r1 and r2 shown in
Figure 12.7 is given by

𝜋0 = 𝜋D∫
r2

r1

[
r

(
d2w

dr2

)2

+ 1
r

(dw
dr

)2

+ 2v
dw
dr

d2w

dr2

]
dr

− 2𝜋 ∫
r2

r1

qrw dr + 2𝜋
[
rM

dw
dr

− rQw
]

r=r2

M

Q

M

Q

q(r) - Axisymmetric load

r1

r2

r

Figure 12.7 Circular annular plate under load.

�

� �

�

630 Optimal Control and Optimality Criteria Methods

where D is the flexural rigidity of the plate, w the transverse deflection of the plate, 𝜈
the Poisson’s ratio, M the radial bending moment per unit of circumferential length, and
Q the radial shear force per unit of circumferential length. Find the differential equation
and the boundary conditions to be satisfied by minimizing 𝜋0.

12.6 Consider the two-bar truss shown in Figure 12.8. For the minimum-weight design of
the truss with a bound on the horizontal displacement of node S, we need to solve the
following problem:
Find X = {x1 x2}T which minimizes

f (X) =
√

2 l(x1 + x2) =
√

2 60(x1 + x2)

subject to

g(X) = Pl
2E

(
1
x1

+ 1
x2

)
− Umax

= 10−3

(
1
x1

+ 1
x2

)
− 10−2 ≤ 0

0.1 in.2 ≤ xi ≤ 1.0 in.2, i = 1, 2

Find the solution of the problem using the optimality criteria method.

12.7 In the three-bar truss considered in Example 12.5 (Figure 12.6), if the constraint is placed
on the resultant displacement of node S, the optimization problem can be stated as

Find X =
{

x1
x2

}
which minimizes

f (X) = 80.0445x1 + 28.3x2

subject to √
U2

1 + U2
2 =

P1l

E

[
1

x2
1

+ 1

(x1 +
√

2 x2)2

]1∕2

≤ Umax

l = 60″
P = 1000 lb
E = 30 × 106 psi

l = 60″ l = 60″

l = 60″

P S

Bar 1
(area, x1)

Bar 2
(area, x2)

Figure 12.8 Two-bar truss subjected to horizontal load.

�

� �

�

Problems 631

or

g(X) =

[
1

x2
1

+ 1

(x1 +
√

2 x2)2

]1∕2

≤ Umax

where the vertical and horizontal displacements of node S are given by

U1 = Pl
E

1

x1 +
√

2 x2

and U2 = Pl
E

1
x1

Find the solution of the problem using the optimality criteria method.

12.8 The problem of the minimum-weight design of the four-bar truss shown in Figure 1.32
(Problem 1.31) subject to a constraint on the vertical displacement of joint A and limita-
tions on design variables can be stated as follows:
Find X = {x1 x2}T which minimizes

f (X) = 0.1x1 + 0.05773x2

subject to

g(X) = 0.6
x1

+ 0.3464
x2

− 0.1 ≤ 0

xi ≥ 4, i = 1, 2

where the maximum permissible vertical displacement of joint A is assumed to be 0.01 in.
Solve the problem using the optimality criteria method.

�

� �

�

�

� �

�

13

Modern Methods of Optimization

13.1 INTRODUCTION

In recent years, some optimization methods that are conceptually different from the
traditional mathematical programming techniques have been developed. These meth-
ods are labeled as modern or nontraditional methods of optimization. Most of these
methods are based on certain characteristics and behavior of biological, molecular,
swarm of insects, and neurobiological systems. The following methods are described
in this chapter:

1. Genetic algorithms
2. Simulated annealing
3. Particle swarm optimization
4. Ant colony optimization
5. Fuzzy optimization
6. Neural-network-based methods

Most of these methods have been developed only in recent years and are emerging
as popular methods for the solution of complex engineering problems. Most require
only the function values (and not the derivatives). The genetic algorithms are based
on the principles of natural genetics and natural selection. Simulated annealing is
based on the simulation of thermal annealing of critically heated solids. Both genetic
algorithms and simulated annealing are stochastic methods that can find the global
minimum with a high probability and are naturally applicable for the solution of dis-
crete optimization problems. The particle swarm optimization is based on the behavior
of a colony of living things, such as a swarm of insects, a flock of birds, or a school
of fish. Ant colony optimization (ACO) is based on the cooperative behavior of real
ant colonies, which are able to find the shortest path from their nest to a food source.
In many practical systems, the objective function, constraints, and the design data
are known only in vague and linguistic terms. Fuzzy optimization methods have been
developed for solving such problems. In neural-network-based methods, the problem
is modeled as a network consisting of several neurons, and the network is trained
suitably to solve the optimization problem efficiently.

13.2 GENETIC ALGORITHMS

13.2.1 Introduction

Many practical optimum design problems are characterized by mixed continuous–
discrete variables, and discontinuous and nonconvex design spaces. If standard

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

633

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

634 Modern Methods of Optimization

nonlinear programming techniques are used for this type of problem, they will be
inefficient, computationally expensive, and, in most cases, find a relative optimum
that is closest to the starting point. Genetic algorithms (GAs) are well suited for
solving such problems, and in most cases, they can find the global optimum solution
with a high probability. Although GAs were first presented systematically by Holland
[13.1], the basic ideas of analysis and design based on the concepts of biological
evolution can be found in the work of Rechenberg [13.2]. Philosophically, GAs are
based on Darwin’s theory of survival of the fittest.

Genetic algorithms are based on the principles of natural genetics and natural
selection. The basic elements of natural genetics – reproduction, crossover, and
mutation – are used in the genetic search procedure. GAs differ from the traditional
methods of optimization in the following respects:

1. A population of points (trial design vectors) is used for starting the procedure
instead of a single design point. If the number of design variables is n, usually
the size of the population is taken as 2n to 4n. Since several points are used as
candidate solutions, GAs are less likely to get trapped at a local optimum.

2. GAs use only the values of the objective function. The derivatives are not used
in the search procedure.

3. In GAs the design variables are represented as strings of binary variables that
correspond to the chromosomes in natural genetics. Thus, the search method
is naturally applicable for solving discrete and integer programming problems.
For continuous design variables, the string length can be varied to achieve any
desired resolution.

4. The objective function value corresponding to a design vector plays the role of
fitness in natural genetics.

5. In every new generation, a new set of strings is produced by using randomized
parents’ selection and crossover from the old generation (old set of strings).
Although randomized, GAs are not simple random search techniques. They
efficiently explore the new combinations with the available knowledge to find
a new generation with better fitness or objective function value.

13.2.2 Representation of Design Variables

In GAs, the design variables are represented as strings of binary numbers, 0 and
1. For example, if a design variable xi is denoted by a string of length four (or a
four-bit string) as 0 1 0 1, its integer (decimal equivalent) value will be (1) 20 + (0) 21 +
(1) 22 + (0) 23 = 1+ 0+ 4+ 0 = 5. If each design variable xi, i = 1, 2, . . . , n is coded
in a string of length q, a design vector is represented using a string of total length nq.
For example, if a string of length 5 is used to represent each variable, a total string
of length 20 describes a design vector with n = 4. The following string of 20 binary
digits denote the vector (x1 = 18, x2 = 3, x3 = 1, x4 = 4):

String of length 20

1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0

x1 x2 x3 x4

In general, if a binary number is given by bqbq−1 ⋯ b2b1b0, where bk = 0 or 1,
k = 0, 1, 2, . . . , q, then its equivalent decimal number y (integer) is given by

y =
q∑

k=0

2kbk (13.1)

�

� �

�

13.2 Genetic Algorithms 635

This indicates that a continuous design variable x can only be represented by a
set of discrete values if binary representation is used. If a variable x (whose bounds
are given by x(l) and x(u)) is represented by a string of q binary numbers, as shown in
Eq. (13.1), its decimal value can be computed as

x = x(l) + x(u) − x(l)

2q − 1

q∑
k=0

2kbk (13.2)

Thus, if a continuous variable is to be represented with high accuracy, we need
to use a large value of q in its binary representation. In fact, the number of binary
digits needed (q) to represent a continuous variable in steps (accuracy) of Δx can be
computed from the relation

2q ≥ x(u) − x(l)

Δx
+ 1 (13.3)

For example, if a continuous variable x with bounds 1 and 5 is to be represented
with an accuracy of 0.01, we need to use a binary representation with q digits where

2q ≥ 5 − 1
0.01

+ 1 = 401 or q = 9 (13.4)

Equation (13.2) shows why GAs are naturally suited for solving discrete opti-
mization problems.

Example 13.1 Steel plates are available in thicknesses (in inches) of

1
32
,

1
16
,

3
32
,

1
8
,

5
32
,

3
16
,

7
32
,

1
4
,

9
32
,

5
16
,

11
32
,

3
8
,

13
32
,

7
16
,

15
32
,

1
2

from a manufacturer. If the thickness of the steel plate, to be used in the construction
of a pressure vessel, is considered as a discrete design variable, determine the size of
the binary string to be used to select a thickness from the available values.

SOLUTION The lower and upper bounds on the steel plate (design variable, x) are
given by 1

32
and 1

2
in., respectively, and the resolution or difference between any two

adjacent thicknesses is 1
32

in. Eq. (13.3) gives

2q ≥ x(u) − x(l)

Δx
+ 1 =

1
2

in. − 1
32

in.

1
32

in.
+ 1 = 15

from which the size of the binary string to be used can be obtained as q = 4.

13.2.3 Representation of Objective Function and Constraints

Because genetic algorithms are based on the survival-of-the-fittest principle of nature,
they try to maximize a function called the fitness function. Thus GAs are naturally suit-
able for solving unconstrained maximization problems. The fitness function, F(X), can
be taken to be same as the objective function f(X) of an unconstrained maximization
problem so that F(X) = f(X). A minimization problem can be transformed into a max-
imization problem before applying the GAs. Usually the fitness function is chosen
to be nonnegative. The commonly used transformation to convert an unconstrained
minimization problem to a fitness function is given by

F(X) = 1
1 + f (X)

(13.5)

�

� �

�

636 Modern Methods of Optimization

It can be seen that Eq. (13.5) does not alter the location of the minimum of f(X) but
converts the minimization problem into an equivalent maximization problem.

A general constrained minimization problem can be stated as

Minimize f (X)

subject to
gi(X) ≤ 0, i = 1, 2, . . . , m (13.6)

and
hj(X) = 0, j = 1, 2, . . . , p

This problem can be converted into an equivalent unconstrained minimization problem
by using the concept of penalty function as

Minimize 𝜙(X) = f (X) +
m∑

i=1

ri⟨gi(X)⟩2 +
p∑

j=1

Rj(hj(X))2 (13.7)

where ri and Rj are the penalty parameters associated with the constraints gi(X) and
hj(X), whose values are usually kept constant throughout the solution process. In
Eq. (13.7), the function ⟨gi (X)⟩, called the bracket function, is defined as

⟨gi(X)⟩ = {
gi(X) if gi(X) > 0

0 if gi(X) ≤ 0
(13.8)

In most cases, the penalty parameters associated with all the inequality and equality
constraints are assumed to be the same constants as

ri = r, i = 1, 2, . . . ,m and Rj = R, j = 1, 2, . . . , p (13.9)

where r and R are constants. The fitness function, F(X), to be maximized in the GAs
can be obtained, similar to Eq. (13.5), as

F(X) = 1
1 + 𝜙(X)

(13.10)

Equations (13.7) and (13.8) show that the penalty will be proportional to the
square of the amount of violation of the inequality and equality constraints at the
design vector X, while there will be no penalty added to f(X) if all the constraints
are satisfied at the design vector X.

13.2.4 Genetic Operators

The solution of an optimization problem by GAs starts with a population of random
strings denoting several (population of) design vectors. The population size in GAs (n)
is usually fixed. Each string (or design vector) is evaluated to find its fitness value. The
population (of designs) is operated by three operators – reproduction, crossover, and
mutation – to produce a new population of points (designs). The new population is fur-
ther evaluated to find the fitness values and tested for the convergence of the process.
One cycle of reproduction, crossover, and mutation and the evaluation of the fitness
values is known as a generation in GAs. If the convergence criterion is not satisfied,
the population is iteratively operated by the three operators and the resulting new pop-
ulation is evaluated for the fitness values. The procedure is continued through several
generations until the convergence criterion is satisfied and the process is terminated.
The details of the three operations of GAs are given below.

�

� �

�

13.2 Genetic Algorithms 637

Reproduction Reproduction is the first operation applied to the population to select
good strings (designs) of the population to form a mating pool. The reproduction
operator is also called the selection operator because it selects good strings of the
population. The reproduction operator is used to pick above-average strings from the
current population and insert their multiple copies in the mating pool based on a prob-
abilistic procedure. In a commonly used reproduction operator, a string is selected
from the mating pool with a probability proportional to its fitness. Thus if Fi denotes
the fitness of the ith string in the population of size n, the probability for selecting the
ith string for the mating pool (pi) is given by

pi =
Fi

n∑
j=1

Fj

; i = 1, 2, . . . , n (13.11)

Note that Eq. (13.11) implies that the sum of the probabilities of the strings of the
population being selected for the mating pool is one. The implementation of the selec-
tion process given by Eq. (13.11) can be understood by imagining a roulette wheel with
its circumference divided into segments, one for each string of the population, with
the segment lengths proportional to the fitness of the strings as shown in Figure 13.1.
By spinning the roulette wheel n times (n being the population size) and selecting,
each time, the string chosen by the roulette-wheel pointer, we obtain a mating pool of
size n. Since the segments of the circumference of the wheel are marked according to
the fitness of the various strings of the original population, the roulette-wheel process
is expected to select Fi/F copies of the ith string for the mating pool, where F denotes
the average fitness of the population:

F = 1
n

n∑
j=1

Fj (13.12)

In Figure 13.1, the population size is assumed to be 6 with fitness values of the
strings 1, 2, 3, 4, 5, and 6 given by 12, 4, 16, 8, 36, and 24, respectively. Since the fifth
string (individual) has the highest value, it is expected to be selected most of the time

Roulette wheel

Fitness
values

3

2

1

6

5

4 Pointer

16%

8% 36%

24%
12%

4%

String
numbers

Figure 13.1 Roulette-wheel selection scheme.

�

� �

�

638 Modern Methods of Optimization

(36% of the time, probabilistically) when the roulette wheel is spun n times (n = 6 in
Figure 13.1). The selection scheme, based on the spinning of the roulette wheel, can
be implemented numerically during computations as follows.

The probabilities of selecting different strings based on their fitness values are
calculated using Eq. (13.11). These probabilities are used to determine the cumulative
probability of string i being copied to the mating pool, Pi, by adding the individual
probabilities of strings 1 through i as

Pi =
i∑

j=1

pj (13.13)

Thus the roulette-wheel selection process can be implemented by associating the
cumulative probability range (Pi−1 −Pi) to the ith string. To generate the mating pool
of size n during numerical computations, n random numbers, each in the range of zero
to one, are generated (or chosen). By treating each random number as the cumulative
probability of the string to be copied to the mating pool, n strings corresponding to
the n random numbers are selected as members of the mating pool. By this process,
the string with a higher (lower) fitness value will be selected more (less) frequently
to the mating pool because it has a larger (smaller) range of cumulative probability.
Thus strings with high fitness values in the population, probabilistically, get more
copies in the mating pool. It is to be noted that no new strings are formed in the
reproduction stage; only the existing strings in the population get copied to the mat-
ing pool. The reproduction stage ensures that highly fit individuals (strings) live and
reproduce, and less fit individuals (strings) die. Thus the GAs simulate the principle
of “survival-of-the-fittest” of nature.

Example 13.2 Consider six strings with fitness values 12, 4, 16, 8, 36, and 24 with
the corresponding roulette wheel as shown in Figure 13.1. Find the levels of contribu-
tion of the various strings to the mating pool using the roulette-wheel selection process
with the following 12 random numbers: 0.41, 0.65, 0.42, 0.80, 0.67, 0.39, 0.63, 0.53,
0.86, 0.88, 0.75, 0.55.

Note: (1) These random numbers are taken from Ref. [13.20]. (2) Although the
original population consists of only 6 strings, the mating pool is assumed to be com-
posed of 12 strings to illustrate the roulette-wheel selection process.

SOLUTION If the given random numbers are assumed to represent cumulative prob-
abilities, the string numbers to be copied to the mating pool can be determined from
the cumulative probability ranges listed in the last column of Table 13.1 as follows:

Table 13.1 Roulette-wheel selection process for obtaining the mating pool.

String number i Fitness value Fi

Probability of
selecting string i
for the mating

pool, pi

Cumulative
probability value

of string i,

Pi =
i∑

j=1
pj

Range of
cumulative

probability of
string i, (Pi−1, Pi)

1 12 0.12 0.12 0.00–0.12
2 4 0.04 0.16 0.12–0.16
3 16 0.16 0.32 0.16–0.32
4 8 0.08 0.40 0.32–0.40
5 36 0.36 0.76 0.40–0.76
6 24 0.24 1.00 0.76–1.00

�

� �

�

13.2 Genetic Algorithms 639

Random number
(cumulative probability of
the string to be copied) 0.41 0.65 0.42 0.80 0.67 0.39 0.63 0.53 0.86 0.88 0.75 0.55

String number to be
copied to the mating pool 5 5 5 6 5 4 5 5 6 6 5 5

This indicates that the mating pool consists of 1 copy of string 4, 8 copies of string
5, and 3 copies of string 6. This shows that less fit individuals (strings 1, 2, and 3) did
not contribute to the next generation (or died) because they could not contribute to the
mating pool. String 4, although has a small fitness value, contributed 1 copy to the
mating pool based on the random selection process used.

Crossover After reproduction, the crossover operator is implemented. The purpose
of crossover is to create new strings by exchanging information among strings of the
mating pool. Many crossover operators have been used in the literature of GAs. In most
crossover operators, two individual strings (designs) are picked (or selected) at random
from the mating pool generated by the reproduction operator and some portions of
the strings are exchanged between the strings. In the commonly used process, known
as a single-point crossover operator, a crossover site is selected at random along the
string length, and the binary digits (alleles) lying on the right side of the crossover
site are swapped (exchanged) between the two strings. The two strings selected for
participation in the crossover operators are known as parent strings and the strings
generated by the crossover operator are known as child strings.

For example, if two design vectors (parents), each with a string length of 10, are
given by

(Parent 1) X1 = {0 1 0 ∣ 1 0 1 1 0 1 1}

(Parent 2) X2 = {1 0 0 ∣ 0 1 1 1 1 0 0}

the result of crossover, when the crossover site is 3, is given by

(Offspring 1) X3 = {0 1 0 ∣ 0 1 1 1 1 0 0}

(Offspring 2) X4 = {1 0 0 ∣ 1 0 1 1 0 1 1}

Since the crossover operator combines substrings from parent strings (which have
good fitness values), the resulting child strings created are expected to have better fit-
ness values provided an appropriate (suitable) crossover site is selected. However, the
suitable or appropriate crossover site is not known before hand. Hence the crossover
site is usually chosen randomly. The child strings generated using a random crossover
site may or may not be as good or better than their parent strings in terms of their
fitness values. If they are good or better than their parents, they will contribute to a
faster improvement of the average fitness value of the new population. On the other
hand, if the child strings created are worse than their parent strings, it should not be of
much concern to the success of the GAs because the bad child strings will not survive
very long as they are less likely to be selected in the next reproduction stage (because
of the survival-of-the-fittest strategy used).

As indicated above, the effect of crossover may be useful or detrimental. Hence
it is desirable not to use all the strings of the mating pool in crossover but to pre-
serve some of the good strings of the mating pool as part of the population in the next
generation. In practice, a crossover probability, pc, is used in selecting the parents for

�

� �

�

640 Modern Methods of Optimization

crossover. Thus only 100 pc percent of the strings in the mating pool will be used in
the crossover operator while 100 (1− pc) percent of the strings will be retained as they
are in the new generation (of population).

Mutation The crossover is the main operator by which new strings with better fitness
values are created for the new generations. The mutation operator is applied to the new
strings with a specific small mutation probability, pm. The mutation operator changes
the binary digit (allele’s value) 1 to 0 and vice versa. Several methods can be used
for implementing the mutation operator. In the single-point mutation, a mutation site
is selected at random along the string length and the binary digit at that site is then
changed from 1 to 0 or 0 to 1 with a probability of pm. In the bit-wise mutation, each
bit (binary digit) in the string is considered one at a time in sequence, and the digit
is changed from 1 to 0 or 0 to 1 with a probability pm. Numerically, the process can
be implemented as follows. A random number between 0 and 1 is generated/chosen.
If the random number is smaller than pm, then the binary digit is changed. Otherwise,
the binary digit is not changed.

The purpose of mutation is (i) to generate a string (design point) in the neighbor-
hood of the current string, thereby accomplishing a local search around the current
solution; (ii) to safeguard against a premature loss of important genetic material at a
particular position; and (iii) to maintain diversity in the population.

As an example, consider the following population of size n = 5 with a string
length 10:

1 0 0 0 1 0 0 0 1 1

1 0 1 1 1 1 0 1 0 0

1 1 0 0 0 0 1 1 0 1

1 0 1 1 0 1 0 0 1 0

1 1 1 0 0 0 1 0 0 1

Here all the five strings have a 1 in the position of the first bit. The true optimum
solution of the problem requires a 0 as the first bit. The required 0 cannot be created
by either the reproduction or the crossover operators. However, when the mutation
operator is used, the binary number will be changed from 1 to 0 in the location of the
first bit with a probability of npm.

Note that the three operators – reproduction, crossover, and mutation – are sim-
ple to implement. The reproduction operator selects good strings for the mating pool,
the crossover operator recombines the substrings of good strings of the mating pool
to create strings (next generation of population), and the mutation operator alters the
string locally. The use of these three operators successively yields new generations
with improved values of average fitness of the population. Although, the improvement
of the fitness of the strings in successive generations cannot be proved mathemat-
ically, the process has been found to converge to the optimum fitness value of the
objective function. Note that if any bad strings are created at any stage in the pro-
cess, they will be eliminated by the reproduction operator in the next generation. The
GAs have been successfully used to solve a variety of optimization problems in the
literature.

13.2.5 Algorithm

The computational procedure involved in maximizing the fitness function F(x1, x2, x3,
. . . , xn) in the genetic algorithm can be described by the following steps.

�

� �

�

13.3 Simulated Annealing 641

1. Choose a suitable string length l = nq to represent the n design variables of the
design vector X. Assume suitable values for the following parameters: pop-
ulation size m, crossover probability pc, mutation probability pm, permissible
value of standard deviation of fitness values of the population (sf)max to use as
a convergence criterion, and maximum number of generations (imax) to be used
an a second convergence criterion.

2. Generate a random population of size m, each consisting of a string of length
l = nq. Evaluate the fitness values Fi, i = 1, 2, . . . , m, of the m strings.

3. Carry out the reproduction process.
4. Carry out the crossover operation using the crossover probability pc.
5. Carry out the mutation operation using the mutation probability pm to find the

new generation of m strings.
6. Evaluate the fitness values Fi, i = 1, 2, . . . , m, of the m strings of the new

population. Find the standard deviation of the m fitness values.
7. Test for the convergence of the algorithm or process. If sf ≤ (sf)max, the conver-

gence criterion is satisfied and hence the process may be stopped. Otherwise,
go to step 8.

8. Test for the generation number. If i ≥ imax, the computations have been per-
formed for the maximum permissible number of generations and hence the
process may be stopped. Otherwise, set the generation number as i = i + 1 and
go to step 3.

13.2.6 Numerical Results

The welded beam problem described in Section 7.22.3 (Figure 7.23) was considered
by Deb [13.20] with the following data: population size= 100, total string length= 40,
substring length for each design variable = 10, probability of crossover = 0.9, and
probability of mutation = 0.01. Different penalty parameters were considered for
different constraints in order to have the contribution of each constraint violation
to the objective function be approximately the same. Nearly optimal solutions were
obtained after only about 15 generations with approximately 0.9× 100× 15 = 1350
function evaluations. The optimum solution was found to be x∗1 = 0.2489, x∗2 = 6.1730,
x∗3 = 8.1789, x∗4 = 0.2533, and f* = 2.43, which can be compared with the solu-
tion obtained from geometric programming, x∗1 = 0.2455, x∗2 = 6.1960, x∗3 = 8.2730,
x∗4 = 0.2455, and f* = 2.39 [13.21]. Although the optimum solution given by the GAs
corresponds to a slightly larger value of f*, it satisfies all the constraints (the solution
obtained from geometric programming violates three constraints slightly).

13.3 SIMULATED ANNEALING

13.3.1 Introduction

The simulated annealing method is based on the simulation of thermal annealing of
critically heated solids. When a solid (metal) is brought into a molten state by heat-
ing it to a high temperature, the atoms in the molten metal move freely with respect
to each other. However, the movements of atoms get restricted as the temperature is
reduced. As the temperature reduces, the atoms tend to get ordered and finally form
crystals having the minimum possible internal energy. The process of the formation of
crystals essentially depends on the cooling rate. When the temperature of the molten
metal is reduced at a very fast rate, it may not be able to achieve the crystalline state;
instead, it may attain a polycrystalline state having a higher energy state compared to

�

� �

�

642 Modern Methods of Optimization

that of the crystalline state. In engineering applications, rapid cooling may introduce
defects inside the material. Thus the temperature of the heated solid (molten metal)
needs to be reduced at a slow and controlled rate to ensure proper solidification with
a highly ordered crystalline state that corresponds to the lowest energy state (internal
energy). This process of cooling at a slow rate is known as annealing.

13.3.2 Procedure

The simulated annealing method simulates the process of the slow cooling of molten
metal to achieve the minimum function value in a minimization problem. The cool-
ing phenomenon of the molten metal is simulated by introducing a temperature-like
parameter and controlling it using the concept of Boltzmann’s probability distribu-
tion. The Boltzmann’s probability distribution implies that the energy (E) of a system
in thermal equilibrium at temperature T is distributed probabilistically according to
the relation

P(E) = e−E∕kT (13.14)

where P(E) denotes the probability of achieving the energy level E, and k is called
the Boltzmann’s constant. Equation (13.14) shows that at high temperatures the
system has nearly a uniform probability of being at any energy state; however,
at low temperatures, the system has a small probability of being at a high-energy
state. This indicates that when the search process is assumed to follow Boltzmann’s
probability distribution, the convergence of the simulated annealing algorithm can
be controlled by controlling the temperature T. The method of implementing the
Boltzmann’s probability distribution in simulated thermodynamic systems, suggested
by Metropolis et al. [13.37], can also be used in the context of minimization of
functions.

In the case of function minimization, let the current design point (state) be Xi,
with the corresponding value of the objective function given by fi = f(Xi). Similar to
the energy state of a thermodynamic system, the energy Ei at state Xi is given by

Ei = fi = f (Xi) (13.15)

Then, according to the Metropolis criterion, the probability of the next design
point (state) Xi+1 depends on the difference in the energy state or function values at
the two design points (states) given by

ΔE = Ei+1 − Ei = Δf = fi+1 − fi ≡ f (Xi+1) − f (Xi) (13.16)

The new state or design point Xi+1 can be found using the Boltzmann’s probability
distribution:

P[Ei+1] = min{1, e−ΔE∕kT} (13.17)

The Boltzmann’s constant serves as a scaling factor in simulated annealing and,
as such, can be chosen as 1 for simplicity. Note that if ΔE≤ 0, Eq. (13.17) gives P
[Ei+1] = 1 and hence the point Xi+1 is always accepted. This is a logical choice in
the context of minimization of a function because the function value at Xi+1, fi+1,
is better (smaller) than at Xi, fi, and hence the design vector Xi+1 must be accepted.
On the other hand, when ΔE> 0, the function value fi+1 at Xi+1 is worse (larger)
than the one at Xi. According to most conventional optimization procedures, the
point Xi+1 cannot be accepted as the next point in the iterative process. However, the
probability of accepting the point Xi+1, in spite of its being worse than Xi in terms

�

� �

�

13.3 Simulated Annealing 643

of the objective function value, is finite (although it may be small) according to the
Metropolis criterion. Note that the probability of accepting the point Xi+1

P[Ei+1] = {e−ΔE∕kT} (13.18)

is not same in all situations. As can be seen from Eq. (13.18), this probability depends
on the values of ΔE and T. If the temperature T is large, the probability will be high
for design points Xi+1 with larger function values (with larger values of ΔE = Δf).
Thus, at high temperatures, even worse design points Xi+1 are likely to be accepted
because of larger probabilities. However, if the temperature T is small, the probability
of accepting worse design points Xi+1 (with larger values of ΔE = Δf) will be small.
Thus, as the temperature values get smaller (that is, as the process gets closer to the
optimum solution), the design points Xi+1 with larger function values compared to
the one at Xi are less likely to be accepted.

13.3.3 Algorithm

The SA algorithm can be summarized as follows. Start with an initial design vector
X1 (iteration number i = 1) and a high value of temperature T. Generate a new design
point randomly in the vicinity of the current design point and find the difference in
function values:

ΔE = Δf = fi+1 − fi ≡ f (Xi+1) − f (Xi) (13.19)

If fi+1 is smaller than fi (with a negative value of Δf), accept the point Xi+1 as
the next design point. Otherwise, when Δf is positive, accept the point Xi+1 as the
next design point only with a probability e−ΔE/kT. This means that if the value of a
randomly generated number is larger than e−ΔE/kT, accept the point Xi+1; otherwise,
reject the point Xi+1. This completes one iteration of the SA algorithm. If the point
Xi+1 is rejected, then the process of generating a new design point Xi+1 randomly in
the vicinity of the current design point, evaluating the corresponding objective function
value fi+1, and deciding to accept Xi+1 as the new design point, based on the use of the
Metropolis criterion, Eq. (13.18), is continued. To simulate the attainment of thermal
equilibrium at every temperature, a predetermined number (n) of new points Xi+1 are
tested at any specific value of the temperature T.

Once the number of new design points Xi+1 tested at any temperature T exceeds
the value of n, the temperature T is reduced by a prespecified fractional value
c (0< c< 1) and the whole process is repeated. The procedure is assumed to have
converged when the current value of temperature T is sufficiently small or when
changes in the function values (Δf) are observed to be sufficiently small.

The choices of the initial temperature T, the number of iterations n before reducing
the temperature, and the temperature reduction factor c play important roles in the suc-
cessful convergence of the SA algorithm. For example, if the initial temperature T is
too large, it requires a larger number of temperature reductions for convergence. On the
other hand, if the initial temperature is chosen to be too small, the search process may
be incomplete in the sense that it might fail to thoroughly investigate the design space
in locating the global minimum before convergence. The temperature reduction factor
c has a similar effect. Too large a value of c (such as 0.8 or 0.9) requires too much com-
putational effort for convergence. On the other hand, too small a value of c (such as 0.1
or 0.2) may result in a faster reduction in temperature that might not permit a thorough
exploration of the design space for locating the global minimum solution. Similarly, a
large value of the number of iterations n will help in achieving quasiequilibrium state
at each temperature but will result in a larger computational effort. A smaller value of
n, on the other hand, might result either in a premature convergence or convergence

�

� �

�

644 Modern Methods of Optimization

to a local minimum (due to inadequate exploration of the design space for the global
minimum). Unfortunately, no unique set of values are available for T, n, and c that
will work well for every problem. However, certain guidelines can be given for select-
ing these values. The initial temperature T can be chosen as the average value of the
objective function computed at a number of randomly selected points in the design
space. The number of iterations n can be chosen between 50 and 100 based on the
computing resources and the desired accuracy of solution. The temperature reduction
factor c can be chosen between 0.4 and 0.6 for a reasonable temperature reduction
strategy (also termed the cooling schedule). More complex cooling schedules, based
on the expected mathematical convergence rates, have been used in the literature for
the solution of complex practical optimization problems [13.19]. In spite of all the
research being done on SA algorithms, the choice of the initial temperature T, the
number of iterations n at any specific temperature, and the temperature reduction fac-
tor (or cooling rate) c still remain an art and generally require a trial-and-error process
to find suitable values for solving any particular type of optimization problems. The
SA procedure is shown as a flowchart in Figure 13.2.

13.3.4 Features of the Method

Some of the features of simulated annealing are as follows:

1. The quality of the final solution is not affected by the initial guesses, except
that the computational effort may increase with worse starting designs.

2. Because of the discrete nature of the function and constraint evaluations, the
convergence or transition characteristics are not affected by the continuity or
differentiability of the functions.

3. The convergence is also not influenced by the convexity status of the feasible
space.

4. The design variables need not be positive.
5. The method can be used to solve mixed-integer, discrete, or continuous

problems.
6. For problems involving behavior constraints (in addition to lower and upper

bounds on the design variables), an equivalent unconstrained function is to be
formulated as in the case of genetic algorithms.

13.3.5 Numerical Results

The welded beam problem of Section 7.22.3 (Figure 7.23) is solved using simu-
lated annealing. The solution is given by x∗1 = 0.2471, x∗2 = 6.1451, x∗3 = 8.2721,
x∗4 = 0.2495, and f* = 2.4148. This solution can be compared with the solutions
obtained by genetic algorithms (x∗1 = 0.2489, x2 = 6.1730, x∗3 = 8.1789, x∗4 = 0.2533,
and f* = 2.4331) and geometric programming (x∗1 = 0.2536, x∗2 = 7.1410, x∗3 = 7.1044,
x∗4 = 0.2536, and f* = 2.3398). Notice that the solution given by geometric program-
ming [13.21] violated three constraints slightly, while the solutions given by the
genetic algorithms [13.20] and simulated annealing satisfied all the constraints.

Example 13.3 Find the minimum of the following function using simulated
annealing:

f (X) = 500 − 20x1 − 26x2 − 4x1x2 + 4x2
1 + 3x2

2

SOLUTION We follow the procedure indicated in the flowchart of Figure 13.2.

Step 1: Choose the parameters of the SA method. The initial temperature is taken
as the average value of f evaluated at four randomly selected points in the
design space. By selecting the random points as X(1) =

{
2
0

}
,X(2) =

{
5
10

}
,

�

� �

�

13.3 Simulated Annealing 645

Start with initial vector, X1,
initial temperature and other parameters

(T, n, c)

Find f1 = f(X1),
Set iteration number i = 1
and cycle number p = 1

Accept or reject Xi+1 using
Metropolis criterion

Update iteration number
as i = i + 1

Update the number of
cycles as p = p + 1

Set iteration number i = 1

Reduce temperature.

Stop

Convergence criteria
satisfied?

Is number of
Iterations i ≥ n ?

Generate new design point Xi+1
In the vicinity of Xi. Compute
fi+1 = f(Xi+1) and Δf = fi+1 – fi

No

Yes

Yes

No

Figure 13.2 Simulated annealing procedure.

X(3) =
{

8
5

}
,X(4) =

{
10
10

}
, we find the corresponding values of the objective

function as f (1) = 476, f (2) = 340, f (3) = 381, f (4) = 340, respectively. Not-
ing that the average value of the objective functions f (1), f (2), f (3), and f (4)

is 384.25, we assume the initial temperature to be T = 384.25. The temper-
ature reduction factor is chosen as c = 0.5. To make the computations brief,
we choose the maximum permissible number of iterations (at any specific
value of temperature) as n = 2. We select the initial design point as X1 =

{
4
5

}
.

�

� �

�

646 Modern Methods of Optimization

Step 2: Evaluate the objective function value at X1 as f1 = 349.0 and set the iteration
number as i = 1.

Step 3: Generate a new design point in the vicinity of the current design point. For
this, we select two uniformly distributed random numbers u1 and u2; u1 for
x1 in the vicinity of 4 and u2 for x2 in the vicinity of 5. The numbers u1 and
u2 are chosen as 0.31 and 0.57, respectively. By choosing the ranges of x1
and x2 as (−2, 10) and (−1, 11), which represent ranges of ±6 about their
respective current values, the uniformly distributed random numbers r1 and
r2 in the ranges of x1 and x2, corresponding to u1 and u2, can be found as

r1 = −2 + u1{10 − (−2)} = −2 + 0.31(12) = 1.72

r2 = −1 + u2{11 − (−1)} = −1 + 0.57(12) = 5.84

which gives X2 =
{r1

r2

}
=
{

1.72
5.84

}
. Since the objective function value

f2 = f(X2) = 387.7312, the value of Δf is given by

Δf = f2 − f1 = 387.7312 − 349.0 = 38.7312

Step 4: Since the value of Δf is positive, we use the Metropolis criterion to decide
whether to accept or reject the current point. For this we choose a random
number in the range (0, 1) as r = 0.83. Equation (13.18) gives the probability
of accepting the new design point X2 as

P[X2] = e−Δf∕kT (E1)

By assuming the value of the Boltzmann’s constant k to be 1 for simplicity
in Eq. (E1), we obtain

P[X2] = e−Δf∕kT = e−38.7312∕384.25 = 0.9041

Since r = 0.83 is smaller than 0.9041, we accept the point X2 =
{

1.72
5.84

}
as

the next design point. Note that, although the objective function value f2 is
larger than f1, we accept X2 because this is an early stage of simulation and
the current temperature is high.

Step 3: Update the iteration number as i = 2. Since the iteration number i is less than
or equal to n, we proceed to step 3.

Step 3: Generate a new design point in the vicinity of the current design point
X2 =

{
1.72
5.84

}
. For this, we choose the range of each design variable as

±6 about its current value so that the ranges are given by (−6+ 1.72,
6+ 1.72) = (−4.28, 7.72) for x1 and (−6+ 5.84, 6+ 5.84) = (−0.16, 11.84)
for x2. By selecting two uniformly distributed random numbers in the range
(0, 1) as u1 = 0.92 and u2 = 0.73, the corresponding uniformly distributed
random numbers in the ranges of x1 and x2 become

r1 = −4.28 + u1{7.72 − (−4.28)} = −4.28 + 0.92(12) = 6.76

r2 = −0.16 + u2{11.84 − (−0.16)} = −0.16 + 0.73(12) = 8.60

which gives X3 =
{r1

r2

}
=
{

6.76
8.60

}
with a function value of f3 = 313.3264.

We note that the function value f3 is better than f2 with Δf = f3 − f2
= 313.3264–387.7312 = −74.4048.

�

� �

�

13.4 Particle Swarm Optimization 647

Step 4: Since Δf < 0, we accept the current point as X3 and increase the iteration
number to i = 3. Since i > n, we go to step 5.

Step 5: Since a cycle of iterations with the current value of temperature is completed,
we reduce the temperature to a new value of T = 0.5 (384.25) = 192.125.
Reset the current iteration number as i = 1 and go to step 3.

Step 3: Generate a new design point in the vicinity of the current design point X3
and continue the procedure until the temperature is reduced to a small value
(until convergence).

13.4 PARTICLE SWARM OPTIMIZATION

13.4.1 Introduction

Particle swarm optimization, abbreviated as PSO, is based on the behavior of a colony
or swarm of insects, such as ants, termites, bees, and wasps; a flock of birds; or a school
of fish. The particle swarm optimization algorithm mimics the behavior of these social
organisms. The word particle denotes, for example, a bee in a colony or a bird in a
flock. Each individual or particle in a swarm behaves in a distributed way using its
own intelligence and the collective or group intelligence of the swarm. As such, if one
particle discovers a good path to food, the rest of the swarm will also be able to follow
the good path instantly even if their location is far away in the swarm. Optimization
methods based on swarm intelligence are called behaviorally inspired algorithms as
opposed to the genetic algorithms, which are called evolution-based procedures. The
PSO algorithm was originally proposed by Kennedy and Eberhart in 1995 [13.34].

In the context of multivariable optimization, the swarm is assumed to be of spec-
ified or fixed size with each particle located initially at random locations in the mul-
tidimensional design space. Each particle is assumed to have two characteristics: a
position and a velocity. Each particle wanders around in the design space and remem-
bers the best position (in terms of the food source or objective function value) it has
discovered. The particles communicate information or good positions to each other
and adjust their individual positions and velocities based on the information received
on the good positions.

As an example, consider the behavior of birds in a flock. Although each bird has
a limited intelligence by itself, it follows the following simple rules:

1. It tries not to come too close to other birds.
2. It steers toward the average direction of other birds.
3. It tries to fit the “average position” between other birds with no wide gaps in

the flock.

Thus the behavior of the flock or swarm is based on a combination of three simple
factors:

1. Cohesion – stick together.
2. Separation – don’t come too close.
3. Alignment – follow the general heading of the flock.

The PSO is developed based on the following model:

1. When one bird locates a target or food (or maximum of the objective function),
it instantaneously transmits the information to all other birds.

�

� �

�

648 Modern Methods of Optimization

2. All other birds gravitate to the target or food (or maximum of the objective
function), but not directly.

3. There is a component of each bird’s own independent thinking as well as its
past memory.

Thus the model simulates a random search in the design space for the maximum
value of the objective function. As such, gradually over many iterations, the birds go
to the target (or maximum of the objective function).

13.4.2 Computational Implementation of PSO

Consider an unconstrained maximization problem:

Maximize f (X)

with X(l) ≤ X ≤ X(u) (13.20)

where X(l) and X(u) denote the lower and upper bounds on X, respectively. The PSO
procedure can be implemented through the following steps.

1. Assume the size of the swarm (number of particles) is N. To reduce the total
number of function evaluations needed to find a solution, we must assume a
smaller size of the swarm. But with too small a swarm size it is likely to take
us longer to find a solution or, in some cases, we may not be able to find a
solution at all. Usually a size of 20 to 30 particles is assumed for the swarm as
a compromise.

2. Generate the initial population of X in the range X(l) and X(u) randomly as
X1, X2, . . . , XN. Hereafter, for convenience, the particle (position of) j and
its velocity in iteration i are denoted as X(i)

j and V(i)
j , respectively. Thus, the

particles generated initially are denoted X1(0), X2(0), . . . , XN(0). The vectors
Xj(0)(j = 1, 2, . . . , N) are called particles or vectors of coordinates of particles
(similar to chromosomes in genetic algorithms). Evaluate the objective func-
tion values corresponding to the particles as f[X1(0)], f[X2(0)], . . . , f[XN(0)].

3. Find the velocities of particles. All particles will be moving to the optimal point
with a velocity. Initially, all particle velocities are assumed to be zero. Set the
iteration number as i = 1.

4. In the ith iteration, find the following two important parameters used by a typ-
ical particle j:

(a) The historical best value of Xj(i) (coordinates of jth particle in the current
iteration i), Pbest, j, with the highest value of the objective function, f[Xj(i)],
encountered by particle j in all the previous iterations.

The historical best value of Xj(i) (coordinates of all particles up to that
iteration), Gbest, with the highest value of the objective function f [Xj (i)],
encountered in all the previous iterations by any of the N particles.

(b) Find the velocity of particle j in the ith iteration as follows:

Vj(i) = Vj(i − 1) + c1r1[Pbest,j − Xj(i − 1)]

+ c2r2[Gbest − Xj(i − 1)]; j = 1, 2, . . . ,N (13.21)

where c1 and c2 are the cognitive (individual) and social (group) learning
rates, respectively, and r1 and r2 are uniformly distributed random num-
bers in the range 0 and 1. The parameters c1 and c2 denote the relative
importance of the memory (position) of the particle itself to the memory

�

� �

�

13.4 Particle Swarm Optimization 649

(position) of the swarm. The values of c1 and c2 are usually assumed to
be 2 so that c1r1 and c2r2 ensure that the particles would overfly the target
about half the time.

(c) Find the position or coordinate of the jth particle in ith iteration as

Xj(i) = Xj(i − 1) + Vj(i); j = 1, 2, . . . ,N (13.22)

where a time step of unity is assumed in the velocity term in Eq. (13.22).
Evaluate the objective function values corresponding to the particles as
f[X1(i)], f[X2(i)], . . . , f[XN(i)].

5. Check the convergence of the current solution. If the positions of all particles
converge to the same set of values, the method is assumed to have converged.
If the convergence criterion is not satisfied, step 4 is repeated by updating the
iteration number as i = i + 1, and by computing the new values of Pbest,j and
Gbest. The iterative process is continued until all particles converge to the same
optimum solution.

13.4.3 Improvement to the Particle Swarm Optimization Method

It is found that usually the particle velocities build up too fast and the maximum of
the objective function is skipped. Hence an inertia term, 𝜃, is added to reduce the
velocity. Usually, the value of 𝜃 is assumed to vary linearly from 0.9 to 0.4 as the
iterative process progresses. The velocity of the jth particle, with the inertia term, is
assumed as

Vj(i) = 𝜃Vj(i − 1) + c1r1[Pbest,j − Xj(i − 1)]

+ c2r2[Gbest − Xj(i − 1)]; j = 1, 2, . . . ,N (13.23)

The inertia weight 𝜃was originally introduced by Shi and Eberhart in 1999 [13.36]
to dampen the velocities over time (or iterations), enabling the swarm to converge more
accurately and efficiently compared to the original PSO algorithm with Eq. (13.21).
Equation (13.23) denotes an adapting velocity formulation, which improves its fine-
tuning ability in solution search. Equation (13.23) shows that a larger value of 𝜃 pro-
motes global exploration and a smaller value promotes a local search. Thus a large
value of 𝜃makes the algorithm constantly explore new areas without much local search
and hence fails to find the true optimum. To achieve a balance between global and local
exploration to speed up convergence to the true optimum, an inertia weight whose
value decreases linearly with the iteration number has been used:

𝜃(i) = 𝜃max −
(
𝜃max − 𝜃min

imax

)
i (13.24)

where 𝜃max and 𝜃min are the initial and final values of the inertia weight, respectively,
and imax is the maximum number of iterations used in PSO. The values of 𝜃max = 0.9
and 𝜃min = 0.4 are commonly used.

13.4.4 Solution of the Constrained Optimization Problem

Let the constrained optimization problem be given by

Maximize f (X)

subject to
gj(X) ≤ 0; j = 1, 2, . . . ,m (13.25)

�

� �

�

650 Modern Methods of Optimization

An equivalent unconstrained function, F(X), is constructed by using a penalty
function for the constraints. Two types of penalty functions can be used in defining
the function F(X). The first type, known as the stationary penalty function, uses fixed
penalty parameters throughout the minimization and the penalty value depends only
on the degree of violation of the constraints. The second type, known as nonstation-
ary penalty function, uses penalty parameters whose values change dynamically with
the iteration number during optimization. The results obtained with the nonstationary
penalty functions have been found to be superior to those obtained with stationary
penalty functions in the numerical studies reported in the literature. As such, the non-
stationary penalty function is to be used in practical computations.

According to the nonstationary penalty function approach, the function F(X) is
defined as

F(X) = f (X) + C(i)H(X) (13.26)

where C(i) denotes a dynamically modified penalty parameter that varies with
the iteration number i, and H(X) represents the penalty factor associated with the
constraints:

C(i) = (ci)𝛼 (13.27)

H(X) =
m∑

j=1

{𝜑[gj(X)][qj(X)]𝛾[qi(X)]} (13.28)

𝜑[qj(X)] = a

(
1 − 1

eqj(X)

)
+ b (13.29)

qj(X) = max{0, gj(X)}; j = 1, 2, . . . ,m (13.30)

where c, 𝛼, a, and b are constants. Note that the function qj(X) denotes the magnitude
of violation of the jth constraint, 𝜑[qj(X)] indicates a continuous assignment function,
assumed to be of exponential form, as shown in Eq. (13.29), and 𝛾[qi(X)] represents
the power of the violated function. The values of c = 0.5, 𝛼 = 2, a = 150, and b = 10
along with

𝛾[qj(X)] =

{
1 if qj(X) ≤ 1

2 if qj(X) > 1
(13.31)

were used by Liu and Lin [13.35].

Example 13.4 Find the maximum of the function

f (x) = −x2 + 2x + 11

in the range− 2≤ x≤ 2 using the PSO method. Use 4 particles (N = 4) with the initial
positions x1 = −1.5, x2 = 0.0, x3 = 0.5, and x4 = 1.25. Show the detailed computations
for iterations 1 and 2.

SOLUTION
1. Choose the number of particles N as 4.
2. The initial population, chosen randomly (given as data), can be represented as

x1(0) = −1.5, x2(0) = 0.0, x3(0) = 0.5, and x4(0) = 1.25. Evaluate the objective
function values at current xj(0), j = 1, 2, 3, 4 as f1 = f[x1(0)] = f(−1.5) = 5.75,
f2 = f[x2(0)] = f(0.0) = 11.0, f3 = f[x3(0)] = f(0.5) = 11.75, and f4 = f[x4(0)]
= f(1.25) = 11.9375.

�

� �

�

13.4 Particle Swarm Optimization 651

3. Set the initial velocities of each particle to zero:

v1(0) = v2(0) = v3(0) = v4(0) = 0

Set the iteration number as i = 1 and go to step 4.
4. .(a) Find Pbest,1 =−1.5, Pbest,2 = 0.0, Pbest,3 = 0.5, Pbest,4 = 1.25, and

Gbest = 1.25.
(b) Find the velocities of the particles as (by assuming c1 = c2 = 1 and using

the random numbers in the range (0, 1) as r1 = 0.3294 and r2 = 0.9542):

vj(i) = vj(i − 1) + r1[Pbest,j − xj(i − 1)]

+ r2[Gbest − xj(i − 1)]; j = 1, 2, 3, 4

so that

v1(1) = 0 + 0.3294(−1.5 + 1.5) + 0.9542(1.25 + 1.5) = 2.6241

v2(1) = 0 + 0.3294(0.0 − 0.0) + 0.9542(1.25 − 0.0) = 1.1927

v3(1) = 0 + 0.3294(0.5 − 0.5) + 0.9542(1.25 − 0.5) = 0.7156

v4(1) = 0 + 0.3294(1.25 − 1.25) + 0.9542(1.25 − 1.25) = 0.0

(c) Find the new values of xj (1), j = 1, 2, 3, 4, as xj (i) = xj(i − 1)+ vj(i):

x1(1) = −1.5 + 2.6241 = 1.1241

x2(1) = 0.0 + 1.1927 = 1.1927

x3(1) = 0.5 + 0.7156 = 1.2156

x4(1) = 1.25 + 0.0 = 1.25

5. Evaluate the objective function values at the current xj(i):

f [x1(1)] = 11.9846, f [x2(1)] = 11.9629, f [x3(1)] = 11.9535,

f [x4(1)] = 11.9375

Check the convergence of the current solution. Since the values of xj(i) did not
converge, we increment the iteration number as i = 2 and go to step 4.

4. .(a) Find Pbest,1 = 1.1241, Pbest,2 = 1.1927, Pbest,3 = 1.2156, Pbest,4 = 1.25, and
Gbest = 1.1241.

(b) Compute the new velocities of particles (by assuming c1 = c2 = 1 and using
the random numbers in the range (0, 1) as r1 = 0.1482 and r2 = 0.4867):

vj(i) = vj(i − 1) + r1(Pbest,j − xj(i)) + r2(Gbest − xj(i)); j = 1, 2, 3, 4

so that

v1(2) = 2.6240 + 0.1482(1.1241 − 1.1241) + 0.4867(1.1241 − 1.1241)

= 2.6240

v2(2) = 1.1927 + 0.1482(1.1927 − 1.1927) + 0.4867(1.1241 − 1.1927)

= 1.1593

�

� �

�

652 Modern Methods of Optimization

v3(2) = 0.7156 + 0.1482(1.2156 − 1.2156) + 0.4867(1.1241 − 1.2156)

= 0.6711

v4(2) = 0.0 + 0.1482(1.25 − 1.25) + 0.4867(1.1241 − 1.25) = −0.0613

(c) Compute the current values of xj(i) as xj(i) = xj(i − 1)+ vj(i), j = 1, 2, 3, 4:

x1(2) = 1.1241 + 2.6240 = 3.7481

x2(2) = 1.1927 + 1.1593 = 2.3520

x3(2) = 1.2156 + 0.6711 = 1.8867

x4(2) = 1.25 − 0.0613 = 1.1887

7. Find the objective function values at the current xj(i):

f [x1(2)] = 4.4480, f [x2(2)] = 10.1721, f [x3(2)] = 11.2138,

f [x4(2)] = 11.9644

Check the convergence of the process. Since the values of xj(i) did not con-
verge, we increment the iteration number as i = 3 and go to step 4. Repeat
step 4 until the convergence of the process is achieved.

13.5 ANT COLONY OPTIMIZATION

13.5.1 Basic Concept

ACO is based on the cooperative behavior of real ant colonies, which are able to
find the shortest path from their nest to a food source. The method was developed by
Dorigo and his associates in the early 1990s [13.31, 13.32]. The ACO process can be
explained by representing the optimization problem as a multilayered graph as shown
in Figure 13.3, where the number of layers is equal to the number of design variables
and the number of nodes in a particular layer is equal to the number of discrete values
permitted for the corresponding design variable. Thus each node is associated with a
permissible discrete value of a design variable. Figure 13.3 denotes a problem with
six design variables with eight permissible discrete values for each design variable.

The ACO process can be explained as follows. Let the colony consist of N ants.
The ants start at the home node, travel through the various layers from the first layer
to the last or final layer, and end at the destination node in each cycle or iteration.
Each ant can select only one node in each layer in accordance with the state transition
rule given by Eq. (13.32). The nodes selected along the path visited by an ant repre-
sent a candidate solution. For example, a typical path visited by an ant is shown by
thick lines in Figure 13.3. This path represents the solution (x12, x23, x31, x45, x56, x64).
Once the path is complete, the ant deposits some pheromone on the path based on
the local updating rule given by Eq. (13.33). When all the ants complete their paths,
the pheromones on the globally best path are updated using the global updating rule
described by Eqs. (13.32) and (13.33).

In the beginning of the optimization process (i.e. in iteration 1), all the edges or
rays are initialized with an equal amount of pheromone. As such, in iteration 1, all the
ants start from the home node and end at the destination node by randomly selecting
a node in each layer. The optimization process is terminated if either the prespecified
maximum number of iterations is reached or no better solution is found in a prespec-
ified number of successive cycles or iterations. The values of the design variables

�

� �

�

13.5 Ant Colony Optimization 653

Home

Destination
(Food)

Layer 1 (x1) x11 x13 x14 x15 x16 x17 x18
x12

x21 x22
x23 x24 x25 x26 x27 x28

x31

x32 x33 x34 x35 x36 x37 x38

x41 x42 x43
x44

x45 x46 x47 x48

x51 x52 x53 x54
x55 x56 x57 x58

x61
x62 x63 x64 x65 x66

x67 x68

Layer 2 (x2)

Layer 3 (x3)

Layer 4 (x4)

Layer 5 (x5)

Layer 6 (x6)

Figure 13.3 Graphical representation of the ACO process in the form of a multi-layered network.

denoted by the nodes on the path with largest amount of pheromone are considered as
the components of the optimum solution vector. In general, at the optimum solution,
all ants travel along the same best (converged) path.

13.5.2 Ant Searching Behavior

An ant k, when located at node i, uses the pheromone trail 𝜏 ij to compute the probability
of choosing j as the next node:

p(k)ij =
⎧⎪⎨⎪⎩

𝜏
𝛼

ij∑
j∈N(k)

i

𝜏
𝛼

ij

if j ∈ N(k)
i

0 if j ∉ N(k)
i

(13.32)

where 𝛼 denotes the degree of importance of the pheromones and Ni
(k) indicates the

set of neighborhood nodes of ant k when located at node i. The neighborhood of node i
contains all the nodes directly connected to node i except the predecessor node (i.e. the

�

� �

�

654 Modern Methods of Optimization

last node visited before i). This will prevent the ant from returning to the same node
visited immediately before node i. An ant travels from node to node until it reaches
the destination (food) node.

13.5.3 Path Retracing and Pheromone Updating

Before returning to the home node (backward node), the kth ant deposits Δ𝜏(k) of
pheromone on arcs it has visited. The pheromone value 𝜏 ij on the arc (i, j) traversed is
updated as follows:

𝜏ij ← 𝜏ij + Δ𝜏 (k) (13.33)

Because of the increase in the pheromone, the probability of this arc being selected
by the forthcoming ants will increase.

13.5.4 Pheromone Trail Evaporation

When an ant k moves to the next node, the pheromone evaporates from all the arcs ij
according to the relation

𝜏ij ← (1 − p)𝜏ij; ∀(i, j) ∈ A (13.34)

where p ∈ (0, 1] is a parameter and A denotes the segments or arcs traveled by ant k
in its path from home to destination. The decrease in pheromone intensity favors the
exploration of different paths during the search process. This favors the elimination
of poor choices made in the path selection. This also helps in bounding the maximum
value attained by the pheromone trails. An iteration is a complete cycle involving ant’s
movement, pheromone evaporation and pheromone deposit.

After all the ants return to the home node (nest), the pheromone information is
updated according to the relation

𝜏ij = (1 − 𝜌)𝜏ij +
N∑

k=1

Δ𝜏 (k)ij (13.35)

where 𝜌 ∈ (0, 1] is the evaporation rate (also known as the pheromone decay fac-
tor) and Δ𝜏 (k)ij is the amount of pheromone deposited on arc ij by the best ant k. The
goal of pheromone update is to increase the pheromone value associated with good or
promising paths. The pheromone deposited on arc ij by the best ant is taken as

Δ𝜏 (k)ij = Q
Lk

(13.36)

where Q is a constant and Lk is the length of the path traveled by the kth ant (in
the case of the travel from one city to another in a traveling salesman problem).
Equation (13.36) can be implemented as

Δ𝜏 (k)ij =
⎧⎪⎨⎪⎩

𝜍fbest

fworst
; if (i, j) ∈ global best tour

0; otherwise

(13.37)

where fworst is the worst value and fbest is the best value of the objective function among
the paths taken by the N ants, and 𝜁 is a parameter used to control the scale of the global
updating of the pheromone. The larger the value of 𝜁 , the more pheromone deposited
on the global best path, and the better the exploitation ability. The aim of Eq. (13.37) is
to provide a greater amount of pheromone to the tours (solutions) with better objective
function values.

�

� �

�

13.5 Ant Colony Optimization 655

13.5.5 Algorithm

The step-by-step procedure of ACO algorithm for solving a minimization problem can
be summarized as follows:

Step 1: Assume a suitable number of ants in the colony (N). Assume a set of permissi-
ble discrete values for each of the n design variables. Denote the permissible
discrete values of the design variable xi as xi1, xi2, . . . , xip (i = 1, 2, . . . ,
n). Assume equal amounts of pheromone 𝜏(1)ij initially along all the arcs or
rays (discrete values of design variables) of the multilayered graph shown in
Figure 13.3. The superscript to 𝜏 ij denotes the iteration number. For simplic-
ity, 𝜏 (1)ij = 1 can be assumed for all arcs ij. Set the iteration number l = 1.

Step 2: .(a) Compute the probability (pij) of selecting the arc or ray (or the discrete
value) xij as

pij =
𝜏
(l)
ij

p∑
m=1

𝜏
(l)
im

; i = 1, 2, . . . , n; j = 1, 2, . . . , p (13.38)

which can be seen to be same as Eq. (13.32) with 𝛼 = 1. A larger value
can also be used for 𝛼.

(b) The specific path (or discrete values) chosen by the kth ant can be deter-
mined using random numbers generated in the range (0, 1). For this, we
find the cumulative probability ranges associated with different paths of
Figure 13.3 based on the probabilities given by Eq. (13.38). The spe-
cific path chosen by ant k will be determined using the roulette-wheel
selection process in step 3(a).

Step 3: .(a) Generate N random numbers r1, r2, . . . , rN in the range (0, 1), one for
each ant. Determine the discrete value or path assumed by ant k for vari-
able i as the one for which the cumulative probability range [found in
step 2(b)] includes the value ri.

(b) Repeat step 3(a) for all design variables i = 1, 2, . . . , n.
(c) Evaluate the objective function values corresponding to the complete

paths (design vectors X(k) or values of xij chosen for all design variables
i = 1, 2, . . . , n by ant k, k = 1, 2, . . . , N):

fk = f (X(k)); k = 1, 2, . . . ,N (13.39)

Determine the best and worst paths among the N paths chosen by differ-
ent ants:

fbest = min
k=1,2, . . . ,N{fk}

(13.40)

fworst = max
k=1,2, . . . ,N{fk}

(13.41)

Step 4: Test for the convergence of the process. The process is assumed to have con-
verged if all N ants take the same best path. If convergence is not achieved,
assume that all the ants return home and start again in search of food. Set the
new iteration number as l = l + 1, and update the pheromones on different
arcs (or discrete values of design variables) as

𝜏
(l)
ij = 𝜏

(old)
ij +

∑
k

Δ𝜏 (k)ij (13.42)

�

� �

�

656 Modern Methods of Optimization

where 𝜏 (old)
ij denotes the pheromone amount of the previous iteration left after

evaporation, which is taken as

𝜏
(old)
ij = (1 − 𝜌)𝜏 (l−1)

ij (13.43)

and Δ𝜏 (k)ij is the pheromone deposited by the best ant k on its path and the
summation extends over all the best ants k (if multiple ants take the same best
path). Note that the best path involves only one arc ij (out of p possible arcs)
for the design variable i. The evaporation rate or pheromone decay factor 𝜌
is assumed to be in the range 0.5 to 0.8 and the pheromone deposited Δ𝜏(k)ij
is computed using Eq. (13.37).
With the new values of 𝜏(l)ij , go to step 2. Steps 2, 3, and 4 are repeated until
the process converges, that is, until all the ants choose the same best path. In
some cases, the iterative process is stopped after completing a prespecified
maximum number of iterations (lmax).

Example 13.5 Find the minimum of the function f(x) = x2 − 2x− 11 in the range
(0, 3) using the ACO method.

SOLUTION
Step 1: Assume the number of ants is N = 4. Note that there is only one design vari-

able in this example (n = 1). The permissible discrete values of x = x1 are
assumed, within the range of x1, as (p = 7):

x11 = 0.0, x12 = 0.5, x13 = 1.0, x14 = 1.5, x15 = 2.0, x16 = 2.5, x17 = 3.0

Each ant can choose any of the discrete values (paths or arcs) x1j, j = 1, 2,
. . . , 7 shown in Figure 13.4. Assume equal amounts of pheromone along
each of the paths or arcs (𝜏1j) shown in Figure 13.4. For simplicity, 𝜏1j = 1 is
assumed for j = 1, 2, . . . , 7. Set the iteration number as l = 1.

Step 2: For any ant k, the probability of selecting path (or discrete variable) x1j is
given by

p1j =
𝜏1j

7∑
p=1

𝜏1p

= 1
7

x11 = 0·0

x12 = 0·5

x13 = 1·0

x14 = 1·5

x15 = 2·0

x16 = 2·5

x17 = 3·0

Food (Destination)Home

Figure 13.4 Possible paths for an ant (possible discrete values of x≡ x1).

�

� �

�

13.5 Ant Colony Optimization 657

To select the specific path (or discrete variable) chosen by an ant using a
random number generated in the range (0, 1), cumulative probability ranges
are associated with different paths of Figure 13.4 as (using roulette-wheel
selection process in step 3):

x11 =
(

0, 1
7

)
= (0.0, 0.1428), x12 =

(
1
7
,

2
7

)
= (0.1428, 0.2857),

x13 =
(

2
7
,

3
7

)
= (0.2857, 0.4286),

x14 =
(

3
7
,

4
7

)
= (0.4286, 0.5714), x15 =

(
4
7
,

5
7

)
= (0.5714, 0.7143),

x16 =
(

5
7
,

6
7

)
= (0.7143, 0.8571),

x17 =
(

6
7
, 1
)
= (0.8571, 1.0)

Step 3: Generate four random numbers ri (i = 1, 2, 3, 4) in the range (0, 1), one for
each ant as r1 = 0.3122, r2 = 0.8701, r3 = 0.4729, and r4 = 0.6190. Using the
cumulative probability range (given in step 2) in which the value of ri falls,
the discrete value assumed (or the path selected in Figure 13.4) by different
ants can be seen to be

ant 1 ∶ x13 = 1.0; ant 2 ∶ x17 = 3.0; ant 3 ∶ x14 = 1.5; ant 4 ∶ x15 = 2.0

The objective function values corresponding to the paths chosen by different
ants are given by

ant 1 ∶ f1 = f (x13) = f (1.0) = −12.0; ant 2 ∶ f2 = f (x17) = f (3.0) = −8.0;

ant 3 ∶ f3 = f (x14) = f (1.5) = −11.75; ant 4 ∶ f4 = f (x15) = f (2.0) = −11.0

It can be seen that the path taken by ant 1 is the best one (with minimum
value of the objective function): xbest = x13 = 1.0, fbest = f1 = −12.0; and the
path taken by ant 2 is the worst one (with maximum value of the objective
function): xworst = x17 = 3.0, fworst = f2 = −8.0.

Step 4: Assuming that the ants return home and start again in search of food, we set
the iteration number as l = 2. We need to update the pheromone array as

𝜏
(2)
1j = 𝜏

(old)
1j +

∑
k

Δ𝜏 (k) (E1)

where
∑
k
Δ𝜏 (k) is the pheromone deposited by the best ant k and the summa-

tion extends over all the best ants k (if multiple ants take the best path). In the
present case, there is only one best ant, k = 1, which used the path x13. Thus,
the value of

∑
k
Δ𝜏 (k) can be determined in this case as

∑
k

Δ𝜏 (k) = Δ𝜏 (k=1) =
𝜍fbest

fworst
= (2)(−12.0)

(−8.0)
= 3.0

where the scaling parameter 𝜍 is assumed to be 2. Using a pheromone decay
factor of 𝜌 = 0.5 in Eq. (13.43), 𝜏 (old)

1j can be computed as

𝜏
(old)
1j = (1 − 0.5)𝜏 (1)1j = 0.5(1.0) = 0.5; j = 1, 2, 4, 5, 6, 7

�

� �

�

658 Modern Methods of Optimization

Thus Eq. (E1) gives

𝜏
(2)
1j = 1.0 + 3.0 = 4.0 for j = 3 and 𝜏

(2)
1j = 0.5 for j = 1, 2, 4, 5, 6, 7

With this, we go to step 5.
Step 2: For any ant k, the probability of selecting path x1j in Figure 13.4 is given by

p1j =
𝜏1j

7∑
p=1

𝜏1p

; j = 1, 2, . . . , 7

where 𝜏1j = 0.5; j = 1, 2, 4, 5, 6, 7 and 𝜏13 = 4. This gives

p1j =
0.5
7.0

= 0.0714; j = 1, 2, 4, 5, 6, 7; p13 = 4.0
7.0

= 0.5714

To determine the discrete value or path selected by ant using a random num-
ber selected in the range (0, 1), cumulative probabilities are associated with
different paths as (roulette wheel selection process):

x11 = (0, 0.0714), x12 = (0.0714, 0.1429), x13 = (0.1429, 0.7143),

x14 = (0.7143, 0.7857), x15 = (0.7857, 0.8571), x16 = (0.8571, 0.9286),

x17 = (0.9286, 1.0)

Step 3: Generate four random numbers in the range (0, 1), one for each of the ants
as r1 = 0.3688, r2 = 0.8577, r3 = 0.0776, r4 = 0.5791. Using the cumulative
probability range (given in step 2) in which the value of ri falls, the discrete
value assumed (or the path selected in Figure 13.4) by different ants can be
seen to be

ant 1 ∶ x13 = 1.0; ant 2 ∶ x16 = 2.5; ant 3 ∶ x11 = 0.0; ant 4 ∶ x13 = 1.0

This shows that two ants (probabilistically) selected the path x13 due to higher
pheromone left on the best path (x13) found in the previous iteration. The
objective function values corresponding to the paths chosen by different ants
are given by

ant 1 ∶ f1 = f (x13) = f (1.0) = −12.0; ant 2 ∶ f2 = f (x16) = f (2.5) = −9.75;

ant 3 ∶ f3 = f (x11) = f (0.0) = −11.0; ant 4 ∶ f4 = f (x13) = f (1.0) = −12.0

It can be seen that the path taken by ants 1 and 4 is the best one with

xbest = x13 = 1.0 and fbest = f1 = f4 = −12.0

and the path taken by ant 2 is the worst one with

xworst = x16 = 2.5 and fworst = f2 = −9.75

Now we go to step 4 to update the pheromone values on the various paths.

�

� �

�

13.5 Ant Colony Optimization 659

Step 4: Assuming that the ants return home and start again in search of food, we set
the iteration number as l = 3. We need to update the pheromone array as

𝜏
(3)
1j = 𝜏

(old)
1j +

∑
k

Δ𝜏 (k) (E2)

where
∑
k
Δ𝜏 (k) is the pheromone deposited by the best ant k and the summa-

tion extends over all the best ants k (if multiple ants take the best path). In the
present case, there are two best ants, k = 1 and 4, which used the path x13.
Thus, the value of

∑
k
Δ𝜏 (k) can be determined in this case as

∑
k

Δ𝜏 (k) = Δ𝜏 (k=1) + Δ𝜏 (k=4) =
2𝜍fbest

fworst
= (2)(2)(−12.0)

(−9.75)
= 4.9231

where the scaling parameter 𝜍 is assumed to be 2. Using a pheromone decay
factor of 𝜌 = 0.5 in Eq. (13.43), 𝜏(old)

1j can be computed as

𝜏
(old)
1j = (1.0 − 0.5)𝜏 (2)1j = 0.5(0.5) = 0.25; j = 1, 2, 4, 5, 6, 7

Thus Eq. (E2) gives

𝜏
(3)
1j = 4.0 + 4.9231 = 8.9231 for j = 3 and

𝜏
(3)
1j = 0.25 for j = 1, 2, 4, 5, 6, 7

With this, we go to step 2.
Step 2: For any ant k, the probability of selecting path x1j in Figure 13.4 is

given by

p1j =
𝜏1j

7∑
p=1

𝜏1p

; j = 1, 2, . . . , 7

where 𝜏1j = 0.25; j = 1, 2, 4, 5, 6, 7and 𝜏13 = 8.9231. This gives

p1j =
0.25

10.4231
= 0.0240, j = 1, 2, 4, 5, 6, 7; p13 = 8.9231

10.4231
= 0.8561

To determine the discrete value or path selected by an ant using a random
number selected in the range (0, 1), cumulative probabilities are associated
with different paths as (roulette-wheel selection process):

x11 = (0, 0.0240), x12 = (0.0240, 0.0480), x13 = (0.0480, 0.9040),

x14 = (0.9040, 0.9280), x15 = (0.9280, 0.9520),

x16 = (0.9520, 0.9760), x17 = (0.9760, 1.0)

With this information, we go to step 3 and then to step 4. Steps 2, 3, and 4
are repeated until the process converges (until all the ants choose the same
best path).

�

� �

�

660 Modern Methods of Optimization

13.6 OPTIMIZATION OF FUZZY SYSTEMS

In traditional designs, the optimization problem is stated in precise mathematical
terms. However, in many real-world problems, the design data, objective function,
and constraints are stated in vague and linguistic terms. For example, the statement,
“This beam carries a load of 1000 lb. with a probability of 0.8” is imprecise because of
randomness in the material properties of the beam. On the other hand, the statement,
“This beam carries a large load” is imprecise because of the fuzzy meaning of “large
load.” Similarly, in the optimum design of a machine component, the induced stress
(𝜎) is constrained by an upper bound value (𝜎max) as 𝜎 ≤ 𝜎max. If 𝜎max = 30 000 psi,
it implies that a design with 𝜎 = 30 000 psi is acceptable whereas a design with
𝜎 = 30 001 psi is not acceptable. However, there is no substantive difference between
designs with 𝜎 = 30 000 psi and 𝜎 = 30 001 psi. It appears that it is more reasonable
to have a transition stage from absolute permission to absolute impermission. This
implies that the constraint is to be stated in fuzzy terms. Fuzzy theories can be
used to model and design systems involving vague and imprecise information
[13.22, 13.26, 13.27].

13.6.1 Fuzzy Set Theory

Let X be a classical crisp set of objects, called the universe, whose generic elements are
denoted by x. Membership in a classical subset A of X can be viewed as a characteristic
function 𝜇A from X to [0, 1] such that

𝜇A(x) =

{
1 if x ∈ A

0 if x ∉ A
(13.44)

The set [0, 1] is called a valuation set. A set A is called a fuzzy set if the valuation
set is allowed to be the whole interval [0, 1]. The fuzzy set A is characterized by the
set of all pairs of points denoted as

A = {x, 𝜇A(x)}, x ∈ X (13.45)

where 𝜇A(x) is called the membership function of x in A. The closer the value of 𝜇A(x)
is to 1, the more x belongs to A. For example, let X = {62 64 66 68 70 72 74 76 78
80} be possible temperature settings of the thermostat (∘F) in an air-conditioned build-
ing. Then the fuzzy set A of “comfortable temperatures for human activity” may be
defined as

A = {(62, 0.2) (64, 0.5) (66, 0.8) (68, 0.95) (70, 0.85) (72, 0.75)

(74, 0.6) (76, 0.4) (78, 0.2) (80, 1.0)} (13.46)

where a grade of membership of 1 implies complete comfort and 0 implies complete
discomfort. In general, if X is a finite set, {x1, x2, . . . , xn} the fuzzy set on X can be
expressed as

A = 𝜇A(x1)|x1
+ 𝜇A(x2)|x2

+⋯ + 𝜇A(xn) |xn
=

n∑
i=1

𝜇A(xi)
|||||xi

(13.47)

or in the limit, we can express A as

A = ∫x
𝜇A(x)

||||x (13.48)

Crisp set theory is concerned with membership of precisely defined sets and is
suitable for describing objective matters with countable events. Crisp set theory is

�

� �

�

13.6 Optimization of Fuzzy Systems 661

developed using binary statements and is illustrated in Figure 13.5a, which shows the
support for y1 with no ambiguity. Since fuzzy set theory is concerned with linguistic
statements of support for membership in imprecise sets, a discrete fuzzy set is denoted
as in Figure 13.5b, where the degree of support is shown by the membership values,
𝜇1, 𝜇2,..., 𝜇n, corresponding to y1, y2, . . . , yn, respectively. The discrete fuzzy set can
be generalized to a continuous form as shown in Figure 13.5c.

The basic crisp set operations of union, intersection, and complement can be rep-
resented on Venn diagrams as shown in Figure 13.6. Similar operations can be defined
for fuzzy sets, noting that the sets A and B do not have clear boundaries in this case.
The graphs of 𝜇A and 𝜇B can be used to define the set-theoretic operations of fuzzy
sets. The union of the fuzzy sets A and B is defined as

𝜇A∪B(y) = 𝜇A(y) ∨ 𝜇B(y) = max[𝜇A(y), 𝜇B(y)]

=

{
𝜇A(y) if 𝜇A > 𝜇B

𝜇B(y) if 𝜇A < 𝜇B

(13.49)

0

1

μ μ1

μ2

0

(a) (b)

1

μ

y2 y2y1y1 yn

0

(c)

1

μ

y

yn

μn

Figure 13.5 Crisp and fuzzy sets: (a) crisp set; (b) discrete fuzzy set; (c) continuous
fuzzy set.

B

A

B

A A

A
–

(a) (b) (c)

Figure 13.6 Basic set operations in crisp set theory: (a) A or B or both: A ∪ B; (b) A and
B : A ∩ B; (c) not A: A.

�

� �

�

662 Modern Methods of Optimization

μAUB(y)

(a)

A
y

(b)

y

(c)

y

111

A
–μA B(y)U μ(y)

μA(y)

μB(y)

μA(y)

μB(y)

μA(y)

–μA(y)

Figure 13.7 Basic set operations in fuzzy set theory: (a) union; (b) intersection; (c) complement.

The result of this operation is shown in Figure 13.7a. The intersection of the fuzzy
sets A and B is defined as

𝜇A∩B(y) = 𝜇A(y) ∧ 𝜇B(y) = min[𝜇A(y), 𝜇B(y)]

=

{
𝜇A(y) if 𝜇A < 𝜇B

𝜇B(y) if 𝜇A > 𝜇B

(13.50)

This operation is shown in Figure 13.7b. The complement of a fuzzy set A
is shown as A in Figure 13.7c, in which for every 𝜇A(y), there is a corresponding
𝜇A(y) = 1−𝜇A(y), which defines the complement of the set A, A.

13.6.2 Optimization of Fuzzy Systems

The conventional optimization methods deal with selection of the design variables that
optimizes an objective function subject to the satisfaction of the stated constraints.
For a fuzzy system, this notion of optimization has to be revised. Since the objective
and constraint functions are characterized by the membership functions in a fuzzy
system, a design (decision) can be viewed as the intersection of the fuzzy objective and
constraint functions. For illustration, consider the objective function: “The depth of the
crane girder (x) should be substantially greater than 80 in.” This can be represented by
a membership function, such as

𝜇f (x) =

{
0 if x < 80 in.

[1 + (x − 80)−2]−1 if x ≥ 80 in.
(13.51)

Let the constraint be “The depth of the crane girder (x) should be in the vicinity
of 83 in.” This can be described by a membership function of the type

𝜇g(x) = [1 + (x − 83)4]−1 (13.52)

Then the design (decision) is described by the membership function, 𝜇D(x), as

𝜇D(x) = 𝜇f (x) ∧ 𝜇g(x)

=
⎧⎪⎨⎪⎩

0 x < 80 in.

min{[1 + (x − 80)−2]−1
, [1 + (x − 83)4]−1}

if x ≥ 80 in.

(13.53)

�

� �

�

13.6 Optimization of Fuzzy Systems 663

Constraint

0
x (in.)

1

μ

Objective function

Design (decision)

Figure 13.8 Concept of fuzzy decision.

This relationship is shown in Figure 13.8.
The conventional optimization problem is usually stated as follows:

Find X which minimizes f (X)

subject to
g(l)j ≤ gj(X) ≤ g(u)j , j = 1, 2, . . . ,m (13.54)

where the superscripts l and u denote the lower and upper bound values, respectively.
The optimization problem of a fuzzy system is stated as follows:

Find X which minimizes f (X)

subject to
gj(X) ∈ Gj, j = 1, 2, . . . ,m (13.55)

where Gj denotes the fuzzy interval to which the function gj(X) should belong. Thus
the fuzzy feasible region, S, which denotes the intersection of all Gj, is defined by the
membership function

𝜇S(X) = min
j=1,2, . . . ,m

{𝜇Gj
[gj(X)]} (13.56)

Since a design vector X is considered feasible when 𝜇S(X)> 0, the optimum
design is characterized by the maximum value of the intersection of the objective
function and the feasible domain:

𝜇D(X∗) = max𝜇D(X), X ∈ D (13.57)

where
𝜇D(X) = min{𝜇f (X), min

j=1,2, . . . ,m
𝜇Gj

[gj(X)]} (13.58)

13.6.3 Computational Procedure

The solution of a fuzzy optimization problem can be determined once the membership
functions of f and gj are known. In practical situations, the constructions of the mem-
bership functions is accomplished with the cooperation and assistance of experienced
engineers in specific cases. In the absence of other information, linear membership
functions are commonly used, based on the expected variations of the objective and

�

� �

�

664 Modern Methods of Optimization

constraint functions. Once the membership functions are known, the problem can be
posed as a crisp optimization problem as

Find X and λ which Maximize λ

subject to

λ ≤ 𝜇f (X)

λ ≤ 𝜇g(l)j (X), j = 1, 2, . . . ,m

λ ≤ 𝜇g(u)j (X), j = 1, 2, . . . ,m (13.59)

13.6.4 Numerical Results

The minimization of the error between the generated and specified outputs of the
four-bar mechanism shown in Figure 13.9 is considered. The design vector is taken as
X = {a b c Ω 𝛽}T. The mechanism is constrained to be a crank-rocker mechanism, so
that

a − b ≤ 0, a − c ≤ 0, a ≤ 1

d = [(a + c) − (b + 1)][(c − a)2 − (b − 1)2] ≤ 0

The maximum deviation of the transmission angle (𝜇) from 90∘ is restricted to be
less than a specified value, tmax = 35∘. The specified output angle is

𝜃s(𝜙) =

{
20∘ + 𝜙

3
, 0∘ ≤ 𝜙 ≤ 240∘

unspecified, 240∘ ≤ 𝜙 < 360∘

Linear membership functions are assumed for the response characteristics
[13.22]. The optimum solution is found to be X = {0.2537 0.8901 0.8865 − 0.7858
− 1.0}T with f * = 1.6562 and 𝜆* = 0.4681. This indicates that the maximum level of
satisfaction that can be achieved in the presence of fuzziness in the problem is 0.4681.
The transmission angle constraint is found to be active at the optimum solution
[13.22].

θ2 = ϕ

β

θ4

r2 = a

1

r3 = b
r4 = c

Ω

θ3

ω2

Figure 13.9 Four-bar function generating mechanism.

�

� �

�

13.7 Neural-Network-Based Optimization 665

13.7 NEURAL-NETWORK-BASED OPTIMIZATION

The immense computational power of nervous system to solve perceptional problems
in the presence of processing capability. The neural computing strategies have been
adopted to solve optimization problems in recent years [13.23, 13.24]. A neural net-
work is a massively parallel network of interconnected simple processors (neurons) in
which each neuron accepts a set of inputs from other neurons and computes an out-
put that is propagated to the output nodes. Thus a neural network can be described in
terms of the individual neurons, the network connectivity, the weights associated with
the interconnections between neurons, and the activation function of each neuron. The
network maps an input vector from one space to another. The mapping is not specified
but is learned.

Consider a single neuron as shown in Figure 13.10. The neuron receives a set of
n inputs, xi, i = 1, 2, . . . , n, from its neighboring neurons and a bias whose value is
equal to 1. Each input has a weight (gain) wi associated with it. The weighted sum of
the inputs determines the state or activity of a neuron, and is given by a =

∑n+1
i=1 wixi =

WTX, where X= {x1x2 . . . xn1}T. A simple function is now used to provide a mapping
from the n-dimensional space of inputs into a one-dimensional space of the output,
which the neuron sends to its neighbors. The output of a neuron is a function of its state
and can be denoted as f(a). Usually, no output will be produced unless the activation
level of the node exceeds a threshold value. The output of a neuron is commonly
described by a sigmoid function as

f (a) = 1
1 + e−a

(13.60)

which is shown graphically in Figure 13.10. The sigmoid function can handle large
as well as small input signals. The slope of the function f(a) represents the available
gain. Since the output of the neuron depends only on its inputs and the threshold value,
each neuron can be considered as a separate processor operating in parallel with other
neurons. The learning process consists of determining values for the weights wi that
lead to an optimal association of the inputs and outputs of the neural network.

0

1.0

0.5

f(a)

f(a)

(Bias)
xn+1 = 1

wn+1

wn

w1

xn

x1

a

a

…

Figure 13.10 Single neuron and its output. Source: [12.23], reprinted with permission of
Gordon & Breach Science Publishers.

�

� �

�

666 Modern Methods of Optimization

Several neural network architectures, such as the Hopfield and Kohonen networks,
have been proposed to reflect the basic characteristics of a single neuron. These archi-
tectures differ one from the other in terms of the number of neurons in the network,
the nature of the threshold functions, the connectivities of the various neurons, and
the learning procedures. A typical architecture, known as the multilayer feedforward
network, is shown in Figure 13.11. In this figure the arcs represent the unidirectional
feedforward communication links between the neurons. A weight or gain associated
with each of these connections controls the output passing through a connection. The
weight can be positive or negative, depending on the excitatory or inhibitory nature of
the particular neuron. The strengths of the various interconnections (weights) act as
repositories for knowledge representation contained in the network.

The network is trained by minimizing the mean-squared error between the actual
output of the output layer and the target output for all the input patterns. The error
is minimized by adjusting the weights associated with various interconnections. A
number of learning schemes, including a variation of the steepest descent method, have
been used in the literature. These schemes govern how the weights are to be varied to
minimize the error at the output nodes. For illustration, consider the network shown
in Figure 13.12. This network is to be trained to map the angular displacement and
angular velocity relationships, transmission angle, and the mechanical advantage of a
four-bar function-generating mechanism (Figure 13.9). The inputs to the five neurons
in the input layer include the three link lengths of the mechanism (r2, r3, and r4) and the
angular displacement and velocities of the input link (𝜃2 and𝜔2). The outputs of the six
neurons in the output layer include the angular positions and velocities of the coupler
and the output links (𝜃3,𝜔3, 𝜃4, and𝜔4), the transmission angle (𝛾), and the mechanical
advantage (𝜂) of the mechanism. The network is trained by inputting several possible
combinations of the values of r2, r3, r4, 𝜃2, and 𝜔2 and supplying the corresponding

Outputs

Inputs

Output
layer

Hidden
layer

Input
layer

Figure 13.11 Multilayer feedforward network. Source: [13.23], reprinted with permission
of Gordon and Breach Science Publishers.

�

� �

�

References and Bibliography 667

θ3

r2 r3 r4 θ2 ω2

θ4 ω3 ω4 γ η

Figure 13.12 Network used to train relationships for a four-bar mechanism. Source:
[12.23], reprinted with permission of Gordon & Breach Science Publishers.

values of 𝜃3, 𝜃4, 𝜔3, 𝜔4, 𝛾 , and 𝜂. The difference between the values predicted by the
network and the actual output is used to adjust the various interconnection weights
such that the mean-squared error at the output nodes is minimized. Once trained, the
network provides a rapid and efficient scheme that maps the input into the desired
output of the four-bar mechanism. It is to be noted that the explicit equations relating
r2, r3, r4, 𝜃2, and 𝜔2 and the output quantities 𝜃3, 𝜃4, 𝜔3, 𝜔4, 𝛾 , and 𝜂 have not been
programmed into the network; rather, the network learns these relationships during the
training process by adjusting the weights associated with the various interconnections.
The same approach can be used for other mechanical and structural analyses that might
require a finite-element-based computations.

Numerical Results The minimization of the structural weight of the three-bar
truss described in Section 7.22.1 (Figure 7.21) was considered with constraints
on the cross-sectional areas and stresses in the members. Two load conditions
were considered with P = 20 000 lb., E = 10× 106 psi, 𝜌 = 0.1 lb/in.3, H = 100 in.,
𝜎min = −15 000 psi, 𝜎max = 20 000 psi, A(l)

i = 0.1 in.2 (i = 1, 2), and A(u)
i = 5.0 in.2

(i = 1, 2). The solution obtained using neural-network-based optimization is [12.23]:
x∗1 = 0.788 in.2, x∗2 = 0.4079 in.2, and f* = 26.3716 lb. This can be compared with
the solution given by nonlinear programming: x∗1 = 0.7745 in.2, x∗2 = 0.4499 in.2, and
f* = 26.4051 lb.

REFERENCES AND BIBLIOGRAPHY

13.1 Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
University of Michigan Press.

13.2 Rechenberg, I. (1965). Cybernetic Solution Path of an Experimental Problem, Library
Translation 1122, Royal Aircraft Establishment, Farnborough, Hampshire, UK.

13.3 Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and Machine
Linearning. Reading, MA: Addison-Wesley.

13.4 Rao, S.S., Pan, T.S., Dhingra, A.K. et al. (1990). Genetic-evolution-based optimization
methods for engineering design. In: Proceedings of the 3rd Air Force/NASA Symposium
on Recent Advances in Multidisciplinary Analysis and Optimization, San Francisco,
Sept. 24–26, 318–323.

�

� �

�

668 Modern Methods of Optimization

13.5 Rao, S.S., Pan, T.S., and Venkayya, V.B. (1991). Optimal placement of actuators
in actively controlled structures using genetic algorithms. AIAA Journal 29 (6):
942–943.

13.6 Hajela, P. (1990). Genetic search: an approach to the nonconvex optimization problem.
AIAA Journal 26 (7): 1205–1210.

13.7 Hajela, P. and Lin, C.Y. (1992). Genetic search strategies in multicriterion optimal
design. Structural Optimization 4: 99–107.

13.8 Goldberg, D.E. (1987). Computer-aided pipeline operation using genetic algorithms
and rule learning, Part I: Genetic algorithms in pipeline optimization. Engineering with
Computers 3: 35–45.

13.9 Goldberg, D.E. and Kuo, C.H. (1987). Genetic algorithms in pipeline optimization.
ASCE Journal of Computing in Civil Engineering 1 (2): 128–141.

13.10 Lin, C.Y. and Hajela, P. (1992). Genetic algorithms in optimization problems with dis-
crete and integer design variables. Engineering Optimization 19: 309–327.

13.11 Michalewicz, Z. (1994). Genetic Algorithms+Data Structures = Evolution Programs,
2e. Berlin: Springer-Verlag.

13.12 Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operations
Research 13 (4): 563–571.

13.13 Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983). Optimization by simulated
annealing. Science 220: 671–680.

13.14 Kim, Y. and Kim, H. (1990). A stepwise-overlapped parallel simulated annealing algo-
rithm, Integration. The VLSI Journal 10: 39–54.

13.15 van Laarhoven, P. and Aarts, E. (1987). Simulated Annealing: Theory and Applications.
Boston: D. Reidel.

13.16 Corana, A., Marchesi, M., Martini, C., and Ridella, S. (1987). Minimizing multimodal
functions of continuous variables with the simulated annealing algorithm. ACM Trans-
actions on Mathematical Software 13 (3): 262–280.

13.17 Chen, G.-S., Bruno, R.J., and Salama, M. (1991). Optimal placement of active/passive
members in truss structures using simulated annealing. AIAA Journal 29: 1327–1334.

13.18 Lundy, M. and Mees, A. (1986). Convergence of an annealing algorithm. Mathematical
Programming 34: 111–124.

13.19 Atiqullah, M. and Rao, S.S. (1995). Parallel processing in optimal structural design
using simulated annealing. AIAA Journal 33: 2386–2392.

13.20 Deb, K. (1990). Optimal design of a class of welded structures via genetic algorithms.
In: Proceedings of the AIAA/ASME/ASCE/AHS/ASC 31st Structures, Structural
Dynamics and Materials Conference, Long Beach, CA, Apr. 2–4, 444–453.

13.21 Ragsdell, K.M. and Phillips, D.T. (1976). Optimal design of a class of welded struc-
ture using geometric programming. ASME Journal of Engineering for Industry 98 (3):
1021–1025.

13.22 Rao, S.S. (1987). Description and optimum design of fuzzy mechanical systems. ASME
Journal of Mechanisms, Transmissions, and Automation in Design 109: 126–132.

13.23 Dhingra, A.K. and Rao, S.S. (1992). A neural network based approach to mechanical
design optimization. Engineering Optimization 20: 187–203.

13.24 Berke, L. and Hajela, P. (1992). Applications of artificial neural nets in structural
mechanics. Structural Optimization 4: 90–98.

13.25 Rao, S.S. (1987). Multiobjective optimization of fuzzy structural systems. Interna-
tional Journal for Numerical Methods in Engineering 24: 1157–1171.

13.26 Rao, S.S., Sundararaju, K., Prakash, B.G., and Balakrishna, C. (1992). A fuzzy
goal programming approach for structural optimization. AIAA Journal 30 (5):
1425–1432.

13.27 Dhingra, A.K., Rao, S.S., and Kumar, V. (1992). Nonlinear membership functions in
the fuzzy optimization of mechanical and structural systems. AIAA Journal 30 (1):
251–260.

�

� �

�

Review Questions 669

13.28 Dhingra, A.K. and Rao, S.S. (1991). An integrated kinematic–kinetostatic optimal
design of planar mechanisms using fuzzy theories. ASME Journal of Mechanical
Design 113: 306–311.

13.29 Balling, R.J. and May, S.A. (1990). Large-scale discrete structural optimization:
simulated annealing, branch-and-bound, other techniques, Proceedings of the
AIAA/ASME/ASCE/AHS/ASC 32nd Structures, Structural Dynamics, and Materials
Conference, Long Beach, CA.

13.30 The Rand Corporation (1955). A Million Random Digits with 100,000 Normal
Deviates. Glencoe, IL: The Free Press.

13.31 Colorni, A., Dorigo, M., and Maniezzo, V. (1992). Distributed optimization by
ant colonies. In: Proceedings of the First European Conference on Artificial Life
(eds. F.J. Varela and P. Bourgine), 134–142. Cambridge, MA: MIT Press.

13.32 Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics—Part B 26 (1): 29–41.

13.33 Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. San Francisco: Morgan
Kaufmann.

13.34 J. Kennedy and R. C. Eberhart, Particle swarm optimization, Proceedings of the 1995
IEEE International Conference on Neural Networks, IEEE Service Center, Piscataway,
NJ, 1995.

13.35 Liu, J.-L. and Lin, J.-H. (2007). Evolutionary computation of unconstrained and
constrained problems using a novel momentum-type particle swarm optimization.
Engineering Optimization 39 (3): 287–305.

13.36 Shi, Y. and Eberhart, R.C. (1998). Parameter selection in particle swarm optimiza-
tion. In: Proceedings of the Seventh Annual Conference on Evolutionary Programming
(eds. V.W. Porto, N. Saravanan, D. Waagen and A. Eibe), 591–600. Berlin, Germany:
Springer-Verlag.

13.37 Metropolis, N., Rosenbluth, A., Rosenbluth, M. et al. (1953). Equation of state calcu-
lations by fast computing machines. Journal of Chemical Physics 21 (6): 1087–1092.

13.38 Annamdas, K.K. and Rao, S.S. (August 2009). Multi-objective optimization of
engineering systems using game theory and particle swarm optimization. Engineering
Optimization 41 (8): 737–752.

REVIEW QUESTIONS

13.1 Define the following terms:

(a) Fuzzy parameter

(b) Annealing

(c) Roulette wheel selection process

(d) Pheromone evaporation rate

(e) Neural network

(f) Fuzzy feasible domain

(g) Membership function

(h) Multilayer feedforward network

13.2 Match the following terms:

(a) Fuzzy optimization Based on shortest path
(b) Genetic algorithms Analysis equations not programmed
(c) Neural network method Linguistic data can be used
(d) Simulated annealing Based on the behavior of a flock of birds
(e) Particle swarm optimization Based on principle of survival of the fittest
(f) Ant colony optimization Based on cooling of heated solids

�

� �

�

670 Modern Methods of Optimization

13.3 Answer true or false:

(a) GAs can be used to solve problems with continuous design variables.

(b) GAs do not require derivatives of the objective function.

(c) Crossover involves swapping of the binary digits between two strings.

(d) Mutation operator is used to produce offsprings.

(e) No new strings are formed in the reproduction stage in GAs.

(f) Simulated annealing can be used to solve only discrete optimization problems.

(g) Particle swarm optimization is based on cognitive and social learning rates of groups
of birds.

(h) Particle swarm optimization method uses the positions and velocities of particles.

(i) Genetic algorithms basically maximize an unconstrained function.

(j) Simulated annealing basically solves an unconstrained optimization problem.

(k) GAs seek to find a better design point from a trial design point.

(l) GAs can solve a discrete optimization problem with no additional effort.

(m) SA is a type of random search technique.

(n) GAs and SA can find the global minimum with high probability.

(o) GAs are zeroth-order methods.

(p) Discrete variables need not be represented as binary strings in GAs.

(q) SA will find a local minimum if the feasible space is nonconvex.

(r) The expressions relating the input and output are to be programmed in neural-
network-based methods.

(s) Several networks architectures can be used in neural-network-based optimization.

(t) A fuzzy quantity is same as a random quantity.

(u) Ant colony optimization solves only discrete optimization problems.

(v) Fuzzy optimization involves the maximization of the intersection of the objective
function and feasible domain.

13.4 Give brief answers:

(a) What is Boltzmann’s probability distribution?

(b) How is an inequality constrained optimization problem converted into an uncon-
strained problem for use in GAs?

(c) What is the difference between a crisp set and a fuzzy set?

(d) How is the output of a neuron described commonly?

(e) What are the basic operations used in GAs?

(f) What is a fitness function in GAs?

(g) Can you consider SA as a zeroth-order search method?

(h) How do you select the length of the binary string to represent a design variable?

(i) Construct the objective function to be used in GAs for a minimization problem with
mixed equality and inequality constraints.

(j) How is the crossover operation performed in GAs?

(k) What is the purpose of mutation? How is it implemented in GAs?

(l) What is the physical basis of SA?

(m) What is metropolis criterion and where is it used?

(n) What is a neural network?

(o) How is a neuron modeled in neural-network-based models?

(p) What is a sigmoid function?

(q) How is the error in the output minimized during network training?

(r) What is the difference between a random quantity and a fuzzy quantity?

(s) Give two examples of design parameters that can be considered as fuzzy.

�

� �

�

Problems 671

(t) What is a valuation set?

(u) What is the significance of membership function?

(v) Define the union of two fuzzy sets A and B?

(w) How is the intersection of two fuzzy sets A and B defined?

(x) Show the complement of a fuzzy set in a Venn diagram.

(y) How is the optimum solution defined in a fuzzy environment?

(z) How is the fuzzy feasible domain defined for a problem with inequality constraints?

PROBLEMS

13.1 Consider the following two strings denoting the vectors X1 and X2

X1 ∶ {1 0 0 0 1 0 1 1 0 1}

X2 ∶ {0 1 1 1 1 1 0 1 1 0}

Find the result of crossover at location 2. Also, determine the decimal values of the
variables before and after crossover if each string denotes a vector of two variables.

13.2 Two discrete fuzzy sets, A and B are defined as follows

A = {(60, 0.1) (62, 0.5) (64, 0.7) (66, 0.9) (68, 1.0) (70, 0.8)}

B = {(60, 0.0) (62, 0.2) (64, 0.4) (66, 0.8) (68, 0.9) (70, 1.0)}

Determine the union and intersection of these sets.

13.3 Determine the size of the binary string to be used to achieve an accuracy of 0.01 for a
design variable with the following bounds:

(a) x(l) = 0, x(u) = 5

(b) x(l) = 0, x(u) = 10

(c) x(l) = 0, x(u) = 20

13.4 A design variable, with lower and upper bounds 2 and 13, respectively, is to be repre-
sented with an accuracy of 0.02. Determine the size of the binary string to be used.

13.5 Find the minimum of f = x5–5 x3–20 x+ 5 in the range (0, 3) using the ant colony
optimization method. Show detailed calculations for 2 iterations with 4 ants.

13.6 In the ACO method, the amounts of pheromone along the various arcs from node i are
given by 𝜏 ij = 1, 2, 4, 3, 5, 2 for j = 1, 2, 3, 4, 5, 6, respectively. Find the arc (ij) chosen
by an ant based on the roulette-wheel selection process based on the random number
r = 0.4921.

13.7 Solve 13.5 by neglecting pheromone evaporation. Show the calculations for 2 iterations.

13.8 Find the maximum of the function f = −x5 + 5 x3 + 20x− 5 in the range− 4≤ x≤ 4
using the PSO method. Use 4 particles with the initial positions x1 = −2, x2 = 0, x3 = 1,
and x4 = 3. Show detailed calculations for 2 iterations.

13.9 Solve 13.4 using the inertia term when 𝜃 varies linearly from 0.9 to 0.4 in Eq. (13.23).

13.10 Find the minimum of the following function using simulated annealing:

f (X) = 6x2
1 − 6x1x2 + 2x2

2 − x1 − 2x2

Assume suitable parameters and show detailed calculations for 2 iterations.

�

� �

�

672 Modern Methods of Optimization

13.11 Consider the following function for maximization using simulated annealing:
f(x) = x(1.5− x) in the range (0, 5). If the initial point is x(0) = 2.0, generate a
neighboring point using a uniformly distributed random number in the range (0, 1). If
the temperature is 400, find the probability of accepting the neighboring point.

13.12 The population of binary strings in a maximization problem is given below:

String Fitness

0 0 1 1 0 0 8

0 1 0 1 0 1 12

1 0 1 0 1 1 6

1 1 0 0 0 1 2

0 0 0 1 0 0 18

1 0 0 0 0 0 9

0 1 0 1 0 0 10

Determine the expected number of copies of the best string in the above population in
the mating pool using the roulette-wheel selection process.

13.13 Consider the following constrained optimization problem:

Minimize f = x3
1 − 6x2

1 + 11x1 + x3

subject to

x2
1 + x2

2 − x2
3 ≤ 0

4 − x2
1 − x2

2 − x2
3 ≤ 0

x3 − 5 ≤ 0

− xi ≤ 0; i = 1, 2, 3

Define the fitness function to be used in GA for this problem.

13.14 The bounds on the design variables in an optimization problem are given by

−10 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 8, 150 ≤ x3 ≤ 750

Find the minimum binary string length of a design vector X = {x1, x2, x3}T to achieve
an accuracy of 0.01.

�

� �

�

14

Metaheuristic Optimization
Methods

14.1 DEFINITIONS

Meta means beyond, more comprehensive or more highly developed and Heuristics
means intuitive or speculative method for the solution of a problem [14.1]. Thus a
Metaheuristic optimization method can be considered as a more comprehensive intu-
itive method for the solution of optimization problems. Also, Metaphor is a figure
of speech in which a word or phrase is used to refer something as being the same as
another thing for rhetorical effect, similar to a simile. But there is a difference between
a simile and a metaphor. While a simile compares two things, the metaphor equates
them directly. For example, “You are like an angel” is a simile while “You are an
angel” is a metaphor.

Metaheuristic Optimization Methods developed in recent years can also be con-
sidered as metaphor-based optimization methods. All the metaheuristic methods are
based on the use of random numbers (probabilistic approaches) in the various stages
of the optimization process. The optimization methods presented in Chapter 13, which
do not follow the traditional nonlinear programming approaches, such as genetic
algorithms (GAs), simulated annealing and ant colony optimization, can also be called
metaheuristic optimization along with the more recently developed metaheuristic
optimization methods. Whereas the convergence of the methods such as genetic algo-
rithms, simulated annealing and ant colony optimization has been established, the con-
vergence of most of the recently developed metaheuristic optimization methods does
not appear to have been established at the present time. In fact, some researchers think
that although the names of the methods might be different, the fundamental ideas used
are the same in most of the recently developed metaheuristic optimization methods.

14.2 METAPHORS ASSOCIATED WITH METAHEURISTIC
OPTIMIZATION METHODS

In recent years, scientists and engineers have started to realize and observe more
and more that nature can provide a great source of inspiration for developing intel-
ligent systems and algorithms. If we look around our surroundings, numerous phe-
nomena, including biological and other systems, can be observed where nature had
already implemented/exhibited optimization. Because nature is infinite, it is possible
to develop infinite varieties of computational techniques of optimization similar to
those embedded by nature in different phenomena and systems. The following list

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

673

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

674 Metaheuristic Optimization Methods

indicates the metaphors associated with several of the recently developed metaheuris-
tic optimization methods.

1. Genetic algorithms
Genetic algorithms are based on the principle of natural genetics and natural
selection primarily based on the principle of Darwin’s theory of survival of the
fittest. The genetic methods are also known as evolutionary methods as they
implement the natural process associated with biological evolution. The meth-
ods include generation, recombination, and mutation of the chromosomes of
the population to generate new population with better genes having improved
fitness. In these methods, the design variables are assumed to correspond to
chromosomes of the population, and they seek, after some number of gener-
ations, to obtain the best chromosomes representing the optimum solution of
the problem.

2. Simulated annealing
Simulated annealing mimics the annealing process used in material process-
ing. When a metal is heated to a high temperature, the atoms of the molten
metal move freely with respect to one another. When the temperature of the
molten metal is reduced, the metal cools and freezes into a crystalline state
with minimum energy and larger size of crystals that help reduce the defects
in the structure of the metal. The process of formation of crystals, also known
as the annealing process, depends on a careful control of the temperature and
cooling rate. The process of controlled cooling of the metal, also known as
the annealing or cooling schedule, is to be decided in order to obtain the low-
est energy state of the metal that corresponds to the optimal solution of the
physical problem.

3. Ant colony optimization
Ant colony optimization is based on the cooperative behavior of real ant
colonies which enables them to find the shortest path from the nest to the
food source. Ants are social insects and as many as several millions live
together in a colony or nest or anthill. They use pheromone as a means of
communication. The ant colony optimization mimics the foraging behavior
of ants. Initially, ants wander randomly in different directions. Once any one
or more ants find food source, they return to their colony (with food) while
leaving pheromone trails. The pheromone is made of certain chemicals pro-
duced by a living organism to send messages or signals to other members
of the same species. If other ants find such a path, they follow the trail to the
food source instead of wandering randomly. When they return to their colony,
they too leave pheromone reinforcing the existing pheromone intensity. With
time, pheromone evaporates, thus reducing the strength of the pheromone.
Eventually, the ants adjust and find the shortest path to the food source.

4. Particle swarm optimization
The particle swarm optimization (PSO) is based on the behavior of birds
flocking around food sources where each bird is considered as a particle (it
can be a bird, fish, etc.). Consider a flock of birds flying over an area in search
of food. When one bird sees or smells food, it chirps loudly, and other birds
swing around in its direction. If any other bird gets closer to the food first, it
chirps more loudly, and other birds veer toward it. This process is continued
until one of the birds lands upon the food. In the context of optimization, the
location of the food denotes the optimum design vector which can then be
used to find the corresponding optimum objective function value.

�

� �

�

14.2 Metaphors Associated with Metaheuristic Optimization Methods 675

5. Honey bee algorithm
This algorithm is based on the behavior of honey bees in finding their food.
In a bee colony or nest or hive, some honey bees are allocated to find differ-
ent food sources such as flower patches with the aim of maximizing the total
nectar (food) intake. The bees perform a waggle dance when they find a food
source. The strength and duration of the waggle dance indicates the richness
of the food source found. This is called the foraging behavior of bees. If there
is no dance, it indicates that no food is found, and the bees explore randomly
until some of them succeed in finding the food. The richness or profitabil-
ity of the food source is related to the value of the objective function in a
maximization-type of objective function.

6. Firefly optimization
In this method, the location of each firefly is considered as a design vec-
tor in terms of the n-dimensional design space. The degree of brightness
of the flashes of light they produce is treated as the objective function for
maximization. The flashing lights in fireflies are produced by a process of
bioluminescence. Although the true function of flashing light in fireflies is
not completely known, the major functions of flashing signals are observed
to be for attracting mating partners as well as preys (food). The light intensity
of the flashes varies according to the inverse square law, and hence the light
intensity decreases with distance due to the light absorption coefficient of the
medium. If firefly j is brighter than firefly i, then i is attracted toward j so that
its movement (new position) can be taken as a new or improved design vec-
tor. This is the main idea used in the firefly algorithm for finding the optimum
solution.

7. Teaching-learning-based optimization (TLBO)
The Teaching-Learning-Based Optimization (TLBO) is a population-based
method where the population is assumed to be a group of learners (or stu-
dents in a class) with an associated teacher. The learners are assumed to learn
from the teacher as well as from interaction with other learners. In the opti-
mization, the design variables are considered as different subjects (courses)
offered to the learners. The grades obtained in different courses by a partic-
ular student defines the fitness of the design (or student). The average grades
of all students of the class in different courses determine the values of the
objective function corresponding to different design vectors. The TLBO pro-
cess involves two stages – the teacher phase (learning from the teacher) and
the learner phase (learning through interaction with other students or learn-
ers). The best solution in the population of students is treated as the teacher
solution in any particular iteration which will eventually converge to the best
possible or optimum value.

8. Salp swarm optimization:
Salp swarm optimization is based on the swarming behavior of salps when
navigating and foraging in oceans. Salps have a barrel-shaped bodies with
tissues similar to those of jelly fish, and water is pumped through their bodies
which provides propulsion that enables them to move forward. In deep oceans,
salps form a swarm in the form of a chain (termed the salp chain) in order to
achieve better locomotion through rapid coordinated changes and foraging.
By dividing the population of swarms into two groups as leaders (located at
the front of chain) and followers (rest of the chain), the positions of all salps
are defined in the n-dimensional design space. The food source (objective
function) is assumed as a target for the salp swarm.

�

� �

�

676 Metaheuristic Optimization Methods

9. Bat optimization method
Bat algorithm was developed by Xin-She Yang in 2010 [14.46]. Bats fly
around to find food and make sounds (or send out sound waves from their
mouth or nose) as they fly. When the sound waves hit neighboring objects,
they produce echos. From the echos, bats have the capability of knowing how
close or far away the objects are, and also which object is an obstacle or a
prey. The use of sound waves and the echos to determine the location and
nature of objects is termed echolocation. Using echolocation, bats can detect
objects as thin as a human hair in complete darkness. Bats usually find and
eat insects of the size of mosquitos (and larger ones also). A bat can eat as
many as 3000 insects in a night.
The bat algorithm is developed by implementing the following three aspects:

(i) The capability of bats to find the location (direction as well as distance)
of prey (food) as well as objects (obstacles) through echolocation.

(ii) Bats fly in space randomly in search of food with velocity vi at position
xi making sound at a constant frequency (f) or wavelength (𝜆) and loud-
ness (a0). They can change the sound frequency (wavelength) and the
loudness depending on the proximity of their prey.

(iii) Bats can vary the loudness of their sound in different ways; however
usually loudness is assumed to vary between a minimum value (amin)
and a maximum value (amax).

Bat optimization algorithm mimics the echolocation of microbats.
The microbats have a capability of a sonar, known as echolocation, by
which they can detect the location of food and prey even by avoiding
obstacles that lie in between. For this, they first emit a very loud sound
pulse and listen the echos that bounce from each of the surrounding
objects, including the intermediate obstacles, as well as the food and/or
prey. They can also find the distances of each of the objects.

10. Cuckoo optimization method
Most species of cuckoos, including malkohas, coucals, and roadrunners build
their own nests; but some species engage in brood parasitism. Most of these
species make their nests in trees or bushes, but some lay their eggs in nests
on the ground or in low shrubs. The nests of cuckoos vary in the same way
as the breeding systems. The nests of malkohas are shallow platforms of
twigs, but those of coucals are domed nests of grass. Some cuckoo species
such as ani and guira cuckoos lay their eggs in the nests of other types of
birds, and may remove the existing eggs and in their place lay their own
eggs in others’ nests in order to increase the probability of hatching their
own eggs.
In the cuckoo algorithm, the following assumptions are made for simplicity:

(i) Each cuckoo lays an egg and places it in a randomly found nest.
(ii) The best eggs will contribute to the next generation of cuckoos.

(iii) The number of available nests of other birds (n) is fixed and the proba-
bility of the host bird discovering the egg laid by the cuckoo is assumed
to be pd with 0≤ pd ≤ 1. Then the host bird may hatch it, or get rid of
the egg or leave the nest to build a new nest.

The cuckoo optimization algorithm implements a balanced combination of a
local random walk and the global random walk.

�

� �

�

14.2 Metaphors Associated with Metaheuristic Optimization Methods 677

11. Harmony search method
This method uses the musical process of searching for a perfect state of har-
mony. The harmony in music is considered similar to the design vector and the
musician’s improvisations are similar to the local and global search schemes
used in optimization. The harmony search method does not use the initial
or starting design vector. Also, this method uses a stochastic random search
based on the harmony memory considering rate (HMCR) and pitch adjust-
ment rate instead of a gradient search. The harmony search requires fewer
mathematical requirements compared to other methods. The seeking of musi-
cal performances to find pleasing harmony, a perfect state, as determined by
an esthetic standard is similar to the seeking of a global solution, a perfect
state, as determined by an objective function.

12. Water evaporation optimization
The water evaporation optimization method is based on the phenomenon of
evaporation of tiny amount of water molecules on a solid surface with the
degree of wettability, which can be studied using molecular dynamics sim-
ulations. It is well-known through molecular dynamics simulations that the
surface changes from hydrophobicity to hydrophility, the speed of evaporation
first increases and then decreases after reaching a maximum value. When the
wettability of the surface’s substrate is not high enough, the water molecules
accumulate in the form of a sessile spherical cap. The factors influencing the
evaporation speed is the geometric shape of the water congregation. On the
other hand, if the surface wettability of the substrate is high enough, the water
molecules form a monolayer and the geometry does not affect; only the energy
barrier due to the substrate (rather than the geometric shape) influences the
evaporation speed. It can be seen that the phenomenon of water evaporation
is similar to the population based optimization method. Water molecules can
be considered as design variables. The reformation of water aggregation from
a monolayer to a sessile droplet is similar to change in the design vector. The
decrease of wettability of the surface denotes the decrease in the objective
function of a minimization problem.

13. Passing vehicle search algorithm
The passing vehicle search (PVS) algorithm is a population-based technique
that requires an initial set of solutions. It searches for the optimum solution
by implementing the mathematical characteristics of overtaking vehicles on
a two-lane highway. In terms of analogy between an optimization problem
and the passing vehicle approach, the velocity of the vehicles is considered as
the fitness or the objective function. Thus a vehicle with a higher velocity is
considered to have a better fitness value. The positions of the vehicles on the
highway represent the design variables. The distances between the vehicles
and their corresponding velocities are assigned based on the population size
and the fitness value. Once the distances and velocities are known, the vehicles
are checked for conditions suitable for passing. Based on the conditions, the
vehicles change their respective positions on the highway. This amounts to
generating a new solution vector.

14. Imperialist competitive algorithm
In the imperialist competitive algorithm (ICA), initially a set of candidate
solutions or design vectors are generated randomly in the design or search
space of the optimization problem. These initially generated design vectors
are called the initial countries. The countries in the ICA are analogous to chro-
mosomes in genetic algorithm and particles in particle swarm algorithm and

�

� �

�

678 Metaheuristic Optimization Methods

are represented as an array of values of candidate solutions of the optimiza-
tion problem. The objective function of the optimization problem determines
the power of each country. Depending on their powers, some of the best initial
countries (those with the minimum value of the objective function) become
Imperialists and start controlling or governing other countries (by taking con-
trol of them) which can be called Colonies of the Imperialists. There are two
main operators in the ICA, called Assimilation and Revolution. The assim-
ilation operator aims at making the colonies of each empire get closer to
the imperialist state in the space of socio-political characteristics (similar to
the design space of the optimization problem). The revolution operator aims
to bring sudden random changes in the position of some of the countries in
the search or design space. During the assimilation and revolution process, a
colony might reach such a better position that might enable it to take control
of the entire empire by replacing the current imperialist country of the empire.

15. Tabu search
The tabu search method of optimization was developed by Glover in 1986
[14.16, 14.17]. Most optimization methods start from an assumed initial solu-
tion and then use an iterative process to improve the solution gradually until
the optimum solution is reached. In general, the iterative process consists of
a move from the current solution

−→
X i to the next solution

−→
X j and then check to

find whether to stop there or perform another step. In a type of iterative meth-
ods, called neighborhood search methods, a neighborhood N(−→X i) is defined
for each feasible point

−→
X i, and then a search is made to find the next (bet-

ter) solution
−→
X j among the solutions in N(−→X i). This process, called a local

search, is done with the hope of finding an improved solution in the neighbor-
hood of the current best solution. However, local search methods can become
stuck in suboptimal regions or on plateaus where many solutions are nearly
equal to one another. Basically, the tabu search improves the performance of
a local search by relaxing the basic rule. In tabu search, in each iteration,
worsening steps can be accepted if no improvement is available (in order
to avoid getting stuck at a local minimum). Also, prohibitions, also known
as forbidden points or tabus, are introduced to discourage the search from
coming back to previously visited solutions. Thus the method is expected to
find the optimum solution quickly without wasting time at finding suboptimal
solutions.

16. Runner-root algorithm (RRA)
This is a meta-heuristic optimization algorithm for solving unimodal and mul-
timodal problems inspired by the runners and roots of plants in nature. Plants
develop runners to be able to search for water and minerals (like taking long
steps in the search space) while roots and root hair are developed to find food
in the neighborhood (using small steps). Also, by chance, if a plant is placed
at a very good location, it spreads over a larger area through its long run-
ners while roots and root hair look for food in small areas in their respective
neighborhoods. The RRA is developed to implement a similar strategy. The
computational procedure of the RRA can be stated by the following steps.

(i) Generate a uniformly distributed initial random population in the
domain (or design space) of the problem. Each design vector in the
population, Npop, is called a mother plant.

(ii) In each iteration, select a randomly chosen mother plant (except the
fittest mother plant), and generate a daughter plant with runners. The
distance between the daughter plant and its mother plant is controlled

�

� �

�

14.2 Metaphors Associated with Metaheuristic Optimization Methods 679

through a constant parameter, crun. The fittest mother plant generates
its daughter plant at its own location (this implies that daughter is same
as the mother). The process (generating daughter plant from randomly
chosen mother plant) is continued until the population of daughter
plants equals Npop.

(iii) If at least one daughter plant gives a better objective function value,
we set the current value of the objective function equal to that of the
fittest daughter plant, and go to the next iteration to generate the next
set of daughter plant population of Npop by applying the roulette-wheel
method. This procedure amounts to seeking a better solution only
through runners of the plants (using random large steps). The improve-
ment in the objective achieved through this process (using runners) is
measured by a parameter, tolrun. If the improvement achieved in any
set of daughter-plant population is less than tolrun, a local search using
roots and root hair of plants is initiated.

(iv) Use a random step change in each variable of the n-component design
vector of a daughter plant among the population Npop daughter plants
(one component changed at a time). Find a better solution (if available)
and call it the global best solution.

(v) Repeat step (iv) by selecting another daughter plant, other than the ones
already explored until all the daughter plants are searched.

(vi) If necessary, repeat the whole process by selecting a new set of mother
plants for the next iteration using elite and roulette wheel process until
no further improvement is observed in the objective function value. The
current solution is taken as the optimum solution of the problem.

17. Intelligent water drops (IWD) algorithm
Flowing water drops can be observed mostly in rivers which can be con-
sidered as huge moving swarms (of intelligent water drops). It can be seen
that the paths of most rivers are full of twists and turns. This is because
the moving swarm of water drops are resisted by hard soils more than the
soft soils and are also subject to gravitational force that tries to pull them
toward the center of earth along a straight line. Thus, a natural river can be
considered as a result of the competition between water drops in a swarm
and the environment that tries to resist their motion. The water drops also are
subjected to acceleration due to gravity during their flow path. Because of
these conflicting forces, obstacles (in the form of hard soil and mountains)
and other constraints, the swarm of water take the form of a river with lots
of twists and turns and up in lake or a bigger river or sea (instead of taking
the unconstrained optimal path from the ground to the center of earth). The
IWD implements the optimization steps that mimic the behavior of natural
water drops for solving an optimization problem.

18. Fruit fly algorithm
The Fruit Fly Optimization Algorithm (FOA) is a metaheuristic algorithm
that simulates the foraging behavior of fruit flies and has an effective search
capability. The algorithm is found to have some deficiencies related to its
convergence during numerical implementation. Different modifications or
enhancements were suggested to overcome the deficiencies of the algorithm.
One modification suggested by Guo, Zhang, and Li, called the traction
fruit fly optimization algorithm is based on using a combination of traction
population and dynamic search radius. The traction population consists of the
worst individual recorded in the iterative process, the individual in the center

�

� �

�

680 Metaheuristic Optimization Methods

of the interval, and the best fruit flies found in different iterations, which
are used to avoid the algorithm stopping at a local optimal. In addition, a
dynamic search radius is used to ensure a wide search range in the early stage
and enhance the local search capability in the latter part of the algorithm.

19. Imperialist Competitive Algorithm
The ICA can be thought of as the social counterpart of genetic algorithms
(GAs). ICA is the mathematical model and the computer simulation of human
social evolution, while GAs are based on the biological evolution of species.
This algorithm starts by generating a set of candidate random solutions in the
search space of the optimization problem. The generated random points are
called the initial Countries. Countries in this algorithm are the counterpart
of Chromosomes in GAs and Particles in PSO and it is an array of values of
candidate solutions of the optimization problem. The objective function of
the optimization problem determines the power of each country. Based on
their power, some of the best initial countries (those with the best objective
function value), become Imperialists and take control of other countries
(called colonies) and form the initial Empires. There are two main operators,
namely, Assimilation and Revolution in this algorithm. Assimilation makes
the colonies of each empire get closer to the imperialist state in the opti-
mization search space (or socio-political characteristics). Revolution brings
about sudden random changes in the position of some of the countries in
the search space. During assimilation and revolution a colony might reach
a better position and has the chance to take control of the entire empire to
replace the current imperialist state. Algorithm continues with the mentioned
steps (Assimilation, Revolution, Competition) until a stop condition is
satisfied.

20. Crow Search Algorithm
This algorithm is based on the intelligent behavior crows exhibit in finding,
storing, and retrieving their food. It is known in the literature that crows are
the most intelligent birds. Their brains are larger compared to their body size;
their brain-to-body size ratio is only slightly smaller than that of humans.
The crow search algorithm is based on the intelligent behavior of crows. It is
a population-based method using the following characteristics of crows: (i)
Crows live in the form of a flock, (ii) crows follow each other for thievery
of food, (iii) crows have good memory; they can store their excess food
in hiding places and retrieve it when needed, and (iv) crows protect their
catches from being stolen.

14.3 DETAILS OF REPRESENTATIVE METAHEURISTIC
ALGORITHMS

14.3.1 Crow Search Algorithm

It is established in the literature that crows are the most intelligent birds. Their brains
are larger compared to their body size; their brain-to-body size ratio is only slightly
smaller than that of humans. The crow search algorithm is based on the intelligent
behavior of crows [14.41, 14.42]. It is a population-based method using the following
characteristics of crows: (i) Crows live in the form of a flock; (ii) crows follow each
other for stealing of food; (iii) crows have good memory; they can store their excess
food in hiding places and retrieve it when needed; and (iv) crows protect their catches
from being stolen. In the crow search algorithm, the number of crows (flock size) is
assumed as N with the position of crow i in iteration I is assumed to be the vector

�

� �

�

14.3 Details of Representative Metaheuristic Algorithms 681

−→
X

i,I
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xi,I
1

xi,I
2

.

.

.

xi,I
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
with I denoting 1, 2, . . . , Imax, and i = 1, 2, . . . , N with Imax denoting

the maximum number of iterations specified. The following procedure is used for
implementing the crow search method:

1. Define the optimization problem in standard form. Select the parameters N
(flock size), Imax (maximum number of iterations to be used) and n (size of
design vector or number of design variables).

2. Generate N design vectors randomly, each vector denoting the position of a
crow, in the n-dimensional design space. Define a memory matrix

[mj,k], j = 1, 2, . . . ,N; k = 1, 2, . . . , n (14.1)

where mj, k denotes the memory of crow j for the kth component of its hid-
ing position. In iteration 1, all crows are assumed to hide their food at their
respective initial positions (vector).

3. Determine the objective (fitness) functions of all crows at their initial positions.
4. Generate the new positions of crows. For this, crow i is assumed to follow a

randomly chosen crow j to observe the position of food hidden by crow j with
a pre-specified probability, which is used to generate the position of crow i for
the next iteration. Repeat this for all N crows. See whether the new position
generated for crow i is feasible. If it is feasible, update its position. Otherwise,
the position of crow i remains unaltered (for the next iteration).

5. Determine the fitness values (objective functions) at the new positions of all
crows.

6. Update the memory of each crow based on the current value of its fitness.
7. Check for the convergence of the process. If convergence is not achieved, repeat

steps 4, 5, and 6 until convergence is satisfied (or Imax iterations are completed).

14.3.2 Firefly Optimization Algorithm (FA)

General Information on Fireflies Firefly algorithm was developed by Xin-She
Yang in 2009 [14.32–14.34]. It is based on the flashing patterns and behavior of
fireflies. In general, a firefly will be attracted to brighter ones. At the same time, they
explore and search for prey (food) randomly. About 2100 species of fireflies are found
in temperate and tropical climates. Many are in marshes or in wet, wooded areas
where their larvae have abundant sources of food. Their larvae emit light and often
are called “glowworms” in Eurasia and elsewhere. Some firefly species, at specific
locations, perform synchronized flashing, i.e. flashing of a large number of fireflies
at the same time. Current hypotheses about the causes of this behavior involve diet,
social interaction, and altitude. The movement of a firefly i toward another, brighter,
firefly j can be expressed as

xt+1
i = xt

i + c e−a r2
ij (xt

j − xt
i) + d 𝜀t

i (14.2)

�

� �

�

682 Metaheuristic Optimization Methods

where the middle term on the right hand side of Eq. (14.2) denotes the attraction
between the fireflies i and j with rij representing the distance between the fireflies i
and j and the third term on the right hand side indicates the random step with 𝜀t

i as a
random vector. Basically, the third term on the right hand side of Eq. (14.2) indicates
the random local search with 𝜀 gradually made to converge to zero. Thus, basically,
Eq. (14.2) denotes a random walk method biased toward the brighter firefly.

During mating males release sperm into the female’s spermatheca for storage,
while the remainder disintegrates within a specialized gland. As most Photinus adults
do not feed, studies suggest that females should continue to forage for mates to supple-
ment their diminishing larval reserves, even after they have gained sufficient sperm to
fertilize their eggs. Some female Photuris fireflies are known for mimicking the mat-
ing flashes of other “lightning bugs” for the sole purpose of predation. Target males
are attracted to what appears to be a suitable mate, and are then eaten. A few days after
mating, a female lays her fertilized eggs on or just below the surface of the ground. The
eggs hatch three to four weeks later, and the larvae feed until the end of the summer.
The larvae are commonly called glowworms. Fireflies hibernate over winter during the
larval stage, some species for several years. Some do this by burrowing underground,
while others find places on or under the bark of trees. They emerge in the spring. After
several weeks of feeding on other insects, snails, and worms, they pupate for 1.0–2.5
weeks and emerge as adults. Most fireflies are quite distasteful to eat and sometimes
poisonous to vertebrate predators.

Light production in fireflies is due to a type of chemical reaction called biolu-
minescence. This process occurs in specialized light-emitting organs, usually on a
firefly’s lower abdomen. Light in adult beetles is primarily for the purpose of mate
selection. Fireflies are a classic example of an organism that uses bioluminescence for
sexual selection. They have a variety of ways to communicate with mates in courtships:
steady glows, flashing, and the use of chemical signals unrelated to photic systems.
The signal provides potential mates with information about the species of the signaller
or its quality as a mate.

Some species, especially lightning bugs, are distinguished by the unique courtship
flash patterns emitted by flying males in search of females. In general, females of
the genus Photinus do not fly, but do give a flash response to males of their own
species. Female Photuris fireflies are known for mimicking the mating flashes of other
“lightning bugs” for the sole purpose of predation. Target males are attracted to what
appears to be a suitable mate, and are then eaten. For this reason, sometimes, Photuris
species are referred to as “femme fatale fireflies.” Fireflies, like many other organisms,
are directly affected by land-use change (e.g. loss of habitat area and connectivity),
which is identified as the main driver of biodiversity changes in terrestrial ecosys-
tems. Additionally, since fireflies depend on their own light to reproduce they are also
very sensitive to environmental levels of light and consequently to light pollution. In
2015 it was shown and quantified for the first time the negative effects of direct illu-
mination on fireflies, in a study that monitored populations over four years. Multiple
recent studies investigate deeply the effects of artificial night lighting on fireflies.

Firefly Behavior The flashing light in fireflies is produced by a process of biolu-
minescence. Although the true function of flashing light in fireflies is not completely
known, the major functions of flashing signals are observed to be for attracting mat-
ing partners as well as prey (food). The flashes are also believed to serve as a warning
mechanism to drive off potential predators by creating a sense of a dangerous or bitter
source of food. The brightness of the flashing light, rate of flashes, and the duration of
each flash form a signal system that bring females to males of the same species together
for mating. In some species of fireflies, the females mimic the mating flashing patterns

�

� �

�

14.3 Details of Representative Metaheuristic Algorithms 683

of other species to lure the male fireflies which might make a mistake and approach
the female for mating and, instead, get eaten by the flashing female.

Assumptions The following assumptions are made in developing the firefly inspired
optimization algorithm:

1. Each firefly is attracted to other fireflies irrespective of their sex.
2. The attraction between fireflies is based on the brightness of the flashes.

Thus a bright firefly moves toward the brighter firefly. The brightness of a
firefly decreases with the distance of the other firefly. If the brightness of the
two fireflies is same, then which firefly moves toward the other is decided
randomly.

3. In the context of optimization, a firefly is associated with a design vector
−→
X and

the brightness (or light intensity, I) of a firefly is assumed to be proportional to
its objective function value, f (−→X) = I, for a maximization-type of optimization
problem. The light intensity with distance or position (r) is assumed to follow
the inverse square law:

I =
I0

r2
, r ≠ 0 (14.3)

where I0 is the intensity or brightness at the flashing firefly location or source
(r = 0).

Procedure A design vector can be considered as the location (a point in the
n-dimensional design space) corresponding to a specific firefly. The attraction
between two fireflies i and j varies with the distance between them, rij, given by

rij = ‖−→X i −
−→
X j‖ =

√√√√ n∑
k=1

(xi,k − xj,k)2 (14.4)

where n denotes the number of design variables (components of the design vector
−→
X).

Although the light intensity of the flashes varies according to the inverse square law,
Eq. (14.3), the intensity also decreases with distance due to the light absorption coef-
ficient (𝛼) of the medium as

I(r) = I0 e−𝛼r (14.5)

The decrease in light intensity with distance, given by Eqs. (14.3) and (14.5), is
stated in the form of one equation as

I(r) = I0 e−𝛼r2
(14.6)

It can be seen that Eq. (14.6) permits the evaluation of the light intensity by avoid-
ing singularity of Eq. (14.3) at r = 0. If firefly j is brighter than firefly i, then i is
attracted toward j so that its movement (new position) can be expressed as

new
−→
X i =

−→
X i + I0 e−𝛼r2

ij (−→X j −
−→
X i) + 𝛽

−→
𝛿 i (14.7)

where on the right hand side of Eq. (14.7), the first term denotes the initial position of
the firefly i, the second term indicates movement due to attraction and the third term
represents a random vector. The random vector, 𝛽

−→
𝛿 i, is added on the right hand side of

Eq. (14.7) to make the equation denote a random walk type of approach, biased toward

�

� �

�

684 Metaheuristic Optimization Methods

a brighter firefly. The elements of the random vector
−→
𝛿 i can be chosen as random

numbers following uniform distribution or Gaussian distribution, or any other distri-
bution, such as Levy distribution1. Note that Eq. (14.7) denotes a simple random walk
method if I0 = 0.

Algorithm
1. Define the objective function (or fitness function) in terms of the design vector

−→
X = {x1 x2 . . . xn}T .

2. Define the light absorption coefficient 𝛼, usually a value in the range 0.1–10.

3. Generate the initial population of p fireflies (design vectors):
−→
X 1,

−→
X 2, . . . ,

−→
X p.

4. Find the light intensity (objective function value) corresponding to each fire-
fly as

Ii (
−→
X i) = f (−→X i), i = 1, 2, . . . , p (14.11)

5. For i = 1 to p:
Consider j = 1 to p
If (Ii < Ij), move firefly i toward j; find new

−→
X i using Eq. (14.7) and find Ii at

new
−→
X i.

Otherwise, (Ii ≥ Ij), go to next j.
Complete consideration of all j’s.
Do for all i’s.

6. Rank all fireflies, that is, find new values of f (−→X 1), f (
−→
X 2), . . . , f (

−→
X p).

Find the global best value of f.
7. If convergence is not achieved, repeat Steps 5, 6, and 7.

14.3.3 Harmony Search Algorithm

The harmony search algorithm (HAS) is based on the musical process of searching for
a perfect state of harmony. It was first presented by Lee and Geem [14.12, 14.27, 14.28]
and can be used for the solution of optimization problems involving continuous design
variables. The HAS can be stated in terms of the following five steps:

1Levy distribution, named after Paul Levy, is a continuous probability distribution for a non-negative ran-
dom variable. The probability density function of Levy distribution in the domain x≥𝜇 is given by

fX(x, 𝜇, c) =
√

c
2 𝜋

1
(x − 𝜇)3∕2

e−
c

2 (x−𝜇) (14.8)

where 𝜇 is the location parameter and c is the scale parameter. The corresponding distribution function is
given by

FX(x, 𝜇, c) = erfc
√

c
2 (x − 𝜇)

(14.9)

where erfc (z) is the complementary error function. In practice, the attractiveness function, 𝜃(r)≡ I(r), can
be chosen to be any monotonically decreasing function, such as

𝜃(r) = 𝜃0 e−𝛼 rq
, q ≥ 1 (14.10)

where 𝜃0 denotes the attractiveness or brightness at r = 0. The value of 𝜃0 can be taken as 1 and the value
of 𝛼, which determines how fast the firefly i moves toward j (which determines the speed of convergence
of the algorithm) can be usually taken as a number between 0.1 and 10 [14.43].

�

� �

�

14.3 Details of Representative Metaheuristic Algorithms 685

Step 1 State the optimization problem and define the parameters of the HAS. The
optimization problem is stated as

Find
−→
X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1

x2

.

.

.

xn

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
to minimize f (−→X) (14.12)

subject to
x(l)i ≤ xi ≤ x(u)i or xi ∈ Xi ; i = 1, 2, . . . , n (14.13)

where Xi defines the possible range of xi.
The parameters of the HAS include the following:

1. Harmony memory size (HMS):
HMS denotes the number of solution vectors in harmony memory

(similar to the number of pitches or different sounds in the musician’s
memory to enable him/her to be able to play randomly). In the context of
the optimization problem, HMS corresponds to the number of randomly

generated design vectors
−→
X

(1)
,
−→
X

(2)
, . . . ,

−→
X

(HMS)
arranged by their corre-

sponding objective function values. Thus f (−→X
(1)
) is the smallest value and

f (−→X
(HMS)

) is the largest value (for the minimization problem). The collec-

tion of design vectors
−→
X

(1)
,
−→
X

(2)
, . . . ,

−→
X

(HMS)
constitute what is called

the harmony memory (HM).
2. Harmony memory considering rate (HMCR):

The HMCR denotes the probability of choosing one vector from the
HMS design vectors stored in the harmony memory (HM) in Step 3.

3. Pitch adjusting rate (PAR):
PAR is the value of probability which is used only after choosing a

design vector from the harmonic memory (HM) in Step 3. It is used to
decide whether pitch adjustment is to be done at that stage.

Step 2 Create or initialize the harmonic memory (HM) as

HM =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−→
X

(1)

−→
X

(2)

.

.

.

−→
X

(HMS)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(14.14)

where all the solution vectors,
−→
X

(i)
, are generated randomly and then stored

in increasing order of magnitude of the objective function f (−→X
(i)
).

�

� �

�

686 Metaheuristic Optimization Methods

Step 3 Create and play music spontaneously from harmonic memory. This involves
generating a new harmony vector

−→
X

′
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x′1
x′2
.

.

.

x′n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(14.15)

where each of the variables, x′i , is selected either from the ith components of
the vectors in the harmonic memory (with a probability of HMCR) or ran-
domly choosing a feasible value from the range of xi, that is, from Xi with
a probability of (1−HMCR). Usually the value of HMCR is chosen to be a
large value in the range 0.9–0.99 so that the value of (1−HMCR) is in the
range of 0.01–0.1. Thus

x′i =
⎧⎪⎨⎪⎩

x′i ∈ {x(1)i , x
(2)
i , . . . , x

(HMS)
i } with a probability HMCR

x′i ∈ Xi with a probability (1 − HMCR)
(14.16)

This process is similar to playing music based on aspects such as memory,
adjustment of pitch, and randomness. Once all the components of the new

harmony vector
−→
X

′
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′1
x′2
.

.

.

x′n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
are generated, each of its components is examined

to find whether it needs to be adjusted for pitch. In numerical computation,
this aspect is implemented as follows:
Pitch adjustment is to be done for

x′i ∶
⎧⎪⎨⎪⎩

Yes ∶ with a probability of PAR

No ∶ with a probability of 1 − PAR

(14.17)

A value of PAR = 0.35, for example, implies that a neighboring value is to be
chosen with a probability of (0.35×HMCR). Thus, the pitch adjusted (new)
value of x′i is chosen as

(new) x′i = x′i + Δx (14.18)

where

Δx = (x(u)i − x(l)i) u(−1, 1)

= (range of xi) (uniformly distributed number between − 1 and 1)
(14.19)

The parameters HMCR and PAR used in this step help in finding the globally
and locally improved solutions, respectively.

�

� �

�

14.3 Details of Representative Metaheuristic Algorithms 687

Step 4 Find the value of the objective function at the new design vector
−→
X

′
found

in Step 3, f (−→X
′
). If f (−→X

′
) is better than the current worst objective function,

f (−→X
(HMS)

), then
−→
X

(HMS)
is deleted from HM (in Eq. (14.14)) and

−→
X

′
is intro-

duced into HM at a location suitable for the value of f (−→X
′
) when the set of

objective function values f (−→X i) are sorted from the best to the worst values in
the new HM defined by Eq. (14.14).

Step 5 Repeat Steps 3 and 4 until the pre-specified convergence or termination crite-
rion is satisfied.

14.3.4 Teaching-Learning-Based Optimization (TLBO)

The TLBO is a population-based method where the population is considered to be
a group of learners (or students) and the design variables are similar to the various
courses or subjects studied by each student [14.7]. The grades obtained in differ-
ent courses by a particular student defines the fitness of the design (or student). The
TLBO process involves two stages – the teacher phase (learning from the teacher) and
the learner phase (learning through interaction with other students or learners). The
step-by-step procedure for implementing the TLBO is given below.

Step 1 Define the optimization problem:

−→
X = {x1 x2 . . . xn}T

P = number of students = population size

li ≤ xi ≤ ui; i = 1, 2, .. ., n (lower and upper bounds on design variables)
(14.20)

Maximum number of generations to be used: gmax

f (−→X) = objective function

Set iteration number, k = 1
Step 2 Generate initial population randomly (in iteration k) as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

.

.

.

xP,1 xP,2 . . . xP,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14.21)

with
li ≤ xi,j ≤ ui; i = 1, 2, . . . ,P; j = 1, 2, . . . , n

Step 3 Teaching phase:

3.1 The mean values of the population in various courses is determined as
the vector −→

Mn = {m1 m2 . . . mn}T (14.22)

�

� �

�

688 Metaheuristic Optimization Methods

where

mi =
1
P

P∑
j=1

xj,i; i = 1, 2, . . . , n (mean of column i of matrix in

Eq. (14.21)).
The mean vector in the current (kth) iteration is

−→
X

(k)
mean =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

m1

m2

.

.

.

mn

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(14.23)

3.2 Using the n-values of each row of the matrix of Eq. (14.21) as design
variables, determine the value of the objective function for each
student as

f (−→X
(1)
), f (−→X

(2)
), . . , f (−→X

(P)
)

where
−→
X

(j)
represents the jth row in the matrix of Eq. (14.21).

3.3 Find the best solution in the population and treat it as the teacher solution
in the current iteration (teacher solution is expected to converge to the
best possible value ultimately):

−→
X

(k)
teacher =

−→
X |

f (−→X)=minimum
(14.24)

It is expected that the teacher solution
−→
X

(k)
teacher converges to the best solu-

tion
−→
X

∗
as k increases. The difference between the vectors of Eqs. (14.24)

and (14.23) is given by

Δ−→X
(k)

= r (−→X
(k)
teacher − t

−→
X

(k)
mean) (14.25)

where r and t are pre-specified constants with t chosen heuristically as 1
or 2 only using the relation

t = round [1 + rand (0, 1) ∗ (2 − 1)] (14.26)

The solution vector is updated as

−→
X new = −→

X old + Δ−→X
(k)

(14.27)

Step 4 Learning phase:
The students are expected to learn in two different ways – first from the teacher
and second through interaction with other students (through one-on-one

�

� �

�

14.3 Details of Representative Metaheuristic Algorithms 689

discussions, group discussions, presentations, etc.). The improvement
achieved in the learning phase can be determined as follows:

4.1 Select two students i and j (i≠ j), with design vectors
−→
X i and

−→
X j, ran-

domly.

If f (−→X i) < f (−→X j), select
−→
X

new

i = −→
X

old

i + ri (
−→
X i −

−→
X j) (14.28)

If f (−→X i) ≥ f (−→X j), select
−→
X

new

i = −→
X

old

i + ri (
−→
X j −

−→
X i) (14.29)

where ri is a random number in the range [0, 1].
4.2 Repeat step 4.1 P times.

Step 5 Termination of the process:
If the number of generations used reaches the maximum number of genera-
tions specified (gmax), stop the process. Otherwise, repeat Steps 3, 4, and 5.

14.3.5 Honey Bee Swarm Optimization Algorithm

Honey bees produce honey, which is a valuable commodity. But they are the farmer’s
favorite insects. Honey bees travel throughout the flowering fields, moving from blos-
som to blossom, carrying pollen from one flower to the next. This transport of pollen
from flower to flower is called pollination. Pollination is what causes plants to bear
fruit. Honey is made from the nectar of flowers – gathered, evaporated, and modified
by bees. There are three kinds of bees in a swarm or colony of bees – the worker bees,
queen, and drones. A typical colony of bees will have from 50 000 to 60 000 worker
bees, 1000 or more drones, and a queen.

The worker bees are female with undeveloped reproductive organs so they do
not lay eggs. They have glands for the secretion of scent, wax, and food for larval
bees. Their tongues are very long for lapping up nectar. The worker bees divide the
work – some of the worker bees act as nurses, feeding and taking care of the queen
and larvae. Some bees build the honeycomb, clean the hive and guard the hive against
intruders. Many bees are responsible for foraging for food, which they bring back to
the hive to feed the entire bee colony (these bees cause pollination). Bees normally like
to forage within about 1000 yards of their hive, but can forage at distances of several
miles. One of the ways bees communicate is through a set of behaviors called dances.
Bees tell each other where food resources are found by using these special dances.
Two main types of dances have been recognized: the round dance and the waggle-tail
dance. The round dance is performed to direct bees to food resources within about 100
yards of the beehive. Bees use the waggle-tail dance to indicate a food source found
greater than 100 yards from the hive. In addition to distance, the waggle dance also
gives information about direction from the hive.

A queen bee has well-developed ovaries, and lays all the eggs in the colony. It
is the largest bee in the colony. Its primary function is to lay eggs so that the colony
can continue to exist. The queen is fed and groomed by the worker bees. Queen bees
usually live for two or three years. The honeycomb is used for storing food, both honey
and pollen. The queen lays eggs, one to a cell, in the honeycomb. Inside the cell, the

�

� �

�

690 Metaheuristic Optimization Methods

egg hatches and the workers care for the young larva. The area in the honeycomb
where the eggs are laid is called the brood nest. The queen lays all the eggs in the
hive and determines if they will be worker bees or drones. It usually takes 16 days to
develop a queen from the egg to the adult stage. She will remain a virgin queen for
about five days. Within two or three days after mating, the queen begins to lay eggs.
Unfertilized eggs become drones. Fertilized eggs become worker bees.

Drones are male bees. Drones are slightly smaller than the queen bee, but larger
than the worker bees. The drones do no work in the hive; their only function in life
is to mate with the queen. Mating takes place outside the hive while the queen and
drones are flying high in the air. The drones die immediately after mating.

Algorithm Depending on the type of work they do, worker bees can be called for-
agers, scouts, or onlookers. The scout bees fly around the hive in search of a new food
source. Once a scout bee finds a good source of food, it becomes a forager bee and
brings back nectar to the hive and performs waggle dance to inform others (onlookers)
about the new food source found, the quality and quantity of the food source, its dis-
tance from the hive and the direction. Then some of the onlooker bees become forager
bees to go to the newly found food source and bring back the nectar (food).

The honey bee algorithms were discussed in several publications [14.10, 14.11,
14.29, 14.30]. In developing the optimization algorithm, each bee is associated with
a point,

−→
X , in the n-dimensional design space. Let the total number of bees be N with

Nf, No, and Ns denoting the number of forager bees, onlooker bees and scout bees,
respectively (Nf +No +Ns = N). Usually the number of scout bees is small while the
numbers of forager bees and onlooker bees is approximately the same. The optimiza-
tion procedure can be described by the following steps:

Step 1 Generate N random vectors in the n-dimensional design space (which corre-
spond to the positions of the N bees):

−→
X i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xi,1

xi,2

.

.

.

xi,n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
; i = 1, 2, . . . ,N (14.30)

Step 2 Find the fitness function (objective function value) at all these random position
vectors

fi = f (−→X i); i = 1, 2, . . . ,N (14.31)

Renumber the fitness values of Eq. (14.31) and the corresponding position
(design) vectors in decreasing order of magnitude from f1 (best value) = f (−→X 1)
to fN (worst value) = f (−→X N). Assign the first Nf best fitness values to the Nf
forager bees, next No best fitness values (fNf +1 to fNf +No

) to the No onlooker
bees, and the last Ns worst set of fitness values to the Ns scout bees.
It can be seen that the global best position (with best fitness function value

among all N position vectors) is
−→
X

all

best =
−→
X 1.

�

� �

�

14.3 Details of Representative Metaheuristic Algorithms 691

Step 3 Test to find whether the current global best position and the best fitness value
satisfy the pre-specified convergence criteria. If the convergence criteria are
satisfied, take the optimum solution of the problem as

−→
X

optimum
= −→

X
all

best and f optimum = f (−→X
optimum

) (14.32)

and stop. If the convergence criteria are not satisfied, go to Step 4.
Step 4 Find the best fitness of each forager bee as well as the global best fitness

among the forager bees as follows:
Assume the best value for each forager bee initially (f best

i) as f best
i = f (−→X i);

i = 1, 2, . . . ,Nf
For i = 1 to Nf

If f (−→X i) > f best
i , then set

−→
X

best

i = −→
X i (14.33)

If f (−→X
best

i) > f (−→X
all

best), then set Xall
best =

−→
X

best

i (14.34)

Next i
Step 5 Find improved positions (with better fitness values) of forager bees using the

following process:
For i = 1 to Nf
For j = 1 to n

xnew
i j = xcurrent

i j + 𝛼bestr1 (xbest
i j − xcurrent

i j) + 𝛼all
best r2 (xall

best − xcurrent
i j) (14.35)

Next j
Next i
where 𝛼best and 𝛼all

best indicate parameters that control the importance of the
best food source found by the ith bee and the best food source found by any
of the N bees (called the elite bee), and r1 and r2 denote random numbers
following uniform distribution in the range [0, 1].

Step 6 The new positions of the onlooker bees in the design space are updated as
follows:
For i = Nf + 1 to Nf +No

−→
X

new

i = Xcurrent
i + 𝛽 r3 (

−→
X

best

o − Xcurrent
i) (14.36)

Next i
where 𝛽 is a parameter used to control the importance of the best food source
found among the onlooker bees, r3 is a random number uniformly distributed

in the range [0, 1], and
−→
X

best

i is the best food source (with highest value of
fitness) found among all the onlooker bees, given by

f (−→X
best

i) = max
j = Nf + 1 to Nf + No

f (−→X j) (14.37)

Step 7 Find improved positions (with better fitness values) of scout bees (which have
currently the worst set of fitness values), a random walk-based procedure is
used. The search is made in a region covered by a radius 𝛽 from their current
positions. Their new positions are generated as follows.

�

� �

�

692 Metaheuristic Optimization Methods

For i = Nf +No + 1 to Nf +No +Ns

−→
X

new

i = −→
X

current

i + −→
R (𝛽,−→X

current

i) (14.38)

Next i
where

−→
R is the vector of random step lengths (for use with different design

variables of the vector
−→
X

current

i) within a radius 𝛽. The radius of search space
is determined as

𝛽 = c ‖−→X 1 −
−→
X N‖ (14.39)

where c is a constant chosen as 0< c< 1 and
−→
X 1 and

−→
X N are the position

vectors corresponding to the best and worst fitness values.
Step 8 Once the updating of the positions of forager bees, onlooker bees and scout

bees are complete (as indicated in Eqs. (14.35)–(14.38)), the new set of N
position vectors is defined as

−→
X i =

−→
X

new

i ; i = 1, 2, . . . ,N (14.40)

Go to Step 2.

REFERENCES AND BIBLIOGRAPHY

14.1 Kaveh, A. and Dadras, A. (2017). A novel meta-heuristic optimization algorithm: ther-
mal exchange optimization. Advances in Engineering Software 110: 69–84.

14.2 Savsani, P. and Savsani, V. (2016). Passing vehicle search (PVS): a novel metaheuristic
algorithm. Applied Mathematical Modelling 40: 3951–3978.

14.3 Mirjalili, S., Gandom, A.H., Mirjalili, S.Z. et al. (2017). Salp swarm algorithm: a
bio-inspired optimizer for engineering design problems. Advances in Engineering Soft-
ware 114: 163–191.

14.4 Kennedy, J. and Eberhart, R.C. (1995). Particle swarm optimization. In: Proceeding
of IEEE International Conference on Neural Networks, 1942–1948. Piscataway, NJ:
IEEE.

14.5 Clerc, M. and Kennedy, J. (2002). The particle swarm – explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation 6: 58–73.

14.6 Kennedy, J. and Eberhart, R.C. (2001). Swarm Intelligence. Academic Press.

14.7 Rao, R.V., Savsani, V.J., and Vakharia, D.P. (2011). Teaching-learning-based opti-
mization: a novel method for constrained mechanical design optimization problems.
Computer-Aided Design 43: 303–315.

14.8 Dorigo, M., Di Caro, G., and Gambardella, L.M. (1999). Ant algorithm for discrete
optimization. Artificial Life 5 (2): 137–172.

14.9 Dorigo, M. and Stutzle, T. (2004). Ant Colony Optimization. Cambridge, MA: MIT
Press.

14.10 Afshar, A., Haddad, O.B., Marino, M.A., and Adams, B.J. (2007). Honey-bee mat-
ing optimization (HBMO) algorithm for optimal reservoir operation. Journal of the
Franklin Institute 344: 452–462.

14.11 Karaboga, D. and Basturk, B. (2008). On the performance of artificial bee colony
(ABC) algorithm. Applied Soft Computing 8: 687–697.

14.12 Lee, K.S. and Geem, Z.W. (2005). A new meta-heuristic algorithm for continuous
engineering optimization: harmony search theory and practice. Computer Methods in
Applied Mechanics and Engineering 194: 3902–3933.

�

� �

�

References and Bibliography 693

14.13 Kaveh, A. and Bakhshpoori, T. (2016). Water evaporation optimization: a novel phys-
ically inspired optimization algorithm. Computers and Structures 167: 69–85.

14.14 Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983). Optimization by simulated
annealing. Science 220 (4598): 671–680. https://doi.org/10.1126/science.220.4598
.671.

14.15 Granville, V., Krivanek, M., and Rasson, J.-P. (1994). Simulated annealing: a proof of
convergence. IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (6):
652–656. https://doi.org/10.1109/34.295910.

14.16 Glover, F. (1989). Tabu search – Part 1. ORSA Journal on Computing 1 (2): 190–206.
https://doi.org/10.1287/ijoc.1.3.190.

14.17 Glover, F. (1990). Tabu search – Part 2. ORSA Journal on Computing 2 (1): 4–32.
https://doi.org/10.1287/ijoc.2.1.4.

14.18 Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

14.19 Atashpaz-Gargari, G.E. and Lucas, C. (2007). Imperialist competitive algorithm: an
algorithm for optimization inspired by imperialistic competition. IEEE Congress on
Evolutionary Computation 7: 4661–4666.

14.20 Hosseini, S. and Al Khaled, A. (2014). A survey on the imperialist competitive algo-
rithm metaheuristic: implementation in engineering domain and directions for future
research. Applied Soft Computing 24: 1078–1094.

14.21 Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Reading, MA: Addison Wesley.

14.22 Holland, J. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University
of Michigan Press.

14.23 Mitchell, M. (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT
Press.

14.24 Yuce, B., Packianather, M.P., Mastrocinque, E. et al. (2013). Honey bees inspired
optimization method: the bees algorithm. Insects 4: 646–662. https://doi.org/10.3390/
Insects4040646.

14.25 Nazari-Shirkouhi, S., Eivazy, H., Ghodsi, R. et al. (2010). Solving the integrated prod-
uct mix-outsourcing problem by a novel meta-heuristic algorithm: imperialist compet-
itive algorithm. Expert Systems with Applications 37 (12): 7615–7626. https://doi.org/
10.1016/j.eswa.2010.04.081.

14.26 El-Sawy, A., Zaki, E.M., and Rizk-Allah, R.M. (2013). A novel hybrid ant colony opti-
mization and firefly algorithm for solving constrained engineering design problems.
Journal of Natural Sciences and Mathematics 6: 122.

14.27 Geem, Z.W., Kim, J.H., and Loganathan, G.V. (2001). A new heuristic optimization
algorithm: harmony search. Simulation 76 (2): 60–68.

14.28 Geem, Z.W. (2009). Music-Inspired Harmony Search Algorithm: Theory and Applica-
tions. Springer.

14.29 Weyland, D. (2010). A rigorous analysis of the harmony search algorithm: how the
research community can be misled by a “novel” methodology. International Jour-
nal of Applied Metaheuristic Computing 1 (2): 50–60. https://doi.org/10.4018/jamc
.2010040104.

14.30 Pham, D.T. and Castellani, M. (2009). The bees algorithm – modelling foraging
behaviour to solve continuous optimisation problems. Proceedings of the Institution
of Mechanical Engineers, Part C 223 (12): 2919–2938.

14.31 Yang, X.S. and Deb, S. (2010). Engineering optimization by cuckoo search. Interna-
tional Journal of Mathematical Modelling and Numerical Optimisation 1 (4).

14.32 Yang, X.S. (2010). Firefly algorithm, stochastic test functions and design optimization.
International Journal of Bio-Inspired Computation 2: 78–84.

14.33 Yang, X.S. (2010). Firefly algorithm, Levy flights and global optimization. In: Research
and Development in Intelligent Systems XXVI (eds. M.B.R. Ellis, M. Petridis, et al.),
209–218. London: Springer.

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1109/34.295910
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.3390/Insects4040646
https://doi.org/10.3390/Insects4040646
https://doi.org/10.1016/j.eswa.2010.04.081
https://doi.org/10.1016/j.eswa.2010.04.081
https://doi.org/10.4018/jamc.2010040104
https://doi.org/10.4018/jamc.2010040104

�

� �

�

694 Metaheuristic Optimization Methods

14.34 Yang, X.S. (2009). Firefly algorithm for multimodal optimization. In: Stochastic Algo-
rithms: Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sci-
ence,, vol. 5792, 169–178.

14.35 Yang, X.S. (2010). Nature-Inspired Metaheuristic Algorithms, 2e. Luniver Press.

14.36 Tsai, P.W., Pan, J.S., Liao, B.Y. et al. (2012). Bat algorithm inspired algorithm for
solving numerical optimization problems. Applied Mechanics and Materials 148–149:
134–137. https://doi.org/10.4028/www.scientific.net/amm.

14.37 Pan, W.T. (2012). A new fruit fly optimization algorithm: taking the financial distress
model as an example. Knowledge-Based Systems 26 (6): 74.

14.38 Guo, X., Zhang, J., Li, W., and Zhang, Y. (2017). A fruit fly optimization algorithm
with a traction mechanism and its applications. International Journal of Distributed
Sensor Networks 13 (11, 12 pp).

14.39 Merrikh-Bayat, F. (2015). The runner-root algorithm: a metaheuristic for solving uni-
modal and multimodal optimization problems inspired by runners and roots in plants
in nature. Applied Soft Computing 33: 292–303.

14.40 Shah-Hosseini, H. (2009). Optimization with the nature-inspired intelligent water
drops algorithm. In: Evolutionary Computation (ed. W.P. dos Santos). Vienna, Austria:
I-Tech.

14.41 Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engi-
neering optimization problems: crow search algorithm. Computers and Structures 169:
1–12.

14.42 Abdelaziz, A.Y. and Fathy, A. (2017). A novel approach based on crow search algo-
rithm for optimal selection of conductor size in radial distribution networks. Engineer-
ing Science and Technology, An International Journal 20: 391–402.

14.43 Voit, J. (2005). The Statistical Mechanics of Financial Markets. Springer.

14.44 Annamdas, K.K. and Rao, S.S. (2009). Multi-objective optimization of engineering
systems using game theory and particle swarm optimization. Engineering Optimization
41 (8): 737–752.

14.45 Rao, S.S. and Xiong, Y. (2005). A hybrid genetic algorithm for mixed discrete design
optimization. Journal of Mechanical Design 127 (6): 1100–1112.

14.46 Yang, X.S. (2010). A new metaheuristic bat-inspired algorithm. In: Nature inspired
Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational
Intelligence, vol. 284 (eds. J.R. Gonzalez et al.), 65–74. Springer.

REVIEW QUESTIONS

14.1 Match the following methods to their characteristics or features:

(a) Goal programming method

(b) Genetic algorithm

(c) Zero–one optimization problem

(d) Honey bee algorithm

(e) Harmony search method

1. Binary optimization problem

2. Musical performance

3. Based on Darwin’s theory

4. Multiobjective optimization

5. Waggle dance

14.2 Answer True or False:

1. Quadratic programming can be called a metaheuristic method.

2. Simulated annealing is based on simulating the strength of materials.

3. Tabu search does not permit steps that lead to a worse objective function value.

4. All metaheuristic methods use random numbers.

5. Cuckoo optimization algorithm uses local and global random walks.

6. Water evaporation optimization is related to molecular dynamics.

https://doi.org/10.4028/www.scientific.net/amm

�

� �

�

Review Questions 695

14.3 Give short answers to the following questions:

1. What is the difference between a heuristic method and a metaheuristic method?

2. How do bats find the location and nature of their surrounding objects at night?

3. On what phenomenon the runner-root algorithm is based?

4. What characteristics of crows are used in the crow search algorithm?

5. What are the counterparts of chromosomes of genetic algorithm in the imperialist
competitive algorithm?

14.4 Fill in the blank spaces using suitable word(s):

1. The metaheuristic method inspired by music is called ------------------- search method.

2. The aim of music is to search for a perfect state of ----------------.

3. The honey bee algorithm is inspired by the -------------- behavior of honey bees.

4. The word, particle, in the particle swarm optimization refers to ------------------.

5. The light in fireflies is generated due to a chemical reaction called bio------------.

14.5 Select a suitable word among the multiple choices indicated:

1. Waggle dance is associated with:
(a) Bats (b) Bees (c) Crows

2. Ants communicate with other ants through:
(a) Dance (b) Running (c) Pheromone

3. Crow search algorithm uses the characteristic:
(a) Flying (b) Stealing (c) Eating

4. In the imperialist competitive algorithm, the initially generated design vectors are
called:
(a) Countries (b) Imperialists (c) Kings

5. The term, fitness function, is used in:
(a) Ant colony optimization (b) Tabu search (c) Genetic algorithm

�

� �

�

�

� �

�

15

Practical Aspects of Optimization

15.1 INTRODUCTION

Although the mathematical techniques described earlier, particularly Chapters 3–13,
can be used to solve different types of engineering optimization problems, the use of
engineering judgment and approximations help in reducing the computational effort
involved. In this chapter we consider several types of approximation techniques that
can speed up the analysis time without introducing too much error [15.1]. The approxi-
mation methods include the reduction of size of an optimization problem, fast reanaly-
sis techniques, and use of derivatives of static displacements and stresses, eigenvalues
and eigenvectors, and transient response of mechanical and structural systems in
gradient evaluations, and also in predicting the response in the neighborhood of a base
design. These techniques are especially useful in finite element analysis-based opti-
mization procedures. This chapter presents several types of approximation methods
that can be used in practical computation, and also the use of derivatives of different
structural/mechanical system response quantities to speed up the optimization
process.

15.2 REDUCTION OF SIZE OF AN OPTIMIZATION PROBLEM

15.2.1 Reduced Basis Technique

In the optimum design of certain practical systems involving a large number of (n)
design variables, some feasible design vectors X1, X2, . . . , Xr may be available to
start with. These design vectors may have been suggested by experienced designers
or may be available from the design of similar systems in the past. We can reduce
the size of the optimization problem by expressing the design vector X as a linear
combination of the available feasible design vectors as

X = c1X1 + c2X2 +⋯ + crXr (15.1)

where c1, c2, . . . , cr are the unknown constants. Then the optimization problem can be
solved using c1, c2, . . . , cr as design variables. This problem will have a much smaller
number of unknowns since r≪ n. In Eq. (15.1), the feasible design vectors X1, X2,
. . . , Xr serve as the basis vectors. It can be seen that if c1 = c2 =⋯ = cr = 1/r, then X
denotes the average of the basis vectors.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

697

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

698 Practical Aspects of Optimization

5

3

4

3

2

2

6

7

9
10

6

12

41

1

7 8

11

5

0

Y

Y6

Y7

Y4

X

Figure 15.1 Concept of design variable linking.

15.2.2 Design Variable Linking Technique

When the number of elements or members in a structure is large, it is possible to
reduce the number of design variables by using a technique known as design variable
linking [15.17]. To see this procedure, consider the 12-member truss structure shown
in Figure 15.1. If the area of cross section of each member is varied independently,
we will have 12 design variables. On the other hand, if symmetry of members about
the vertical (Y) axis is required, the areas of cross section of members 4, 5, 6, 8, and
10 can be assumed to be the same as those of members 1, 2, 3, 7, and 9, respectively.
This reduces the number of independent design variables from 12 to 7. In addition, if
the cross-sectional area of member 12 is required to be three times that of member 11,
we will have six independent design variables only:

X =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1

x2

x3

x4

x5

x6

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A1

A2

A3

A7

A9

A11

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(15.2)

Once the vector X is known, the dependent variables can be determined as A4 = A1,
A5 = A2, A6 = A3, A8 = A7, A10 = A9, and A12 = 3A11. This procedure of treating certain
variables as dependent variables is known as design variable linking. By defining the

�

� �

�

15.2 REDUCTION OF SIZE OF AN OPTIMIZATION PROBLEM 699

vector of all variables as

ZT = {z1 z2 . . . z12}T ≡ {A1 A2 . . .A12}T

the relationship between Z and X can be expressed as

Z
12×1

= [T]
12×6

X
6×1

(15.3)

where the matrix [T] is given by

[T] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15.4)

The concept can be extended to many other situations. For example, if the geom-
etry of the structure is to be varied during optimization (configuration optimization)
while maintaining (i) symmetry about the Y axis and (ii) alignment of the three nodes
2, 3, and 4 (and 6, 7, and 4), we can define the following independent and dependent
design variables:

Independent variables: X5, X6, Y6, Y7, Y4
Dependent variables:

X1 = −X5, X2 = −X6, Y2 = Y6, Y3 = Y7, X7 =
Y4 − Y7

Y4 − Y6
X6,

X3 = −X7, X4 = 0, Y1 = 0, Y5 = 0

Thus the design vector X is

X =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1

x2

x3

x4

x5

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X5

X6

Y6

Y7

Y4

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(15.5)

The relationship between the dependent and independent variables can be defined
more systematically, by defining a vector of all geometry variables, Z, as

Z = {z1 z2 . . . z14}T

≡ {X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 X7 Y7 }T

�

� �

�

700 Practical Aspects of Optimization

which is related to X through the relations

zi = fi(X), i = 1, 2, . . . , 14 (15.6)

where fi denotes a function of X.

15.3 FAST REANALYSIS TECHNIQUES

15.3.1 Incremental Response Approach

Let the displacement vector of the structure or machine, Y0, corresponding to the load
vector, P0, be given by the solution of the equilibrium equations

[K0]Y0 = P0 (15.7)

or
Y0 = [K0]−1P0 (15.8)

where [K0] is the stiffness matrix corresponding to the design vector, X0. When the
design vector is changed to X0 +ΔX, let the stiffness matrix of the system change to
[K0]+ [ΔK], the displacement vector to Y0 +ΔY, and the load vector to P0 +ΔP. The
equilibrium equations at the new design vector, X0 +ΔX, can be expressed as

([K0] + [ΔK])(Y0 + ΔY) = P0 + ΔP (15.9)

or
[K0]Y0 + [ΔK]Y0 + [K0]ΔY + [ΔK]ΔY = P0 + ΔP (15.10)

Subtracting Eq. (15.7) from Eq. (15.10), we obtain

([K0] + [ΔK])ΔY = ΔP − [ΔK]Y0 (15.11)

By neglecting the term [ΔK]ΔY, Eq. (15.11) can be reduced to

[K0]ΔY ≈ ΔP − [ΔK]Y0 (15.12)

which yields the first approximation to the increment in displacement vector ΔY as

ΔY1 = [K0]−1(ΔP − [ΔK]Y0) (15.13)

where [K0]−1 is available from the solution in Eq. (15.8). We can find a better approx-
imation of ΔY by subtracting Eq. (15.12) from Eq. (15.11):

([K0] + [ΔK])ΔY − [K0]ΔY1 = ΔP − [ΔK]Y0 − (ΔP − [ΔK]Y0) (15.14)

or
([K0] + [ΔK])(ΔY − ΔY1) = −[ΔK]ΔY1 (15.15)

By defining
ΔY2 = ΔY − ΔY1 (15.16)

�

� �

�

15.3 FAST REANALYSIS TECHNIQUES 701

Eq. (15.15) can be expressed as

([K0] + [ΔK])ΔY2 = −[ΔK]ΔY1 (15.17)

Neglecting the term [ΔK] ΔY2, Eq. (15.17) can be used to obtain the second
approximation to ΔY, ΔY2, as

ΔY2 = −[K0]−1([ΔK]ΔY1) (15.18)

From Eq. (15.16), ΔY can be written as

ΔY =
2∑

i=1

ΔYi (15.19)

This process can be continued and ΔY can be expressed, in general, as

ΔY =
∞∑

i=1

ΔYi (15.20)

where ΔYi is found by solving the equations

[K0]ΔYi = −[ΔK]ΔYi−1 (15.21)

Note that the series given by Eq. (15.20) may not converge if the change in the
design vector, ΔX, is not small. Hence it is important to establish the validity of the
procedure for each problem, by determining the step sizes for which the series will
converge, before using it. The iterative process is usually stopped either by specifying
a maximum number of iterations and/or by prescribing a convergence criterion such as

‖ΔYi‖‖‖‖‖‖
i∑

j=1
ΔYj

‖‖‖‖‖
≤ 𝜀 (15.22)

where ||ΔYi|| is the Euclidean norm of the vector ΔYi and 𝜀 is a small number on the
order of 0.01.

Example 15.1 Consider the crane (planar truss) shown in Figure 15.2. Young’s
modulus of member e is equal to Ee = 30× 106 psi (e = 1, 2, 3, 4), and the other
data are shown in Table 15.1. Assuming the base design to be A1 = A2 = 2 in.2

and A3 = A4 = 1 in.2, and perturbations to be ΔA1 = ΔA2 = 0.4 in.2 and
ΔA3 = ΔA4 = 0.2 in.2, determine (i) the exact displacements of nodes 3 and 4
at the base design, (ii) the displacements of nodes 3 and 4 at the perturbed design
using the exact procedure, and, (iii) the displacements of nodes 3 and 4 at the
perturbed design using the approximation method.

SOLUTION The stiffness matrix of a typical element e is given by

[K(e)] =
AeEe

le

⎡⎢⎢⎢⎢⎢⎣

l2ij lijmij −l2ij −lijmij

lijmij m2
ij −lijmij −m2

ij

−l2ij −lijmij l2ij lijmij

−lijmij −m2
ij lijmij m2

ij

⎤⎥⎥⎥⎥⎥⎦
(E1)

�

� �

�

702 Practical Aspects of Optimization

1

4

2

3

1

3

2

4

y6

y5

y2

y1

y4

y8

y7

y3

50 in.

25 in.

1000 lb

100 in.

50 in. 100 in.

Figure 15.2 Crane (planar truss).

where Ae is the cross-sectional area, Ee is Young’s modulus, le is the length, and
(lij, mij) are the direction cosines of member e. Equation (E1) can be used to
compute the stiffness matrices of the various members using the data of Table 15.1.
When the member stiffness matrices are assembled and the boundary conditions
(y1 = y2 = y3 = y4 = 0) are applied, the overall stiffness matrix becomes

[K] = (30 × 106)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
0.8A1

55.9017
+

0.8A2

55.9017
+

0.8A3

167.7051

) (
0.4A1

55.9017
−

0.4A2

55.9017
+

0.4A3

167.7051

)
(

0.2A1

55.9017
+

0.2A2

55.9017
+

0.2A3

167.7051

)
symmetric

(
−0.8A3

167.7051

) (
−0.4A3

167.7051

)
(

−0.4A3

167.70501

) (
−0.2A3

167.7051

)
(

0.8A3

167.7051
+

0.5A4

141.4214

) (
0.4A3

167.7051
+

0.5A4

141.4214

)
(

0.2A3

167.7051
+

0.5A4

141.4214

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E2)

�

� �

�

15.3 FAST REANALYSIS TECHNIQUES 703

Table 15.1 Data of the crane shown in Fig. 15.2.

Global node of:
Direction cosines
of member

Member, e

Area of
cross
section, Ae

Length,
le (in.)

Corner
1, i

Corner
2, j lij =

Xj−Xi

le
mij =

Yj−Yi

le

1 A1 55.9017 1 3 0.8944 0.4472
2 A2 55.9017 3 2 0.8944 −0.4472
3 A3 167.7051 3 4 0.8944 0.4472
4 A4 141.4214 2 4 0.7071 0.7071

Thus the equilibrium equations of the structure can be expressed as

[K]Y = P (E3)

where

Y =

⎧⎪⎪⎨⎪⎪⎩

y5

y6

y7

y8

⎫⎪⎪⎬⎪⎪⎭
and P =

⎧⎪⎪⎨⎪⎪⎩

p5

p6

p7

p8

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

0

0

0

−1000

⎫⎪⎪⎬⎪⎪⎭
(a) At the base design, A1 = A2 = 2 in.2, A3 = A4 = 1 in.2, and the exact solution of

Eq. (E3) gives the displacements of nodes 3 and 4 as

Ybase =

⎧⎪⎪⎨⎪⎪⎩

y5

y6

y7

y8

⎫⎪⎪⎬⎪⎪⎭base

=

⎧⎪⎪⎨⎪⎪⎩

0.001165

0.002329

0.05147

−0.07032

⎫⎪⎪⎬⎪⎪⎭
in.

(b) At the perturbed design, A1 = A2 = 2.4 in.2, A3 = A4 = 1.2 in.2, and the exact
solution of Eq. (E3) gives the displacements of nodes 3 and 4 as

Yperturb =

⎧⎪⎪⎨⎪⎪⎩

y5

y6

y7

y8

⎫⎪⎪⎬⎪⎪⎭perturb

=

⎧⎪⎪⎨⎪⎪⎩

0.0009705

0.001941

0.04289

−0.05860

⎫⎪⎪⎬⎪⎪⎭
in.

(c) The values of A1 = A2 = 2.4 in.2 and A3 = A4 = 1.2 in.2 at the perturbed design are
used to compute the new stiffness matrix as [K]perturb = [K]+ [ΔK], which is then
used to compute ΔY1, ΔY2, . . . using the approximation procedure, Eqs. (15.13)
and (15.21). The results are shown in Table 15.2. It can be seen that the solution
given by Eq. (15.20) converged very fast.

�

� �

�

704 Practical Aspects of Optimization

Table 15.2 Displacements of nodes 3 and 4 at perturbed design.

ExactY0 =

⎧⎪⎪⎨⎪⎪⎩

0.116462E − 02

0.232923E − 02

0.514654E − 01

−0.703216E − 01

⎫⎪⎪⎬⎪⎪⎭
Exact (Y0 + ΔY) =

⎧⎪⎪⎨⎪⎪⎩

0.970515E − 03

0.194103E − 02

0.428879E − 01

−0.586014E − 01

⎫⎪⎪⎬⎪⎪⎭
Value of i ΔYi Yi = Y0 +

i∑
k=1

ΔYk

1

⎧⎪⎪⎨⎪⎪⎩

−0.232922E − 03

−0.465844E − 03

−0.102930E − 01

0.140642E − 01

⎫⎪⎪⎬⎪⎪⎭

⎧⎪⎪⎨⎪⎪⎩

0.931695E − 03

0.186339E − 02

0.411724E − 01

−0.562573E − 01

⎫⎪⎪⎬⎪⎪⎭
2

⎧⎪⎪⎨⎪⎪⎩

0.465842E − 04

0.931683E − 04

0.205859E − 02

−0.281283E − 02

⎫⎪⎪⎬⎪⎪⎭

⎧⎪⎪⎨⎪⎪⎩

0.978279E − 03

0.195656E − 02

0.432310E − 01

−0.590702E − 01

⎫⎪⎪⎬⎪⎪⎭
3

⎧⎪⎪⎨⎪⎪⎩

−0.931678E − 05

−0.186335E − 04

−0.411716E − 03

0.562563E − 03

⎫⎪⎪⎬⎪⎪⎭

⎧⎪⎪⎨⎪⎪⎩

0.968962E − 03

0.193792E − 02

0.428193E − 01

−0.585076E − 01

⎫⎪⎪⎬⎪⎪⎭
4

⎧⎪⎪⎨⎪⎪⎩

0.186335E − 05

0.372669E − 05

0.823429E − 04

−0.112512E − 03

⎫⎪⎪⎬⎪⎪⎭

⎧⎪⎪⎨⎪⎪⎩

0.970825E − 03

0.194165E − 02

0.429016E − 01

−0.586201E − 01

⎫⎪⎪⎬⎪⎪⎭
15.3.2 Basis Vector Approach

In structural optimization involving a static response, it is possible to conduct an
approximate analysis at modified designs based on a limited number of exact analysis
results. This results in a substantial saving in computer time, since, in most problems,
the number of design variables is far smaller than the number of degrees of freedom
of the system. Consider the equilibrium equations of the structure in the form

[K]
m×m

Y
m×1

= P
m×1

(15.23)

where [K] is the stiffness matrix, Y the vector of displacements, and P the load vector.
Let the structure have n design variables denoted by the design vector

X =
⎧⎪⎨⎪⎩

x1
x2
⋮
xn

⎫⎪⎬⎪⎭
If we find the exact solution at r basic design vectors X1, X2, . . . , Xr, the corre-

sponding solutions, Yi, are found by solving the equations

[Ki]Yi = P, i = 1, 2, . . . , r (15.24)

�

� �

�

15.4 DERIVATIVES OF STATIC DISPLACEMENTS AND STRESSES 705

where the stiffness matrix, [Ki], is determined at the design vector Xi. If we consider a
new design vector, XN, in the neighborhood of the basic design vectors, the equilibrium
equations at XN can be expressed as

[KN]YN = P (15.25)

where [KN] is the stiffness matrix evaluated at XN. By approximating YN as a linear
combination of the basic displacement vectors Yi, i = 1, 2, . . . , r, we have

YN ≈ c1Y1 + c2Y2 +⋯ + crYr = [Y]c (15.26)

where [Y] = [Y1, Y2, ⋯, Yr] is an n× r matrix and c = {c1, c2, ⋯, cr}
T is an

r-component column vector. Substitution of Eq. (15.26) into Eq. (15.25) gives

[KN][Y]c = P (15.27)

By premultiplying Eq. (15.27) by [Y]T we obtain

[K̃
r×r

] c
r×1

= P̃
r×1

(15.28)

where
[K̃] = [Y]T[KN][Y] (15.29)

P̃ = [Y]TP (15.30)

It can be seen that an approximate displacement vector YN can be obtained by
solving a smaller (r) system of equations, Eq. (15.28), instead of computing the exact
solution YN by solving a larger (n) system of equations, Eq. (15.25). The foregoing
method is equivalent to applying the Ritz–Galerkin principle in the subspace spanned
by the set of vectors Y1, Y2, . . . , Yr. The assumed modes Yi, i= 1, 2, . . . , r, can be con-
sidered to be good basis vectors since they are the solutions of similar sets of equations.

Fox and Miura [15.3] applied this method for the analysis of a 124-member,
96-degree-of-freedom space truss (shown in Figure 15.3). By using a 5-degree-of-
freedom approximation, they observed that the solution of Eq. (15.28) required
0.653 second while the solution of Eq. (15.25) required 5.454 seconds without
exceeding 1% error in the maximum displacement components of the structure.

15.4 DERIVATIVES OF STATIC DISPLACEMENTS AND
STRESSES

The gradient-based optimization methods require the gradients of the objective and
constraint functions. Thus the partial derivatives of the response quantities with
respect to the design variables are required. Many practical applications require a
finite-element analysis for computing the values of the objective function and/or con-
straint functions at any design vector. Since the objective and/or constraint functions
are to be evaluated at a large number of trial design vectors during optimization,
the computation of the derivatives of the response quantities requires substantial
computational effort. It is possible to derive approximate expressions for the response
quantities. The derivatives of static displacements, stresses, eigenvalues, eigenvectors,
and transient response of structural and mechanical systems are presented in this and

�

� �

�

706 Practical Aspects of Optimization

13

12

6

5

2

3

6
911

8

16
14

22

20
28

26
34

35

17 15

23 21

29 27

10

18

24

30

36

33

32

7

1

4

19

25

31

40 in.

40 in.

40 in.

30 in.

x

z
y

Figure 15.3 Space truss [15.3].

the following two sections. The equilibrium equations of a machine or structure can
be expressed as

[K]Y = P (15.31)

where [K] is the stiffness matrix, Y the displacement vector, and P the load vector. By
differentiating Eq. (15.31) with respect to the design variable xi, we obtain

𝜕[K]
𝜕xi

Y + [K]𝜕Y
𝜕xi

= 𝜕P
𝜕xi

(15.32)

where 𝜕[K]/𝜕xi denotes the matrix formed by differentiating the elements of [K] with
respect to xi. Usually, the matrix is computed using a finite-difference scheme as

𝜕[K]
𝜕xi

≈ Δ[K]
Δxi

=
[K]new − [K]

Δxi
(15.33)

where [K]new is the stiffness matrix evaluated at the perturbed design vector X+ΔXi,
where the vector ΔXi contains Δxi in the ith location and zero everywhere else:

ΔXi = {0 0 . . . 0 Δxi 0 . . . 0}T (15.34)

In most cases the load vector P is either independent of the design variables or
a known function of the design variables, and hence the derivatives, 𝜕P/𝜕xi, can be
evaluated with no difficulty. Equation (15.32) can be solved to find the derivatives of
the displacements as

𝜕Y
𝜕xi

= [K]−1

(
𝜕P
𝜕xi

− 𝜕[K]
𝜕xi

Y
)

(15.35)

Since [K]−1 or its equivalent is available from the solution of Eqs. (15.31) and
(15.35) can readily be solved to find the derivatives of static displacements with respect
to the design variables.

�

� �

�

15.5 DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 707

The stresses in a machine or structure (in a particular finite element) can be deter-
mined using the relation

𝝈 = [R]Y (15.36)

where [R] denotes the matrix that relates stresses to nodal displacements. The deriva-
tives of stresses can then be computed as

𝜕𝝈

𝜕xi
= [R]𝜕Y

𝜕xi
(15.37)

where the matrix [R] is usually independent of the design variables and the vector
𝜕Y/𝜕xi is given by Eq. (15.35).

15.5 DERIVATIVES OF EIGENVALUES AND EIGENVECTORS

Let the eigenvalue problem be given by [15.4, 15.6, 15.10]

[K]
m×m

Y
m×1

= λ [M]
m×m

Y
m×1

(15.38)

where 𝜆 is the eigenvalue, Y the eigenvector, [K] the stiffness matrix, and [M] the mass
matrix corresponding to the design vector X = {x1, x2, ⋯, xn}T. Let the solution of
Eq. (15.38) be given by the eigenvalues 𝜆i and the eigenvectors Yi, i = 1, 2, . . . , m:

[Pi]Yi = 𝟎 (15.39)

where [Pi] is a symmetric matrix given by

[Pi] = [K] − λi[M] (15.40)

15.5.1 Derivatives of 𝜆i

Premultiplication of Eq. (15.39) by YT
i gives

YT
i [Pi]Yi = 0 (15.41)

Differentiation of Eq. (15.41) with respect to the design variable xj gives

YT
i,j[Pi]Yi + YT

i

𝜕[Pi]
𝜕xj

Yi + YT
i [Pi]Yi,j = 0 (15.42)

where Yi,j = 𝜕Yi/𝜕xj. In view of Eq. (15.39), Eq. (15.42) reduces to

YT
i

𝜕[Pi]
𝜕xj

Yi = 0 (15.43)

Differentiation of Eq. (15.40) gives

𝜕[Pi]
𝜕xj

= 𝜕[K]
𝜕xj

− λi
𝜕[M]
𝜕xj

−
𝜕λi

𝜕xj
[M] (15.44)

�

� �

�

708 Practical Aspects of Optimization

where 𝜕[K]/𝜕xj and 𝜕[M]/𝜕xj denote the matrices formed by differentiating the ele-
ments of [K] and [M] matrices, respectively, with respect to xj. If the eigenvalues are
normalized with respect to the mass matrix, we have [15.10]

YT
i [M]Yi = 1 (15.45)

Substituting Eq. (15.44) into Eq. (15.43) and using Eq. (15.45) gives the derivative
of 𝜆i with respect to xj as

𝜕λi

𝜕xj
= YT

i

[
𝜕[K]
𝜕xj

− λi
𝜕[M]
𝜕xj

]
Yi (15.46)

It can be noted that Eq. (15.46) involves only the eigenvalue and eigenvector
under consideration and hence the complete solution of the eigenvalue problem is
not required to find the value of 𝜕𝜆i/𝜕xj.

15.5.2 Derivatives of Yi

The differentiation of Eqs. (15.39) and (15.45) with respect to xj results in

[Pi]
𝜕Yi

𝜕xj
= −

𝜕[Pi]
𝜕xj

Yi (15.47)

2YT
i [M]

𝜕Yi

𝜕xj
= −YT

i

𝜕[M]
𝜕xj

Yi (15.48)

where 𝜕[Pi]/𝜕xj is given by Eq. (15.44). Equations (15.47) and (15.48) can be shown
to be linearly independent and can be written together as

[
[Pi]

2YT
i [M]

]
(m+1)×m

𝜕Yi

𝜕xj
m×1

= −
⎡⎢⎢⎢⎣

𝜕[Pi]
𝜕xj

YT
i
𝜕[M]
𝜕xj

⎤⎥⎥⎥⎦m×1
(m+1)×m

Yi (15.49)

By premultiplying Eq. (15.49) by[
[Pi]

YT
i [M]

]T

= [[Pi][M]Yi]

we obtain

[[Pi][Pi] + 2[M]YiY
T
i [M]]

m×m

𝜕Yi

𝜕xj
m×1

= −
[
[Pi]

𝜕[Pi]
𝜕xj

+ [M]YiY
T
i

𝜕[M]
𝜕xj

]
m×1

m×m

Yi (15.50)

The solution of Eq. (15.50) gives the desired expression for the derivative of the
eigenvector, 𝜕Yi/𝜕xj, as

𝜕Yi

𝜕xj
= −[[Pi][Pi] + 2[M]YiY

T
i [M]]−1

×
[
[Pi]

𝜕[Pi]
𝜕xj

+ [M]YiY
T
i

𝜕[M]
𝜕xj

]
Yi (15.51)

�

� �

�

15.6 DERIVATIVES OF TRANSIENT RESPONSE 709

Y1 Y3

Y2 Y4 Y6

Y5

1 in. 1 in. 1 in.

x1 x2 x3

xi = 0.25ʺ (i = 1, 2, 3), ρ = 0.283 lb/in3,
E = 30 × 106 psi

Figure 15.4 Cylindrical cantilever beam.

Table 15.3 Derivatives of eigenvalues [15.4].

i Eigenvalue, 𝜆i 10−9 𝜕λi

𝜕x1
10−9 𝜕λi

𝜕x3
10−2 𝜕Y5i

𝜕x1
10−2 𝜕Y6i

𝜕x1

1 24.66 0.3209 −0.1582 1.478 −2.298
2 974.7 3.86 −0.4144 0.057 −3.046
3 7782.0 23.5 21.67 0.335 −5.307

Again it can be seen that only the eigenvalue and eigenvector under consideration
are involved in the evaluation of the derivatives of eigenvectors.

For illustration, a cylindrical cantilever beam is considered [15.4]. The beam
is modeled with three finite elements with six degrees of freedom as indicated in
Figure 15.4. The diameters of the beam are considered as the design variables, xi, i= 1,
2, 3. The first three eigenvalues and their derivatives are shown in Table 15.3 [15.4].

15.6 DERIVATIVES OF TRANSIENT RESPONSE

The equations of motion of an n-degree-of-freedom mechanical/structural system with
viscous damping can be expressed as [15.10]

[M]
..
Y + [C]

.
Y + [K]Y = F(t) (15.52)

where [M], [C], and [K] are the n× n mass, damping, and stiffness matrices, respec-
tively, F(t) is the n-component force vector, Y is the n-component displacement vector,
and a dot over a symbol indicates differentiation with respect to time. Equation (15.52)
denotes a set of n coupled second-order differential equations. In most practical cases,
n will be very large and Eq. (15.52) are stiff; hence the numerical solution of Eq.
(15.52) will be tedious and produces an accurate solution only for low-frequency com-
ponents. To reduce the size of the problem, the displacement solution, Y, is expressed
in terms of r basis functions Φ1, Φ2, . . . , and Φr (with r≪ n) as

Y = [Φ]q or yj =
r∑

k=1

Φjkqk(t), j = 1, 2, . . . , n (15.53)

where
[Φ] = [𝚽1 𝚽2 ⋯𝚽r]

�

� �

�

710 Practical Aspects of Optimization

is the matrix of basis functions, Φjk the element in row j and column k of the matrix
[Φ], q an r-component vector of reduced coordinates, and qk(t) the kth component
of the vector q. By substituting Eq. (15.53) into Eq. (15.52) and premultiplying the
resulting equation by [Φ]T, we obtain a system of r differential equations:

[M]..q + [C] .
q + [K]q = F(t) (15.54)

where

[M] = [Φ]T[M][Φ] (15.55)

[C] = [Φ]T[C][Φ] (15.56)

[K] = [Φ]T[K][Φ] (15.57)

F(t) = [Φ]TF(t) (15.58)

Note that if the undamped natural modes of vibration are used as basis func-
tions and if [C] is assumed to be a linear combination of [M] and [K] (called propor-
tional damping), Eq. (15.54) represent a set of r uncoupled second-order differential
equations which can be solved independently [15.10]. Once q(t) is found, the displace-
ment solution Y(t) can be determined from Eq. (15.53).

In the formulation of optimization problems with restrictions on the dynamic
response, the constraints are placed on selected displacement components as

|yj(X, t)| ≤ ymax, j = 1, 2, . . . (15.59)

where yj is the displacement at location j on the machine/structure and ymax is the
maximum permissible value of the displacement. Constraints on dynamic stresses are
also stated in a similar manner. Since Eq. (15.59) is a parametric constraint in terms
of the parameter time (t), it is satisfied only at a set of peak or critical values of yj
for computational simplicity. Once Eq. (15.59) is satisfied at the critical points, it will
be satisfied (most likely) at all other values of t as well [15.11, 15.12]. The values
of yi at which dyj/dt = 0 or the values of yi at the end of the time interval denote
local maxima and hence are to be considered as candidate critical points. Among the
several candidate critical points, only a select number are considered for simplifying
the computations. For example, in the response shown in Figure 15.5, peaks a, b, c,
. . . , j qualify as candidate critical points. However, peaks a, b, f, and j can be discarded
as their magnitudes are considerably smaller (less than, for example, 25%) than those
of other peaks. Noting that peaks d and e (or g and h) represent essentially a single
large peak with high-frequency undulations, we can discard peak e (or g), which has
a slightly smaller magnitude than d (or h). Thus finally, only peaks c, d, h, and i need
to be considered to satisfy the constraint, Eq. (15.59).

Once the critical points are identified at a reference design X, the sensitivity of
the response, yj(X, t) with respect to the design variable xi at the critical point t = tc
can be found using the total derivative of yj as

dyj(X, t)
dxi

=
𝜕yj

𝜕xi
+
𝜕yj

𝜕t

dtc

dxi
, i = 1, 2, . . . , n (15.60)

�

� �

�

15.6 DERIVATIVES OF TRANSIENT RESPONSE 711

0

yj(t)

a
b

c

d e

f

g
h

i

j

t
tmax

Figure 15.5 Critical points in a typical transient response.

The second term on the right-hand side of Eq. (15.60) is always zero since
𝜕yj/𝜕t = 0 at an interior peak (0 < tc < tmax) and dtc/dxi = 0 at the boundary (tc = tmax).
The derivative, 𝜕yj/𝜕xi, can be computed using Eq. (15.53) as

𝜕yj

𝜕xi
=

r∑
k=1

Φjk

𝜕qk(t)
𝜕xi

, i = 1, 2, . . . , n (15.61)

where, for simplicity, the elements of the matrix [Φ] are assumed to be constants
(independent of the design vector X). Note that for higher accuracy, the derivatives
of Φjk with respect to xi (sensitivity of eigenvectors, if the mode shapes are used as
the basis vectors) obtained from an equation similar to Eq. (15.51) can be included in
finding 𝜕yj/𝜕xi.

To find the values of 𝜕qk/𝜕xi required in Eq. (15.61), Eq. (15.54) is differentiated
with respect to xi to obtain

[M]
𝜕

..
q
𝜕xi

+ [C]
𝜕

.
q
𝜕xi

+ [K]
𝜕q
𝜕xi

= 𝜕F
𝜕xi

− 𝜕[M]
𝜕xi

..
q − 𝜕[C]

𝜕xi

.
q − 𝜕[K]

𝜕xi
q, i = 1, 2, . . . , n (15.62)

The derivatives of the matrices appearing on the right-hand side of Eq. (15.62)
can be computed using formulas such as

𝜕[M]
𝜕xi

= [Φ]T 𝜕[M]
𝜕xi

[Φ] (15.63)

where, for simplicity, [Φ] is assumed to be constant and 𝜕[M]/𝜕xi is computed using
a finite-difference scheme. In most cases the forcing function F(t) will be known to
be independent of X or an explicit function of X. Hence the quantity 𝜕F/𝜕xi can be
evaluated without much difficulty. Once the right-hand side is known, Eq. (15.62)
can be integrated numerically in time to find the values of 𝜕

..
q/𝜕xi, 𝜕

.
q/𝜕xi, and 𝜕q/𝜕xi.

Using the values of 𝜕q/𝜕xi = {𝜕qk/𝜕xi} at the critical point tc, the required sensitivity
of transient response can be found from Eq. (15.61).

�

� �

�

712 Practical Aspects of Optimization

15.7 SENSITIVITY OF OPTIMUM SOLUTION TO PROBLEM
PARAMETERS

Any optimum design problem involves a design vector and a set of problem parame-
ters (or preassigned parameters). In many cases, we would be interested in knowing
the sensitivities or derivatives of the optimum design (design variables and objective
function) with respect to the problem parameters [15.17, 15.18]. As an example, con-
sider the minimum weight design of a machine component or structure subject to a
constraint on the induced stress. After solving the problem, we may wish to find the
effect of changing the material. This means that we would like to know the changes in
the optimal dimensions and the minimum weight of the component or structure due to
a change in the value of the permissible stress. Usually, the sensitivity derivatives are
found by using a finite-difference method. But this requires a costly reoptimization
of the problem using incremented values of the parameters. Hence, it is desirable to
derive expressions for the sensitivity derivatives from appropriate equations. In this
section we discuss two approaches: one based on the Kuhn–Tucker conditions and the
other based on the concept of feasible direction.

15.7.1 Sensitivity Equations Using Kuhn–Tucker Conditions

The Kuhn–Tucker conditions satisfied at the constrained optimum design X* are given
by [see Eqs. (2.73) and (2.74)]

𝜕f (X)
𝜕xi

+
∑
j∈J1

λj

𝜕gj(X)
𝜕xi

= 0, i = 1, 2, . . . , n (15.64)

gj(X) = 0, j ∈ J1 (15.65)

λj > 0, j ∈ J1 (15.66)

where J1 is the set of active constraints and Eqs. (15.64–15.66) are valid with X = X*

and 𝜆j = λ∗j . When a problem parameter changes by a small amount, we assume that
Eqs. (15.64–15.66) remain valid. Treating f, gj, X, and 𝜆j as functions of a typical
problem parameter p, differentiation of Eqs. (15.64) and (15.65) with respect to p
leads to

n∑
k=1

[
𝜕

2f (X)
𝜕xi𝜕xk

+
∑
j∈ J1

λj

𝜕
2gj(X)
𝜕xi𝜕xk

]
𝜕xk

𝜕p
+
∑
j∈J1

𝜕λj

𝜕p

𝜕gj(X)
𝜕xi

+
𝜕

2f (X)
𝜕xi𝜕p

+
∑
j∈J1

λj

𝜕
2gj(X)
𝜕xi𝜕p

= 0, i = 1, 2, . . . , n (15.67)

𝜕gj(X)
𝜕p

+
n∑

i=1

𝜕gj(X)
𝜕xi

𝜕xi

𝜕p
= 0 j ∈ J1 (15.68)

Equations (15.67) and (15.68) can be expressed in matrix form as

[
[P]n×n [Q]n×q

[Q]Tq×n [0]q×q

]⎧⎪⎨⎪⎩
𝜕X
𝜕p

|||n×1

𝜕𝜆

𝜕p

|||q×1

⎫⎪⎬⎪⎭ +

{
an×1

bq×1

}
=

{
𝟎n×1

𝟎q×1

}
(15.69)

�

� �

�

15.7 SENSITIVITY OF OPTIMUM SOLUTION TO PROBLEM PARAMETERS 713

where q denotes the number of active constraints and the elements of the matrices and
vectors in Eq. (15.69) are given by

Pik =
𝜕

2f (X)
𝜕xi𝜕xk

+
∑
j∈ J1

λj

𝜕
2gj(X)
𝜕xi𝜕xk

(15.70)

Qij =
𝜕gj(X)
𝜕xi

, j ∈ J1 (15.71)

ai =
𝜕

2f (X)
𝜕xi𝜕p

+
∑
j∈ J1

λj

𝜕gj(X)
𝜕xi𝜕p

(15.72)

bj =
𝜕gj(X)
𝜕p

, j ∈ J1 (15.73)

𝜕X
𝜕p

=

⎧⎪⎪⎨⎪⎪⎩

𝜕x1

𝜕p

⋮
𝜕xn

𝜕p

⎫⎪⎪⎬⎪⎪⎭
,

𝜕𝜆

𝜕p
=

⎧⎪⎪⎨⎪⎪⎩

𝜕λ1

𝜕p

⋮
𝜕λq

𝜕p

⎫⎪⎪⎬⎪⎪⎭
(15.74)

The following can be noted in Eq. (15.69):

1. Equation (15.69) denotes (n + q) simultaneous equations in terms of the
required sensitivity derivatives, 𝜕xi/𝜕p (i = 1, 2, . . . , n) and 𝜕𝜆j/𝜕p (j = 1, 2,
. . . , q). Both X* and 𝜆* are assumed to be known in Eq. (15.69). If 𝜆* are not
computed during the optimization process, they can be computed using Eq.
(7.263).

2. Equation (15.69) can be solved only if the system is nonsingular. One of the
requirements for this is that the active constraints be independent.

3. Second derivatives of f and gj are required in computing the elements of [P]
and a.

4. If sensitivity derivatives are required with respect to several problem parame-
ters p1, p2, . . . , only the vectors a and b need to be computed for each case
and the system of Eq. (15.69) can be solved efficiently using the techniques of
solving simultaneous equations with different right-hand-side vectors.

Once Eq. (15.69) are solved, the sensitivity of optimum objective value with
respect to p can be computed as

df (X)
dp

=
𝜕f (X)
𝜕p

+
n∑

i=1

𝜕f (X)
𝜕xi

𝜕xi

𝜕p
(15.75)

The changes in the optimum values of xi and f necessary to satisfy the
Kuhn–Tucker conditions due to a change Δp in the problem parameter can be
estimated as

Δxi =
𝜕xi

𝜕p
Δp, Δf =

df

dp
Δp (15.76)

The changes in the values of Lagrange multiplier 𝜆j due to Δp can be estimated as

Δλj =
𝜕λj

𝜕p
Δp (15.77)

�

� �

�

714 Practical Aspects of Optimization

Equation (15.77) can be used to determine whether an originally active constraint
becomes inactive due to the change, Δp. Since the value of 𝜆j is zero for an inactive
constraint, we have

λj + Δλj = λj +
𝜕λj

𝜕p
Δp = 0 (15.78)

from which the value of Δp necessary to make the jth constraint inactive can be found
as

Δp = −
λj

𝜕λj∕𝜕p
, j ∈ J1 (15.79)

Similarly, a currently inactive constraint will become critical due to Δp if the new
value of gj becomes zero:

gj(X) +
dgj

dp
Δp = gj(X) +

(
n∑

i=1

𝜕gj

𝜕xi

𝜕xi

𝜕p

)
Δp (15.80)

Thus, the change Δp necessary to make an inactive constraint active can be found
as

Δp = −
gj(X)

n∑
i=1

𝜕gj

𝜕xi

𝜕xi

𝜕p

(15.81)

15.7.2 Sensitivity Equations Using the Concept of Feasible Direction

Here we treat the problem parameter p as a design variable so that the new design
vector becomes

X = {x1 x2 ⋯ xn p}T (15.82)

As in the case of the method of feasible directions (see Section 7.7), we formulate
the direction finding problem as

Find X which minimizes − ST∇f (X)

subject to

ST∇gj ≤ 0, j ∈ J1

STS ≤ 1 (15.83)

where the gradients of f and gj (j ∈ J1) can be evaluated in the usual manner. The set
J1 can also include nearly active constraints (along with the active constraints), so that
we do not violate any constraint due to the change, Δp. The solution of the problem
stated in Eq. (15.83) gives a usable feasible search direction, S. A new design vector
along S can be expressed as

Xnew = Xcurrent + λS = Xcurrent + ΔX (15.84)

where 𝜆 is the step length and the components of S can be considered as

si =

{
𝜕xi

𝜕𝜆
, i = 1, 2, . . . , n

𝜕p

𝜕𝜆
, i = n + 1

(15.85)

�

� �

�

References and Bibliography 715

so that
Δp = λsn+1 or λ =

Δp

sn+1
(15.86)

If the vector S is normalized by dividing its components by sn+1, Eq. (15.86) gives
𝜆 = Δp and hence Eq. (15.85) gives the desired sensitivity derivatives as

⎧⎪⎪⎨⎪⎪⎩

𝜕x1

𝜕p

⋮
𝜕xn

𝜕p

⎫⎪⎪⎬⎪⎪⎭
= 1

sn+1
S (15.87)

Thus the sensitivity of the objective function with respect to p can be computed
as

df (X)
dp

= ∇f (X)T S
sn+1

(15.88)

Note that unlike the previous method, this method does not require the values of
𝜆

* and the second derivatives of f and gj to find the sensitivity derivatives. Also, if
sensitivities with respect to several problem parameters p1, p2, . . . are required, all
we need to do is to add them to the design vector X in Eq. (15.82).

REFERENCES AND BIBLIOGRAPHY

15.1 Schmidt, L.A. Jr. and Farshi, B. (1974). Some approximation concepts for structural
synthesis. AIAA Journal 12 (5): 692–699.

15.2 Haug, E.J., Choi, K.K., and Komkov, V. (1986). Design Sensitivity Analysis of Struc-
tural Systems. New York: Academic Press.

15.3 Fox, R.L. and Miura, H. (1971). An approximate analysis technique for design calcu-
lations. AIAA Journal 9 (1): 177–179.

15.4 Fox, R.L. and Kapoor, M.P. (1968). Rates of change of eigenvalues and eigenvectors.
AIAA Journal 6 (12): 2426–2429.

15.5 Murthy, D.V. and Haftka, R.T. (1988). Derivatives of eigenvalues and eigenvectors of
general complex matrix. International Journal for Numerical Methods in Engineering
26: 293–311.

15.6 Nelson, R.B. (1976). Simplified calculation of eigenvector derivatives. AIAA Journal
14: 1201–1205.

15.7 Rao, S.S. (1972). Rates of change of flutter Mach number and flutter frequency. AIAA
Journal 10: 1526–1528.

15.8 Sutter, T.R., Camarda, C.J., Walsh, J.L., and Adelman, H.M. (1988). Comparison of
several methods for the calculation of vibration mode shape derivatives. AIAA Journal
26 (12): 1506–1511.

15.9 Rao, S.S. (2018). The Finite Element Method in Engineering, 6e. Burlington, MA:
Elsevier Butterworth Heinemann.

15.10 Rao, S.S. (2017). Mechanical Vibrations, 6e. Upper Saddle River, NJ: Pearson Prentice
Hall.

15.11 Grandhi, R.V., Haftka, R.T., and Watson, L.T. (1986). Efficient identification of crit-
ical stresses in structures subjected to dynamic loads. Computers and Structures 22:
373–386.

15.12 Greene, W.H. and Haftka, R.T. (1989). Computational aspects of sensitivity calcula-
tions in transient structural analysis. Computers and Structures 32 (2): 433–443.

�

� �

�

716 Practical Aspects of Optimization

15.13 Kirsch, U., Reiss, M., and Shamir, U. (1972). Optimum design by partitioning into
substructures. ASCE Journal of the Structural Division 98 (ST1): 249–267.

15.14 Schmit, L.A., Jr., and Miura, H. (1976). Approximation Concepts for Efficient Struc-
tural Synthesis, NASA CR-2552.

15.15 Schmit, L.A. and Fleury, C. (1980). Structural synthesis by combining approximation
concepts and dual methods. AIAA Journal 18: 1252–1260.

15.16 Pan, T.S., Rao, S.S., and Venkayya, V.B. (1990). Rates of change of closed-loop eigen-
values and eigenvectors of actively controlled structures. International Journal for
Numerical Methods in Engineering 30 (5): 1013–1028.

15.17 Vanderplaats, G.N. (1984). Numerical Optimization Techniques for Engineering
Design with Applications. New York: McGraw-Hill.

15.18 Sobieszczanski-Sobieski, J., Barthelemy, J.F., and Riley, K.M. (1982). Sensitivity of
optimum solutions to problem parameters. AIAA Journal 20: 1291–1299.

15.19 Kirsch, U. (1981). Optimum Structural Design. Concepts, Methods, and Applications.
New York: McGraw-Hill.

15.20 Haftka, R.T. and Gürdal, Z. (1992). Elements of Structural Optimization, 3e. Dordrecht,
The Netherlands: Kluwer Academic.

REVIEW QUESTIONS

15.1 What is a reduced basis technique?

15.2 State two methods of reducing the size of an optimization problem.

15.3 What is design variable linking? Can it always be used?

15.4 Under what condition(s) is the convergence of the quantity ΣiΔYi in the fast reanalysis
method ensured?

15.5 How do you compute the derivatives of the stiffness matrix with respect to a design
variable, 𝜕[K]/𝜕xi?

15.6 Answer true or false:

(a) The computation of the derivatives of a particular 𝜆i requires other eigenvalues
besides 𝜆i.

(b) The derivatives of the ith eigenvector can be found without knowledge of the eigen-
vectors other than Yi.

(c) There is only one way to derive expressions for the sensitivity of optimal objective
function with respect to problem parameters.

PROBLEMS

15.1 Consider the minimum-volume design of the four-bar truss shown in Figure 15.2 subject
to a constraint on the vertical displacement of node 4. Let X1 = {1, 1, 0.5, 0.5}T and
X2 = {0.5, 0.5, 1, 1}T be two design vectors, with xi denoting the area of cross section
of bar i(i = 1, 2, 3, 4). By expressing the optimum design vectors as X = c1X1 + c2X2,
determine the values of c1 and c2 through graphical optimization when the maximum
permissible vertical deflection of node 4 is restricted to a magnitude of 0.1 in.

15.2 Consider the configuration (shape) optimization of the 10-bar truss shown in
Figure 15.6. The (X, Y) coordinates of the nodes are to be varied while maintaining
(a) symmetry of the structure about the X axis, and (b) alignment of nodes 1, 2, and 3
(4, 5, and 6). Identify the independent and dependent design variables and derive the
relevant design variable linking relationships.

�

� �

�

Problems 717

4
4 5

6

X

Y

7

5

6

3

3
22

11

7

8 10

9

Figure 15.6 Design variable linking of a 10-bar truss.

15.3 For the four-bar truss considered in Example 15.1 (shown in Figure 15.2), a base design
vector is given by X0 = {A1, A2, A3, A4}T = {2.0, 1.0, 2.0, 1.0}T in.2. If ΔX is given by
ΔX = {0.4, 0.4, −0.4, −0.4}T in.2, determine

(a) The exact displacement vector Y0 = {y5, y6, y7, y8}T at X0

(b) The exact displacement vector (Y0 +ΔY) at (X0 +ΔX)

(c) The displacement vector (Y0 +ΔY) where ΔY is given by Eq. (14.20) with five
terms

15.4 Consider the 11-member truss shown in Figure 5.1 with loads Q =−1000 lb,
R = 1000 lb, and S = 2000 lb. If Ai = xi denotes the area of cross section of member i,
and u1, u2, . . . , u10 indicate the displacement components of the nodes, the equilibrium
equations can be expressed as shown in Eqs. (E1)–(E10) of Example 5.1. Assuming
that E = 30× 106 psi, l = 50 in., xi = 1 in.2(i = 1, 2, . . . , 11), Δxi = 0.1 in.2(i = 1, 2,
. . . , 5), and Δxi =−0.1 in.2(i = 6, 7, . . . , 11), determine

(a) Exact displacement solution U0 at X0

(b) Exact displacement solution (U0 +ΔU) at the perturbed design, (X0 +ΔX)

(c) Approximate displacement solution, (U0 +ΔU), at(X0 +ΔX) using Eq. (15.20)
with four terms for ΔU

15.5 Consider the four-bar truss shown in Figure 15.2 whose stiffness matrix is given by Eq.
(E2) of Example 15.1. Determine the values of the derivatives of yi with respect to the
area A1, 𝜕yi/𝜕x1 (i = 5, 6, 7, 8) at the reference design X0 = {A1 A2 A3 A4}T = {2.0, 2.0,
1.0, 1.0}T in.2.

15.6 Find the values of 𝜕yi / 𝜕x2 (i = 5, 6, 7, 8) in Problem 15.5.

15.7 Find the values of 𝜕yi / 𝜕x3 (i = 5, 6, 7, 8) in Problem 15.5.

15.8 Find the values of 𝜕yi / 𝜕x4 (i = 5, 6, 7, 8) in Problem 15.5.

�

� �

�

718 Practical Aspects of Optimization

Area, A1

Y1

l1 l2

Y2 P2

P1

Area, A2

Figure 15.7 Stepped bar.

15.9 The equilibrium equations of the stepped bar shown in Figure 15.7 are given by

[K]Y = P (1)

with

[K] =
⎡⎢⎢⎣

A1E1

l1
+ A2E2

l2
− A2E2

l2

− A2E2

l2

A2E2

l2

⎤⎥⎥⎦ (2)

Y =
{

Y1

Y2

}
, P =

{
P1

P2

}
(3)

If A1 = 2 in.2, A2 = 1 in.2, E1 = E2 = 30× 106 psi, 2 l1 = l2 = 50 in., P1 = 100 lb, and
P2 = 200 lb, determine

(a) Displacements, Y
(b) Values of 𝜕Y/𝜕A1 and 𝜕Y/𝜕A2 using the method of Section 15.4

(c) Values of 𝜕𝝈/𝜕A1 and 𝜕𝝈/𝜕A2, where 𝜎 = {𝜎1, 𝜎2}T denotes the vector of stresses
in the bars and 𝜎1 = E1Y1/l1 and 𝜎2 = E2(Y2 − Y1)/l2

15.10 The eigenvalue problem for the stepped bar shown in Figure 15.7 can be expressed as
[K]Y = 𝜆[M]Y with the mass matrix, [M], given by

[M] =

[
(2𝜌1A1l1 + 𝜌2A2l2) 𝜌2A2l2

𝜌2A2l2 𝜌2A2l2

]

where 𝜌i, Ai, and li denote the mass density, area of cross section, and length of the seg-
ment i, and the stiffness matrix, [K], is given by Eq. (2) of Problem 15.9. If A1 = 2 in.2,
A2 = 1 in.2, E1 = E2 = 30× 106 psi, 2 l1 = l2 = 50 in., and 𝜌1g = 𝜌2g = 0.283 lb/in.3,
determine

(a) Eigenvalues 𝜆i and the eigenvectors Yi, i = 1, 2

(b) Values of 𝜕𝜆i/𝜕A1, i = 1, 2, using the method of Section 15.5

(c) Values of 𝜕Yi/𝜕Y1, i = 1, 2, using the method of Section 15.5

15.11 For the stepped bar considered in Problem 15.10, determine the following using the
method of Section 15.5.

(a) Values of 𝜕𝜆i/𝜕A2, i = 1, 2

(b) Values of 𝜕Yi/𝜕A2, i = 1, 2

�

� �

�

Problems 719

15.12 A cantilever beam with a hollow circular section with outside diameter d and wall
thickness t (Figure 15.8) is modeled with one beam finite element. The resulting static
equilibrium equations can be expressed as

2EI
l3

[
6 −3l

−3l 2l2

]{
Y1

Y2

}
=

{
P1

P2

}
where I is the area moment of inertia of the cross section, E is Young’s modulus, and
l the length. Determine the displacements, Yi, and the sensitivities of the deflections,
𝜕Yi/𝜕d and 𝜕Yi/𝜕t(i = 1, 2), for the following data: E = 30× 106 psi, l = 20 in., d = 2 in.,
t = 0.1 in., P1 = 100 lb, and P2 = 0.

0

A

A

Y2

P2

P1

Y1

x

l

y

t

Section A-A

d

Figure 15.8 Hollow circular cantilever beam.

15.13 The eigenvalues of the cantilever beam shown in Figure 15.8 are governed by the
equation

2EI
l3

[
6 −3l

−3l 2l2

]{
Y1

Y2

}
= λ𝜌Al

420

[
156 −22l

−22l 4l2

]{
Y1

Y2

}
where E is Young’s modulus, I the area moment of inertia, l the length, 𝜌 the mass
density, A the cross-sectional area, 𝜆 the eigenvalue, and Y = {Y1, Y2}T = eigenvector.
If E = 30× 106 psi, d = 2 in., t = 0.1 in., l = 20 in., and 𝜌g = 0.283 lb/in.3, determine

(a) Eigenvalues 𝜆i and eigenvectors Yi (i = 1, 2)

(b) Values of 𝜕𝜆i/𝜕d and 𝜕𝜆i/𝜕t (i = 1, 2)

15.14 In Problem 15.13, determine the derivatives of the eigenvectors 𝜕Yi/𝜕d and 𝜕Yi/𝜕t(i= 1,
2).

15.15 The natural frequencies of the spring–mass system shown in Figure 15.9 are given by
(for ki = k, i = 1, 2, 3 and mi = m, i = 1, 2)

λ1 = k
m

= 𝜔
2
1, λ2 = 3k

m
= 𝜔

2
2

Y1 = c1

{
1
1

}
, Y2 = c2

{
1

−1

}
where 𝜔1 and 𝜔2 are the natural frequencies of vibration of the system and c1 and c2
are constants. The stiffness of each helical spring is given by

k = d4G
8D3n

�

� �

�

720 Practical Aspects of Optimization

where d is the wire diameter, D the coil diameter, G the shear modulus, and n the number
of turns of the spring. Determine the values of 𝜕𝜔i/𝜕D and 𝜕Yi/𝜕D for the following
data: d = 0.04 in., G = 11.5× 106 psi, D = 0.4 in., n = 10, and m = 32.2 lb -s2/in. The
stiffness and mass matrices of the system are given by

[K] = k

[
2 −1

−1 2

]
, [M] = m

[
1 0

0 1

]

Y1

Y2

k1

k2

k3

m1

m2

Figure 15.9 Two-degree-of-freedom spring–mass system.

15.16 Find the sensitivities of x∗1, x∗2, and f* with respect to Young’s modulus of the tubular
column considered in Example 1.1.

�

� �

�

16

Multilevel and Multiobjective
Optimization

16.1 INTRODUCTION

Although the practical aspects of optimization described in Chapter 15 can help in
solving engineering optimization problems more efficiently, additional strategies are
required for handling large practical engineering problems. For example, the opti-
mum design of many practical mechanical, structural, and other engineering systems
requires consideration of a large number of design variables, numerous constraints,
and multiple objective functions. The design of an aircraft wing or complete air-
craft, for example, involves not only the sizing of the overall wing (such as span,
chord length distribution, and locations of nacelles/engines and controls), but also the
determination of the spar and rib thicknesses, and areas and shapes of the stiffen-
ing members. In such cases, a multilevel optimization approach is often used with
major dimensions decided in one level of optimization and the detailed dimensions
computed in the second level. In addition, the analysis and determination of the aero-
dynamic and structural performance of the wing requires the use of large- scale finite
element software such as NASTRAN, ABAQUS, and ANSYS. Also, the optimization
problem involves not only the constraints on the stresses induced in different flight
conditions (taxiing, take-off, steady cruise, gust loads and turbulence and landing),
control performance, stability, aerodynamic performance, drag, lift, buckling, and flut-
ter characteristics. In such cases, the consideration of several objective functions such
as minimum weight, minimum drag, maximum range, and minimum fuel consump-
tion becomes important. The methods of multiobjective optimization can be used for
solving such problems. This chapter presents the aspects of multilevel optimization,
parallel processing/computation of responses, and multiobjective optimization.

16.2 MULTILEVEL OPTIMIZATION

16.2.1 Basic Idea

The design of practical systems involving a large number of elements or subsystems
with multiple-load conditions involves excessive number of design variables and con-
straints. The optimization problem becomes unmanageably large, and the solution
process becomes too costly and can easily saturate even the largest computers avail-
able. In such cases the optimization problem can be broken into a series of smaller
problems using different strategies. The multilevel optimization is a decomposition

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

721

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

722 Multilevel and Multiobjective Optimization

technique in which the problem is reformulated as several smaller subproblems (one
for each subsystem) and a coordination problem (at system level) to preserve the cou-
pling among the subproblems (subsystems). Such approaches have been used in linear
and dynamic programming also. In linear programming, the decomposition method
(see Section 4.4) involves a number of independent linear subproblems coupled by
limitations on the shared resources. When an individual subsystem is solved, the cost
of the shared resources is added to its objective function. By a proper variation of the
costs of the shared resources, the proposed optimal strategies of the various subprob-
lems are sent to the master program, which, in turn, is optimized so that the overall
cost is minimized. In dynamic programming, the problem is treated in stages with an
optimal policy determined in each stage (see Chapter 9). This approach is particularly
useful when the problem has a serial structure.

For nonlinear design optimization problems, several decomposition methods have
been proposed [16.1–16.3]. In the following section we consider a two-level approach
in which the system is decomposed into a number of smaller subproblems, each with
its own goals and constraints. The individual subsystem optimization problems are
solved independently in the first level and the coordinated problem is solved in the
second level. The approach is known as the model-coordination method.

16.2.2 Method

Let the optimization problem be stated as follows:

Find X = {x1 x2 ⋯ xn}T which minimizes f (X) (16.1)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (16.2)

hk(X) = 0, k = 1, 2, . . . , p (16.3)

x(l)i ≤ xi ≤ x(u)i , i = 1, 2, . . . , n (16.4)

where xi
(l) and xi

(u) denote the lower and upper bounds on xi. Most systems permit the
partitioning of the vector X into two subvectors Y and Z:

X =
{

Y
Z

}
(16.5)

where the subvector Y denotes the coordination or interaction variables between the
subsystems and the subvector Z indicates the variables confined to subsystems. The
vector Z, in turn, can be partitioned as

Z =

⎧⎪⎪⎨⎪⎪⎩

Z1

⋮
Zk

⋮
ZK

⎫⎪⎪⎬⎪⎪⎭
(16.6)

where Zk represents the variables associated with the kth subsystem only and K denotes
the number of subsystems. The partitioning of variables, Eq. (16.6), permits us to

�

� �

�

16.2 MULTILEVEL OPTIMIZATION 723

regroup the constraints as

⎧⎪⎪⎨⎪⎪⎩

g1(X)
g2(X)
⋮

gm(X)

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

g(1)(Y,Z1)
g(2)(Y,Z2)

⋮

g(K)(Y,ZK)

⎫⎪⎪⎬⎪⎪⎭
≤ 𝟎 (16.7)

⎧⎪⎪⎨⎪⎪⎩

l1(X)
l2(X)
⋮

lp(X)

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

l(1)(Y,Z1)
l(2)(Y,Z2)

⋮

l(K)(Y,ZK)

⎫⎪⎪⎬⎪⎪⎭
= 𝟎 (16.8)

where the variables Y may appear in all the functions while the variables Zk appear
only in the constraint sets g(k) ≤ 0 and h(k) = 0. The bounds on the variables, Eq. (16.4),
can be expressed as

Y(l) ≤ Y ≤ Y(u)

Z(l)
k ≤ Zk ≤ Z(u)

k , k = 1, 2, . . . ,K (16.9)

Similarly, the objective function f (X) can be expressed as

f (X) =
K∑

k=1

f (k)(Y,Zk) (16.10)

where f(k) (Y, Zk) denotes the contribution of the kth subsystem to the overall objective
function. Using Eqs. (16.7–16.10), the two-level approach can be stated as follows.

First-level Problem. Tentatively fix the values of Y at Y* so that the problem of Eqs.
(16.1–16.4) (or Eqs. (16.7–16.10)) can be restated (decomposed) as K independent
optimization problems as follows:

Find Zk which minimizes f (k)(Y,Zk)

subject to

g(k)(Y,Zk) ≤ 𝟎

h(k)(Y,Zk) = 𝟎

Z(l)
k ≤ Zk ≤ Z(u)

k ; k = 1, 2, . . . ,K (16.11)

It can be seen that the first-level problem seeks to find the minimum of the function

f (Y,Z) =
K∑

k=1

f (k)(Y,Zk) (16.12)

for the (tentatively) fixed vector Y*.

�

� �

�

724 Multilevel and Multiobjective Optimization

Second-level Problem. The following problem is solved in this stage:

Find a new Y∗ which minimizes f (Y) =
K∑

k=1

f (k)(Y,Z∗
k)

subject to
Y(l) ≤ Y ≤ Y(u) (16.13)

where Z∗
k , k = 1, 2, . . . , K, are the optimal solutions of the first-level problems. An

additional constraint to ensure a finite value of f (Y*) is also to be included while
solving the problem of Eq. (16.13). Once the problem is solved and a new Y* found,
we proceed to solve the first-level problems. This process is to be continued until
convergence is achieved. The iterative process can be summarized as follows:

1. Start with an initial coordination vector, Y*.
2. Solve the K first-level optimization problems, stated in Eq. (16.11), and find

the optimal vectors Z∗
k (k = 1, 2, . . . , K).

3. Solve the second-level optimization problem stated in Eq. (16.13) and find a
new vector Y*.

4. Check for the convergence of f* and Y* (compared to the value Y* used earlier).
5. If the process has not converged, go to step 2 and repeat the process until con-

vergence.

The following example illustrates the procedure.

Example 16.1 Find the minimum-weight design of the two-bar truss shown in
Figure 16.1 with constraints on the depth of the truss (y = h), cross-sectional areas
of the members (z1 = A1) and (z2 = A2), and the stresses induced in the bars. Treat
the depth of the truss (y) and the cross-sectional areas of bars 1 and 2 (z1 and z2) as
design variables. The permissible stress in each bar is 𝜎0 = 105 Pa, unit weight is
76 500 N/m3, h is constrained as 1 m≤ h ≤ 6 m, and the cross-sectional area of each
bar is restricted to lie between 0 and 0.1 m2.

6 m

Bar 1
(area, A1 = z1)

Bar 2
(area, A2 = z2)

P

R

Q

1 m

h = y

P = 1000N

Figure 16.1 Two-bar truss (variable depth).

�

� �

�

16.2 MULTILEVEL OPTIMIZATION 725

SOLUTION The stresses induced in the bars can be expressed as

𝜎1 =
P
√

y2 + 36

7yz1
, 𝜎2 =

6P
√

y2 + 1

7yz2

and hence the optimization problem can be stated as follows:
Find X = {y z1 z2}T which minimizes

f (X) = 76,500z1

√
y2 + 36 + 76,500z2

√
y2 + 1

subject to

P
√

y2 + 36

7𝜎0yz1
− 1 ≤ 0,

6P
√

y2 + 1

7𝜎0yz2
− 1 ≤ 0

1 ≤ y ≤ 6, 0 ≤ z1 ≤ 0.1, 0 ≤ z2 ≤ 0.1

We treat the bars 1 and 2 as subsystems 1 and 2, respectively, with y as the coor-
dination variable (Y = {y}) and z1 and z2 as the subsystem variables (Z1 = {z1} and
Z2 = {z2}). By fixing the value of y at y*, we formulate the first-level problems as
follows.

Subproblem 1.
Find z1 which minimizes

f (1)(y∗, z1) = 76,500z1

√
(y∗)2 + 36 (E1)

subject to

g1(y∗, z1) =
(1428.5714 × 10−6)

√
(y∗)2 + 36

y∗z1
− 1 ≤ 0 (E2)

0 ≤ z1 ≤ 0.1 (E3)

Subproblem 2.
Find z2 which minimizes

f (2)(y∗, z2) = 76,500z2

√
(y∗)2 + 1 (E4)

subject to

g2(y∗, z2) =
(8571.4285 × 10−6)

√
(y∗)2 + 1

y∗z2
− 1 ≤ 0 (E5)

0 ≤ z2 ≤ 0.1 (E6)

We can see that to minimize f (1) we need to make z1 as small as possible without
violating the constraints of Eqs. (E2) and (E3). This gives the solution of subproblem
1, z∗1 (which makes g1 active) as

z∗1 =
(1428.5714 × 10−6)

√
(y∗)2 + 36

y∗
(E7)

�

� �

�

726 Multilevel and Multiobjective Optimization

Similarly, the solution of subproblem 2, z∗2 (which makes g2 active) can be expressed as

z∗2 =
(8571.4285 × 10−6)

√
(y∗)2 + 1

y∗
(E8)

Now we state the second-level problem as follows:

Find y which minimizes f = f (1)(y, z∗1) + f (2)(y, z∗2)

subject to
1 ≤ y ≤ 6 (E9)

Using Eqs. (E7) and (E8), this problem can be restated as (using y for y*):
Find y which minimizes

f = 76,500z∗1
√

y2 + 36 + 76,500z∗2
√

y2 + 1

= 109.2857
y2 + 36

y
+ 655.7143

y2 + 1
y

(E10)

subject to
1 ≤ y ≤ 6 and f must be defined

The graph of f, given by Eq. (E10), is shown in Figure 16.2 over the range 1≤ y≤ 6
from which the solution can be determined as f* = 3747.7 N, y* = h* = 2.45 m,
z∗1 = A∗

1 = 3.7790× 10−3 m2, and z∗2 = A∗
2 = 9.2579× 10−3 m2.

16.3 PARALLEL PROCESSING

Large-scale optimization problems can be solved efficiently using parallel computers.
Parallel computers are simply multiple processing units combined in an organized
fashion such that multiple independent computations for the same problem could
be performed simultaneously or concurrently, thereby increasing the overall com-
putational speed. Optimization problems involving extensive analysis, such as a
finite-element analysis, can be solved on parallel computers using the following
schemes:

1. A multilevel (decomposition) approach with the subproblems solved in parallel
2. A substructures approach with substructure analyses performed in parallel
3. By implementing the optimization computations in parallel (Figure 16.2)

If a multilevel (decomposition) approach is used, the optimization of various sub-
systems (at different levels) can be performed on parallel processors while the solution
of the coordinating optimization problem can be accomplished on the main processor.
If the optimization problem involves an extensive analysis, such as a finite-element
analysis, the problem can be decomposed into subsystems (substructures) and the
analyses of subsystems can be conducted on parallel processors with a main processor

�

� �

�

16.3 PARALLEL PROCESSING 727

0
3200

3600

4000

4400

4800

5200

5600

6000

1 2 3 4 5 6 y(m)

f(N)

y* = 2.45 m

f* = 3747.7 N

Figure 16.2 Graphical solution of the second-level problem.

performing the system-level computations. Such an approach was used by El-Sayed
and Hsiung [16.4, 16.7]. The procedure can be summarized as follows:

1. Initialize the optimization process. The current (related) design variables are
sent to the various processors.

2. The finite-element analyses of the substructures are performed on different
(associated) processors.

3. The main processor collects the stiffness and force contribution matrices from
the various processors, solves for the displacements at the shared (common)
boundary nodes of substructures, and sends the data to various processors.

4. The associated processors perform the detailed calculations to find the dis-
placements and stresses needed for the evaluation of the constraints.

5. The main processor collects the constraint-related data from the associate pro-
cessors and checks the convergence of the optimization process. If convergence
is not achieved, it performs the computations of the optimization algorithm and
the procedure is repeated from step 1 onward.

Numerical examples were solved on a Cray X-MP four-processor supercomputer
[16.4]. For a 200-member planar truss, the weight was minimized with constraints on
stresses using four substructures. It was reported [16.4] that the parallel computations
required 10.585 seconds of CPU time, while the sequential computations required a
CPU time of 13.518 seconds (with a speedup factor of 1.28).

�

� �

�

728 Multilevel and Multiobjective Optimization

For most mechanical and structural problems, parallel computers with MIMD
(multiple instruction multiple data) architecture are better suited. Atiqullah and Rao
[16.8] presented a procedure for the parallel implementation of the simulated anneal-
ing algorithm. In this method, certain design variables assigned to each processor
perform the variable specific optimization. This information is later combined to
complete one cycle of optimization. Since the entire (variable-specific) optimization
process is repeated on each processor, all processors will be equally busy most of the
time, except for any input/output done by the specific processors. Thus the “divide
and conquer” strategy of optimization needs a “communicate and combine” process,
which should be kept to a minimum. The detailed procedure is shown as a flow
diagram in Figure 16.3.

The minimum-weight design of a 128-bar planar truss was considered with
stress and buckling constraints. A speedup factor of 10.2569 was achieved using the
eight-node configuration of an iPSC/860 computer.

Initialize node i

Data from the host node

Randomly perturb one variable out of S(i)

Change the design

Exchange updated information
from other nodes

All variable perturbed
out of S(i)?

Yes

No

No

Yes

Globally assemble all
updated design

variables

All cycles done?

Final design, stop

Figure 16.3 Flow diagram of parallel simulated annealing on a single node. S(i), set of
design variables assigned to node i; node i = processor i.

�

� �

�

16.4 MULTIOBJECTIVE OPTIMIZATION 729

16.4 MULTIOBJECTIVE OPTIMIZATION

A multiobjective optimization problem with inequality constraints can be stated as
(equality constraints, if they exist, can also be included in the formulation of the
problem)

Find X =
⎧⎪⎨⎪⎩

x1

x2

⋮
xn

⎫⎪⎬⎪⎭ (16.14)

which minimizes f1(X), f2(X), . . . , fk(X) (16.15)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (16.16)

where k denotes the number of objective functions to be minimized. Any or all of the
functions fi(X) and gj(X) may be nonlinear. The multiobjective optimization problem
is also known as a vector minimization problem.

In general, no solution vector X exists that minimizes all the k objective functions
simultaneously. Hence, a new concept, known as the Pareto optimum solution, is used
in multiobjective optimization problems. A feasible solution X is called Pareto opti-
mal if there exists no other feasible solution Y such that fi(Y)≤ fi(X) for i = 1, 2, . . . , k
with fj(Y) < fi(X) for at least one j. In other words, a feasible vector X is called Pareto
optimal if there is no other feasible solution Y that would reduce some objective func-
tion without causing a simultaneous increase in at least one other objective function.
For example, if the objective functions are given by f1 = (x− 3)4 and f2 = (x− 6)2,
their graphs are shown in Figure 16.4. For this problem, all the values of x between 3
and 6 (points on the line segment PQ) denote Pareto optimal solutions.

Several methods have been developed for solving a multiobjective optimization
problem. Some of these methods are briefly described in the following paragraphs.
Most of these methods basically generate a set of Pareto optimal solutions and use
some additional criterion or rule to select one particular Pareto optimal solution as the
solution of the multiobjective optimization problem.

60

40

20

0 1 2 3 4 5 6 7 8

f1 = (x−3)4

f2 = (x−6)2

P Q
x

f

Figure 16.4 Pareto optimal solutions.

�

� �

�

730 Multilevel and Multiobjective Optimization

16.4.1 Utility Function Method

In the utility function method, a utility function Ui(fi) is defined for each objective
depending on the importance of fi compared to the other objective functions. Then a
total or overall utility function U is defined, for example, as

U =
k∑

i=1

Ui(fi) (16.17)

The solution vector X* is then found by maximizing the total utility U subjected to the
constraints gj(X)≤ 0, j = 1, 2, . . . , m. A simple form of Eq. (16.17) is given by

U =
k∑

i=1

Ui = −
k∑

i=1

wifi(X) (16.18)

where wi is a scalar weighting factor associated with the ith objective function. This
method [Eq. (16.18)] is also known as the weighting function method.

16.4.2 Inverted Utility Function Method

In the inverted utility function method, we invert each utility and try to minimize or
reduce the total undesirability. Thus if Ui(fi) denotes the utility function corresponding
to the ith objective function, the total undesirability is obtained as

U−1 =
K∑

i=1

U−1
i =

k∑
i=1

1
Ui

(16.19)

The solution of the problem is found by minimizing U−1 subject to the constraints
gj(X)≤ 0, j = 1, 2, . . . , m.

16.4.3 Global Criterion Method

In the global criterion method the optimum solution X* is found by minimizing a pres-
elected global criterion, F (X), such as the sum of the squares of the relative deviations
of the individual objective functions from the feasible ideal solutions. Thus X* is found
by minimizing

F(X) =
k∑

i=1

{
fi(X∗

i) − fi(X)
fi(X∗

i)

}p

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (16.20)

where p is a constant (an usual value of p is 2) and X∗
i is the ideal solution for the

ith objective function. The solution X∗
i is obtained by minimizing fi (X) subject to the

constraints gj (X)≤ 0, j = 1, 2, . . . , m.

16.4.4 Bounded Objective Function Method

In the bounded objective function method, the minimum and the maximum accept-
able achievement levels for each objective function fi are specified as L(i) and U(i),

�

� �

�

16.4 MULTIOBJECTIVE OPTIMIZATION 731

respectively, for i = 1, 2, . . . , k. Then the optimum solution X* is found by minimizing
the most important objective function, say, the rth one, as follows:

Minimize fr(X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

L(i) ≤ fi ≤ U(i)
, i = 1, 2, . . . , k, i ≠ r (16.21)

16.4.5 Lexicographic Method

In the lexicographic method, the objectives are ranked in order of importance by
the designer. The optimum solution X* is then found by minimizing the objective
functions starting with the most important and proceeding according to the order of
importance of the objectives. Let the subscripts of the objectives indicate not only the
objective function number, but also the priorities of the objectives. Thus f1(X) and
fk(X) denote the most and least important objective functions, respectively. The first
problem is formulated as

Minimize f1(X)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (16.22)

and its solution X∗
1 and f ∗1 = f1(X∗

1) is obtained. Then the second problem is formu-
lated as

Minimize f2(X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

f1(X) = f ∗1 (16.23)

The solution of this problem is obtained as X∗
2 and f ∗2 = f2(X∗

2). This procedure is
repeated until all the k objectives have been considered. The ith problem is given by

Minimize fi(X)

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

fl(X) = f ∗l , l = 1, 2, . . . , i − 1 (16.24)

and its solution is found as X∗
i and f ∗i = fi(X

∗
i). Finally, the solution obtained at the end

(i.e. X∗
k) is taken as the desired solution X* of the original multiobjective optimization

problem.

�

� �

�

732 Multilevel and Multiobjective Optimization

16.4.6 Goal Programming Method

In the simplest version of goal programming, the designer sets goals for each objective
that he or she wishes to attain. The optimum solution X* is then defined as the one that
minimizes the deviations from the set goals. Thus the goal programming formulation
of the multiobjective optimization problem leads to

Minimize

[
k∑

j=1

(d+
j + d−

j)
p

]1∕p

, p ≥ 1

subject to

gj(X) ≤ 0, j = 1, 2, . . . ,m

fj(X) + d+
j − d−

j = bj j = 1, 2, . . . , k

d+
j ≥ 0, j = 1, 2, . . . , k

d−
j ≥ 0, j = 1, 2, . . . , k

d+
j d−

j = 0, j = 1, 2, . . . , k (16.25)

where bj is the goal set by the designer for the jth objective and d+
j and d−

j are, respec-
tively, the underachievement and overachievement of the jth goal. The value of p is
based on the utility function chosen by the designer. Often the goal for the jth objective,
bj, is found by first solving the following problem:

Minimize fj(X)

subject to
gj(X) ≤ 0, j = 1, 2, . . . ,m (16.26)

If the solution of the problem stated in Eq. (16.26) is denoted by X∗
j , then bj is taken

as bj = fj(X
∗
j).

16.4.7 Goal Attainment Method

In the goal attainment method, goals are set as bi for the objective function fi(X),
i = 1, 2, . . . , k. In addition, a weight wi > 0 is defined for the objective function fi
(X) to denote the importance of the ith objective function relative to other objective
functions in meeting the goal bi, i = 1, 2, . . . , k. Often the goal bi is found by first
solving the single objective optimization problem:

Minimize fj(X)

subject to
gj(X) ≤ 0; j = 1, 2, . . . ,m (16.27)

If the solution of the problem stated in Eq. (16.27) is denoted X∗
j then bi can be taken as

the optimum value of the objective fi, f ∗i = f (X∗
i). A scalar 𝛾 is introduced as a design

variable in addition to the n design variables xi, i = 1, 2, . . . , n. Then the following
problem is solved:

Find x1, x2, . . . , xn and 𝛾
to minimize F (x1, x2, . . . , xn, 𝛾) = 𝛾

�

� �

�

16.4 MULTIOBJECTIVE OPTIMIZATION 733

subject to

gj(X) ≤ 0; j = 1, 2, . . . ,m

fi(X) − 𝛾wi ≤ bi; i = 1, 2, . . . , k (16.28)

with the weights satisfying the normalization condition

k∑
i=1

wi = 1 (16.29)

16.4.8 Game Theory Approach

The game theory approach for solving a multiobjective problem can be seen with ref-
erence to a two objective, two design variable optimization problem whose graphical
representation is shown in Figure 16.5. Let f1(x1, x2) and f2(x1, x2) represent two scalar
objectives and x1 and x2 two scalar design variables. It is assumed that one player is
associated with each objective. The first player wants to select a design variable x1,
which will minimize his/her objective f1 and similarly the second player seeks a vari-
able x2, which will minimize his/her own objective f2. If f1 and f2 are continuous, then
the contours of constant values of f1 and f2 appear as shown on Figure 16.5. The dotted
lines passing through O1 and O2 represent the loci of rational (minimizing) choices for
the first and second player for a fixed value of x2 and x1, respectively. The intersection
of these two lines, if exists, is a candidate for the two objective minimization problem
assuming that the players do not cooperate with each other (non-cooperative game).
In Figure 16.5, the point N(x∗1, x

∗
2) represents such a point. This point, known as a

Constant f1
contours S ≡ Shaded region

Increasing
f1

Increasing
f2

f1P

f2P

x1

x2

O2

O1

Constant f2
contours

x1
*

x2
*

N

A

B

Q

P

C D

Figure 16.5 Cooperative and non-cooperative game solutions.

�

� �

�

734 Multilevel and Multiobjective Optimization

Nash equilibrium solution, represents a stable equilibrium condition in the sense that
no player can deviate unilaterally from this point for further improvement of his/her
own criterion. This point has the characteristic that

f1(x∗1, x
∗
2) ≤ f1(x1, x

∗
2) (16.30)

and
f1(x∗1, x

∗
2) ≤ f1(x∗1, x2) (16.31)

where x1 may be to the left or right of x∗1 in Eq. (16.30) and x2 may lie above or below
x∗2 on Eq. (16.31). Extension of the idea to a k-player non-cooperative game gives the
mathematical definition of a Nash equilibrium solution as

f1(x∗1, x
∗
2, . . . , x

∗
k) ≤ f1(x1, x

∗
2, . . . , x

∗
k)

f2(x∗1, x
∗
2, . . . , x

∗
k) ≤ f1(x∗1, x2, . . . , x

∗
k)

⋮

fk(x∗1, x
∗
2, . . . , x

∗
k) ≤ fk(x∗1, x

∗
2, . . . , x) (16.32)

So far it has been assumed that there exists only one Nash equilibrium point,
i.e. the dotted lines in Figure 16.5 intersect only at one point. An interesting situation
occurs when the two lines intersect at more than one point. In this case, since the values
of f1 and f2 are different Nash equilibrium points, any player can have the advantage of
declaring his/her move first there by forcing the other players to play at the equilibrium
point of his/her own choice.

In a cooperative game, the two players agree to cooperate with each other and
hence any point in the shaded region S of Figure 16.5 will provide both of them with
a better solution than their respective Nash equilibrium solutions. Since the region
S does not provide a unique solution, the concept of Pareto-optimal (non-inferior)
solutions can be introduced to eliminate many solutions from the region S. It can be
seen that all points in the region S can be eliminated except those on the continuous
line O1ACQDBO2 which represents the loci of tangent points between the contours
of f1 and f2. Every point on this line has the property that it is not dominated by any
other point in its neighborhood, i.e.

f1(Q) ≤ f1(P) (16.33)

and
f2(Q) ≤ f2(P) (16.34)

where Q is a point lying on the line O1O2 and P is a neighborhood point. Thus all
points of S that do not lie on the fine O1O2 need not be considered during cooperative
play. The set of all points lying on AB is known as a Pareto-optimal set and is denoted
by Sp. Since Sp represents the solution set to be considered in a cooperative game,
the main task in a multicriteria optimization problem will be to determine the solution
set Sp.

After determining the Pareto-optimal set, one has to pick up a particular element
from the set by adopting a systematic procedure. If it is possible to convert all the cri-
teria involved in the problem to some common units, then the problem will be greatly
simplified. If this is not possible, further rules of negotiation in the form of a supercri-
terion or bargaining model should be specified before selecting a particular element
from the set Sp. The procedure for finding the set Sp, and an element of Sp, based on
a supercriterion, are presented in Refs. [16.14, 16.17, 16.21, 16.27].

�

� �

�

References and Bibliography 735

16.5 SOLUTIONS USING MATLAB

The solution of different types of optimization problems using MATLAB is presented
in Chapter 17. Specifically, the MATLAB solutions of multiobjective optimization
problems using the goal attainment method and the weighting method are given in
Examples 17.10 and 17.11, respectively.

REFERENCES AND BIBLIOGRAPHY

16.1 Kirsch, U. (1975). Multilevel approach to optimum structural design. ASCE Journal of
the Structural Division 101 (ST4): 957–974.

16.2 Sobieszczanski-Sobieski, J., James, B., and Dovi, A. (1985). Structural optimization
by multilevel decomposition. AIAA Journal 23 (11): 1775–1782.

16.3 Sobieszczanski-Sobieski, J., James, B.B., and Riley, M.F. (1987). Structural sizing by
generalized, multilevel optimization. AIAA Journal 25 (1): 139–145.

16.4 El-Sayed, M.E.M. and Hsiung, C.-K. (1990). Parallel structural optimization with par-
allel analysis interfaces. In: Proceedings of the 3rd Air Force/NASA Symposium on
Recent Advances in Multidisciplinary Analysis and Optimization, 398–403. San Fran-
cisco: NASA.

16.5 Sikiotis, E.S. and Saouma, V.E. (1988). Parallel structural optimization on a network
of computer workstations. Computers and Structures 29 (1): 141–150.

16.6 Adeli, H. and Kamat, O. (1992). Concurrent optimization of large structures; part
I: algorithms, part II: applications. ASCE Journal of Aerospace Engineering 5 (1):
79–110.

16.7 El-Sayed, M.E.M. and Hsiung, C.-K. (1991). Optimum structural design with parallel
finite element analysis. Computers and Structures 40 (6): 1469–1474.

16.8 Atiqullah, M.M. and Rao, S.S. (1995). Parallel processing in optimal structural design
using simulated annealing. AIAA Journal 33: 2386–2392.

16.9 Rosinger, E.E. (1981). Interactive algorithm for multiobjective optimization. Journal
of Optimization Theory and Applications 35: 339–365; Errata in Vol. 38, pp. 147–148,
1982.

16.10 Vincent, T.L. and Grantham, W.J. (1981). Optimality in Parametric Systems. New York:
Wiley.

16.11 Stadler, W. (1979). A survey of multicriteria optimization of the vector maximum prob-
lem. Journal of Optimization Theory and Applications 29: 1–52.

16.12 Koo, D. (1977). Elements of Optimization. New York: Springer-Verlag.

16.13 Ignizio, J.P. (ed.) (1982). Linear Programming in Single- and Multiple-Objective Sys-
tems. Englewood Cliffs, NJ: Prentice-Hall.

16.14 Rao, S.S. (1987). Game theory approach for multiobjective structural optimization.
Computers and Structures 25 (1): 119–127.

16.15 Hwang, C.L. and Masud, A.S.M. (1979). Multiple Objective Decision Making: Meth-
ods and Applications. Berlin: Springer-Verlag.

16.16 Rao, S.S., Venkayya, V.B., and Khot, N.S. (1988). Game theory approach for the inte-
grated design of structures and controls. AIAA Journal 26 (4): 463–469.

16.17 Rao, S.S. and Freiheit, T.I. (1991). A modified game theory approach to multiobjective
optimization. ASME Journal of Mechanical Design 113: 286–291.

16.18 Rao, S.S. and Kaplan, R.L. (1986). Optimal balancing of high-speed linkages
using multiobjective programming techniques. ASME Journal of Mechanisms,
Transmissions, and Automation in Design 108: 454–460.

16.19 Rao, S.S. and Eslampour, H.R. (1986). Multistage multiobjective optimization of gear-
boxes. ASME Journal of Mechanisms, Transmissions, and Automation in Design 108:
461–468.

�

� �

�

736 Multilevel and Multiobjective Optimization

16.20 Hati, S.K. and Rao, S.S. (1983). Cooperative solution in the synthesis of multi-degree
of freedom shock isolation systems. ASME Journal of Vibration, Acoustics, Stress and
Reliability in Design 105: 101–103.

16.21 Rao, S.S. and Hati, S.K. (1979). Game theory approach in multicriteria optimization of
function generating mechanisms. ASME Journal of Mechanical Design 101: 398–406.

16.22 Rao, S.S., Dhingra, A.K., and Miura, H. (1990). Pareto-optimal solutions in helicopter
design problems. Engineering Optimization 15 (3): 211–231.

16.23 Eschenauer, H., Koski, J., and Osyczka, A. (1990). Multicriteria Design Optimization:
Procedures and Applications. New York: Springer-Verlag.

16.24 Stadler, W. (ed.) (1988). Multicriteria Optimization in Engineering and in the Sciences.
New York: Plenum Press.

16.25 The Rand Corporation (1955). A Million Random Digits with 100,000 Normal Devi-
ates. Glencoe, IL: The Free Press.

16.26 Coello Coello, C.A., Van Veldhuizen, D.A., and Lamont, G.B. (2002). Evolu-
tionary Algorithms for Solving Multi-Objective Problems. New York: Kluwer
Academic/Plenum.

16.27 Annamdas, K.K. and Rao, S.S. (2009). Multi-objective optimization of engineering
systems using game theory and particle swarm optimization. Engineering Optimization
41 (8): 737–752.

16.28 Sunar, M. and Rao, S.S. (1997). A substructures method for the active control design
of large periodicstructures. Computers and Structures 65 (5): 695–701.

16.29 Sunar, M. and Rao, S.S. (1992). A substructure decomposition method for the control
design of large flexible structures. AIAA Journal 30 (5): 1425–1432.

REVIEW QUESTIONS

16.1 What is a MIMD computer?

16.2 Indicate various ways by which parallel computations can be performed in a large-scale
optimization problem.

16.3 How are the goals determined in the goal programming method?

16.4 Answer true or false:

(a) Multilevel optimization is same as decomposition.

(b) In multilevel optimization, the suboptimization problems are to be solved iteratively.

(c) All multiobjective optimization methods find only a Pareto optimum solution.

(d) All multiobjective optimization techniques convert the problem into a single objec-
tive problem.

(e) A vector optimization problem is same as a multiobjective optimization problem.

(f) Only one Pareto optimal solution exists for a multiobjective optimization problem.

(g) The weighting function method can be considered as the utility function method.

(h) It is possible to achieve the optimum value of each objective function simultaneously
in a multiobjective optimization problem.

16.5 Define the following terms:

(a) Pareto optimal point

(b) Utility function method

(c) Weighting function method

(d) Global criterion function method

(e) Bounded objective function method

(f) Lexicographic method

�

� �

�

Problems 737

Bar 1
(area = A1) Bar 2

y

(area = A2)

P = 1000 N

1 m9 m

Figure 16.6 Two-bar truss (multilevel approach).

PROBLEMS

16.1 Find the minimum volume design of the truss shown in Figure 16.6 with constraints on
the depth of the truss (y), cross-sectional areas of the bars (A1 and A2), and the stresses
induced in the bars (𝜎1 and 𝜎2). Treat y, A1, and A2 as design variables with 𝜎i ≤ 105 Pa
(i = 1, 2), 1 m≤ y≤ 4 m, and 0≤Ai ≤ 0.2 m2 (i = 1, 2). Use multilevel optimization
approach for the solution.

16.2 Consider a two-bar truss similar to the one shown in Figure 16.6. The problem of design
of the truss for minimum weight subject to stress constraints can be stated as follows
(using x for y in Fig. 16.6):
Find x, A1, and A2 which minimize

f = 28.30A1

√
1 + x2 + 14.15A2

√
1 + x2

subject to

g1 = 0.1768(1 + x)
√

1 + x2

A1x
− 1 ≤ 0

g2 =
||||||
0.1768(x − 1)

√
1 + x2

A2x

|||||| − 1 ≤ 0

0.1 ≤ x ≤ 2.5, 1.0 ≤ Ai ≤ 2.5 (i = 1, 2)

where the members are assumed to be made up of different materials. Solve this opti-
mization problem using the multilevel approach.

16.3 Consider the design of the two-bar truss shown in Figure 16.7 with the location of nodes
1 and 2(x) and the area of cross section of bars (A) as design variables. If the weight and
the displacement of node 3 are to be minimized with constraints on the stresses induced
in the bars along with bounds on the design variables, the problem can be stated as
follows [16.14]:

Find X = {x1x2}T which minimizes

f1(X) = 2𝜌hx2

√
1 + x2

1

f2 =
Ph(1 + x2

1)
1.5
√

1 + x4
1

2
√

2Ex2
1x2

�

� �

�

738 Multilevel and Multiobjective Optimization

1 2

3

P 45°

X

Y

x x

h

Figure 16.7 Two-bar truss (variable depth).

subject to

g1(X) =
P(1 + x1)

√
1 + x2

1

2
√

2x1x2

− 𝜎0 ≤ 0

g2(X) =
P(x1 − 1)

√
1 + x2

1

2
√

2x1x2

− 𝜎0 ≤ 0

xi ≥ x(l)i , i = 1, 2

where x1 = x/h, x2 = A/Aref, h the depth, E is Young’s modulus, 𝜌 the weight density, 𝜎0

the permissible stress, and x(l)i the lower bound on xi. Find the optimum solutions of the
individual objective functions subject to the stated constraints using a graphical proce-
dure. Data: P = 10,000 lb, 𝜌 = 0.283 lb/in3, E = 30× 106 psi, h = 100 in., Aref = 1 in.2,
𝜎0 = 20 000 psi, x(l)1 = 0.1, and x(l)2 = 1.0.

16.4 Solve the two-objective optimization problem stated in Problem 16.3 using the weight-
ing method with equal weights to the two objective functions. Use a graphical method
of solution.

16.5 Solve the two-objective optimization problem stated in Problem 16.3 using the global
criterion method with p = 2. Use a graphical method of solution.

16.6 Formulate the two-objective optimization problem stated in Problem 16.3 as a goal
programming problem using the goals of 30 lb and 0.015 in. for the objectives f1 and f2,
respectively. Solve the problem using a graphical procedure.

�

� �

�

17

Solution of Optimization
Problems Using MATLAB

17.1 INTRODUCTION

The solution of most practical optimization problems requires the use of computers.
Several commercial software systems are available to solve optimization problems
that arise in different engineering areas. MATLAB is a popular software that is
used for the solution of a variety of scientific and engineering problems.1 MATLAB
has several toolboxes each developed for the solution of problems from a specific
scientific area. The specific toolbox of interest for solving optimization and related
problems is called the optimization toolbox. It contains a library of programs
or m-files, which can be used for the solution of minimization, equations, least
squares curve fitting, and related problems. The basic information necessary for
using the various programs can be found in the user’s guide for the optimization
toolbox [17.1]. The programs or m-files, also called functions, available in the
minimization section of the optimization toolbox are given in Table 17.1. The use
of the programs listed in Table 17.1 is demonstrated in this chapter. Basically, the
solution procedure involves three steps after formulating the optimization problem
in the format required by the MATLAB program (or function) to be used. In most
cases, this involves stating the objective function for minimization and the constraints
in “≤” form with zero or constant value on the right hand side of the inequalities.
After this, Step 1 involves writing an m-file for the objective function. Step 2 involves
writing an m-file for the constraints. Step 3 involves setting the various parameters
at proper values depending on the characteristics of the problem and the desired
output and creating an appropriate file to invoke the desired MATLAB program (and
coupling the m-files created to define the objective and constraints functions of the
problem).

The examples presented in this chapter illustrate the application of MATLAB to
solve the problems/methods presented in the previous chapters.

1The basic concepts and procedures of MATLAB are summarized in Appendix C.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

739

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

740 Solution of Optimization Problems Using MATLAB

Table 17.1 MATLAB Programs or Functions for Solving Optimization Problems.

Type of
optimization problem

Standard form for
solution by MATLAB

Name of MATLAB program or
function to solve the problem

Function of one
variable or scalar
minimization

Find x to minimize f(x) with
x1 < x< x2

fminbnd

Unconstrained
minimization of
function of several
variables

Find x to minimize f(x) fminunc or fminsearch

Linear programming
problem

Find x to minimize fTx subject to
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

linprog

Quadratic programming
problem

Find x to minimize
1
2
xT[H]x + fTx subject to

[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

quadprog

Minimization of
function of several
variables subject to
constraints

Find x to minimize f(x) subject to
c(x) ≤ 0, ceq = 0
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

fmincon

Goal attainment
problem

Find x and 𝛾 to minimize 𝛾
such that

F(x) – w𝛾 ≤ goal,
c(x) ≤ 0, ceq = 0
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

fgoalattain

Minimax problem Minimize Max

x [Fi}
[Fi(x)}

such that
c(x) ≤ 0, ceq = 0
[A]x ≤ b, [Aeq]x = beq,

l ≤ x ≤ u

fminimax

Binary integer
programming
problem

Find x to minimize fTx subject to
[A]x ≤ b, [Aeq]x = beq,

each component of x
is binary

bintprog

17.2 SOLUTION OF GENERAL NONLINEAR PROGRAMMING
PROBLEMS

Example 17.1 Find the solution of the following nonlinear optimization problem
(same as the problem in Example 1.1) using the MATLAB function fmincon:

Minimize f (x1, x2) = 9.82x1x2 + 2x1

subject to

g1(x1, x2) =
2500
𝜋x1x2

− 500 ≤ 0

�

� �

�

17.2 Solution of General Nonlinear Programming Problems 741

g2(x1, x2) =
2500
𝜋x1x2

−
𝜋

2(x2
1 + x2

2)
0.5882

≤ 0

g3(x1, x2) = −x1 + 2 ≤ 0

g4(x1, x2) = x1 − 14 ≤ 0

g5(x1, x2) = −x2 + 0.2 ≤ 0

g6(x1, x2) = x2 − 0.8 ≤ 0

SOLUTION
Step 1: Write an M-file probofminobj.m for the objective function.

function f= probofminobj (x)
f= 9.82*x(1)*x(2)+2*x(1);

Step 2: Write an M-file conprobformin.m for the constraints.

function [c, ceq] = conprobformin(x)
% Nonlinear inequality constraints
c = [2500/(pi*x(1)*x(2))-500;2500/(pi*x(1)*x(2))-
(pi ̂ 2*(x(1) ̂ 2+x(2) ̂ 2))/0.5882;-x(1)+2;x(1)-14;-x(2)+0.2;
x(2)-0.8];
% Nonlinear equality constraints
ceq = [];

Step 3: Invoke constrained optimization program (write this in new MATLAB file).

clc
clear all
warning off
x0 = [7 0.4]; % Starting guess\
fprintf ('The values of function value and constraints
at starting point\n');
f=probofminobj (x0)
[c, ceq] = conprobformin (x0)
options = optimset ('LargeScale', 'off');
[x, fval]=fmincon (@probofminobj, x0, [], [], [], [], [],
[], @conprobformin, options)
fprintf('The values of constraints at optimum
solution\n');
[c, ceq] = conprobformin(x) % Check the constraint
values at x

This produces the solution or output as follows:

The values of function value and constraints at starting
point f=
41.4960

c =
-215.7947
-540.6668
-5.0000
-7.0000
-0.2000
-0.4000

�

� �

�

742 Solution of Optimization Problems Using MATLAB

ceq =
[]

Optimization terminated: first-order optimality measure
less than options. TolFun and maximum constraint
violation is less than options.TolCon.
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin

1
2

x=
5.4510 0.2920

fval =
26.5310

The values of constraints at optimum solution
c=
-0.0000
-0.0000
-3.4510
-8.5490
-0.0920
-0.5080

ceq =
[]

17.3 SOLUTION OF LINEAR PROGRAMMING PROBLEMS

The solution of linear programming problems, using the simplex method, can be found
as illustrated by the following example.

Example 17.2 Find the solution of the following linear programming problem using
MATLAB (simplex method):

Minimize f = −x1 − 2x2 − x3

subject to

2x1 + x2 − x3 ≤ 2

2x1 − x2 + 5x3 ≤ 6

4x1 + x2 + x3 ≤ 6

xi ≥ 0; i = 1, 2, 3

SOLUTION
Step 1 Express the objective function in the form f (x) = f T x and identify the vectors

x and f as

x =
⎧⎪⎨⎪⎩

x1
x2
x3

⎫⎪⎬⎪⎭ and f =
⎧⎪⎨⎪⎩
−1
−2
−3

⎫⎪⎬⎪⎭

�

� �

�

17.4 Solution of LP Problems Using Interior Point Method 743

Express the constraints in the form Ax ≤ b and identify the matrix A and the
vector b as

A =
⎡⎢⎢⎣
2 2 −1
2 −1 5
4 1 1

⎤⎥⎥⎦ and b =
⎧⎪⎨⎪⎩

2
6
6

⎫⎪⎬⎪⎭
Step 2 Use the command for executing linear programming program using simplex

method as indicated below:

clc
clear all
f=[-1;-2;-1];
A=[2 1-1;

2-1 5;
4 1 1];

b=[2;6;6];
lb=zeros(3,1);
Aeq=[];
beq=[];
options = optimset('LargeScale', 'off', 'Simplex', 'on');
[x,fval,exitflag,output] = linprog (f,A,b,Aeq,beq,lb,[],[],

optimset('Display','iter'))

This produces the solution or output as follows:

Optimization terminated.
x=
0
4
2

fval =
-10

exitflag =
1

output =
iterations:3
algorithm: 'medium scale: simplex'
cgiterations: []
message: 'Optimization terminated.'

17.4 SOLUTION OF LP PROBLEMS USING INTERIOR POINT
METHOD

The solution of linear programming problems, based on the interior point method,
using MATLAB is illustrated by the following example.

Example 17.3 Find the solution of the following linear programming problem using
MATLAB (interior point method):

Minimize f = −x1 − 2x2 − x3

�

� �

�

744 Solution of Optimization Problems Using MATLAB

subject to

2x1 + x2 − x3 ≤ 2

2x1 − x2 + 5x3 ≤ 6

4x1 + x2 + x3 ≤ 6

xi ≥ 0; i = 1, 2, 3

SOLUTION
Step 1 Express the objective function in the form f(x) = f T x and identify the vectors

x and f as

x =
⎧⎪⎨⎪⎩

x1
x2
x3

⎫⎪⎬⎪⎭ and f =
⎧⎪⎨⎪⎩
−1
−2
−1

⎫⎪⎬⎪⎭
Express the constraints in the form Ax≤ b and identify the matrix A and the
vector b as

A =
⎡⎢⎢⎣
2 1 −1
2 −1 5
4 1 1

⎤⎥⎥⎦ and b =
⎧⎪⎨⎪⎩

2
6
6

⎫⎪⎬⎪⎭
Step 2 Use the command for executing linear programming program using interior

point method as indicated below:

clc
clear all
f=[–1;–2;–1];
A=[2 1—1;

2—1 5;
4 1 1];

b=[2;6;6];
lb=zeros(3,1);
Aeq=[];
beq=[];
options = optimset('Display', 'iter');
[x,fval,exitflag,output] = linprog(f,A,b,Aeq,beq,lb,
[],[],options)

This produces the solution or output as follows:

Iter 0: 1.03e+003 7.97e+000 1.50e+003 4.00e+002
Iter 1: 4.11e+002 2.22e–016 2.78e+002 4.72e+001
Iter 2: 1.16e–013 1.90e–015 2.85e+000 2.33e–001
Iter 3: 1.78e–015 1.80e–015 3.96e–002 3.96e–003
Iter 4: 7.48e–014 1.02e–015 1.99e–006 1.99e–007
Iter 5: 2.51e–015 4.62e–015 1.99e–012 1.98e–013
Optimization terminated.
x=
0.0000
4.0000
2.0000

�

� �

�

17.5 Solution of Quadratic Programming Problems 745

fval = -10.0000
exitflag = 1
output =

iterations: 5
algorithm: 'large-scale: interior point'
cgiterations: 0
message: 'Optimization terminated.'

17.5 SOLUTION OF QUADRATIC PROGRAMMING PROBLEMS

Example 17.4 Find the solution of the following quadratic programming problem
using MATLAB:

Minimize f = −4x1 + x2
1 − 2x1x2 + 2x2

2

subject to 2x1 + x2 ≤ 6, x1 − 4x2 ≤ 0, x1 ≥ 0, x2 ≥ 0

SOLUTION
Step 1 Express the objective function in the form f(x) = 1

2
xTHx + f Tx and identify

the matrix H and vectors f and x:

H =
(

2 −2
−2 4

)
f =

(
−4
0

)
x =

(
x1
x2

)
Step 2 State the constraints in the form: Ax≤ b and identify the matrix A and vector b:

A =
(

2 1
1 −4

)
b =

(
6
0

)
Step 3 Use the command for executing quadratic programming as

[x,fval] = quadprog(H,f,A,b)

which returns the solution vector x that minimizes

f = 1
2

xTHx + f Tx subject to Ax ≤ b

The MATLAB solution is given below:

clear;clc;
H = [2 —2;–2 4];
f = [–4 0];
A = [2 1;1 —4];
b = [6; 0];
[x,fval] = quadprog(H,f,A,b)
Warning: Large-scale method does not currently solve

this problem formulation, switching to medium-scale
method.
x=
2.4615
1.0769

fval =
-6.7692

�

� �

�

746 Solution of Optimization Problems Using MATLAB

17.6 SOLUTION OF ONE-DIMENSIONAL MINIMIZATION
PROBLEMS

The solution of one-dimensional minimization problems, using the MATLAB pro-
gram optimset, is illustrated by the following example.

Example 17.5 Find the minimum of the following function:

f (x) = 0.65 − 0.75
1 + x2

− 0.65x tan−1
(1

x

)
SOLUTION
Step 1 Write an M-file objfun.m for the objective function.

function f= objfun(x)
f= 0.65–(0.75/(1+x ̂ 2))– 0.65*x*atan(1/x);

Step 2 Invoke unconstrained optimization program (write this in new MATLAB file).

clc
clear all
warning off
options = optimset('LargeScale','off');
[x,fval] = fminbnd(@objfun,0,0.5,options)

This produces the solution or output as follows:

x=
0.4809
fval =
-0.3100

17.7 SOLUTION OF UNCONSTRAINED OPTIMIZATION
PROBLEMS

The solution of multivariable unconstrained minimization problems using the MAT-
LAB function fminunc is illustrated in this section.

Example 17.6 Find the minimum of the Rosenbrock’s parabolic valley function,
given by Eq. (6.140), starting from initial point X1 = {−1.2 1.0}T.

SOLUTION
Step 1 Write an M-file objfun.m for the objective function.

function f= objfun (x)
f= 100* (x(2)-x(1) *x(1)) ̂ 2+(1-x(1)) ̂ 2;

Step 2 Invoke unconstrained optimization program (write this in new MATLAB file).

clc
clear all
warning off
x0 = [-1.2,1.0]; % Starting guess
fprintf ('The values of function value at starting
pointn');
f=objfun(x0)

�

� �

�

17.8 Solution of Constrained Optimization Problems 747

options = optimset('LargeScale', 'off');
[x, fval] = fminunc (@objfun,x0,options)

This produces the solution or output as follows:

The values of function value at starting point
f=
24.2000

Optimization terminated: relative infinity-norm of
gradient less than options.TolFun.
x=
1.0000 1.0000

fval=
2.8336e-011

17.8 SOLUTION OF CONSTRAINED OPTIMIZATION PROBLEMS

The solution of multivariable minimization problems, with inequality and equality
constraints, using the MATLAB function fmincon is illustrated in this section.

Example 17.7 Find the solution of Example 7.8 starting from the initial point
X1 = {0.1 0.1 3.0}T

SOLUTION
Step 1 Write an M-file objfun.m for the objective function.

function f= objfun (x)
f= x(1) ̂ 3-6*x(1) ̂ 2+11*x(1)+x(3);

Step 2 Write an M-file constraints.m for the constraints.

function [c, ceq] = constraints (x)
% Nonlinear inequality constraints
c = [x(1) ̂ 2+x(2) ̂ 2-x(3) ̂ 2;4-x(1) ̂ 2-x(2) ̂ 2-x(3) ̂ 2;x(3)-5;
-x(1);-x(2);-x(3)];
% Nonlinear equality constraints
ceq = [];

Step 3 Invoke constrained optimization program (write this in new MATLAB file).

clc
clear all
warning off
x0 = [.1,.1, 3.0]; % Starting guess
fprintf ('The values of function value and

constraints at starting point');
f=objfun (x0)
[c, ceq] = constraints (x0)
options = optimset ('LargeScale', 'off');
[x, fval]=fmincon (@objfun, x0, [], [], [], [], [],

[], @constraints, options)
fprintf ('The values of constraints at optimum

solution');
[c, ceq] = constraints (x)
% Check the constraint values at x

�

� �

�

748 Solution of Optimization Problems Using MATLAB

This Produces the Solution or Output as follows:

The values of function value and constraints at
starting point
f=
4.0410
c=
-8.9800
-5.0200
-2.0000
-0.1000
-0.1000
-3.0000
ceq =
[]
Optimization terminated: first-order optimality measure

less than options. TolFun and maximum constraint
violation is less than options.TolCon.
Active inequalities (to within options.TolCon =

1e-006): lower upper ineqlin ineqnonlin
1
2
4
x=
0 1.4142 1.4142
fval =
1.4142
The values of constraints at optimum solution
c=
-0.0000
-0.0000
-3.5858
0

-1.4142
-1.4142
ceq =
[]

Example 17.8 Find the solution of the welded beam problem described in
Section 7.22.3 using the MATLAB function fmincon. Use the starting point
−→
X 1 = {0.4 6.0 9.0 0.5}T .

SOLUTION
Step 1 Write an M-file objfun.m for the objective function.

function f= Example_8_objfun(x)
f=1.10471*x(1)*x(1)*x(2)+0.04811*x(3)*x(4)*(14.0+x(2));
end

Step 2 Write an M-file constraints.m for the constraints.

function [c, ceq] = Example_8_constraints(x)
P=6000;

�

� �

�

17.8 Solution of Constrained Optimization Problems 749

E=30e6;
G=12e6;
smax=30000;
deltamax=0.25;
shearmax=13600;
L=14;
j1=2*x(1)*x(2)/sqrt(2);
j2=((x(2) ̂ 2)/12+((x(1)+x(3))/2) ̂ 2);
J=j1*j2;
S=6*P*L/(x(4)*x(3)*x(3));
K=(4*P*L ̂ 3)/(E*(x(3) ̂ 3)*x(4));
pc1=1-(x(3)/(2*L))*(E/(4*G)) ̂ (1/2);
pc2=4.013*((E*G*(x(3) ̂ 2)*(x(4) ̂ 6)/36)) ̂ (1/2);
Pc=pc1*pc2/(L*L);
M=P*(L+x(2)/2);
R=((x(2) ̂ 2)/4+((x(1)+x(3))/2) ̂ 2) ̂ 0.5;
A=P/(x(1)*x(2)*1.414);
B=M*R/J;
T = (A ̂ 2+2*A*B*(x(2)/(2*R))+B ̂ 2) ̂ 0.5;
% Nonlinear inequality constraints
c = [T-shearmax;S-smax;x(1)-x(4);0.10471*x(1)*x(1)+
0.04811*x(3)*x(4)*(14.0+x(2))-5.0;0.125-x(1);...
K-deltamax;P-Pc];

% Nonlinear equality constraints
ceq = [];

Step 3 Invoke constrained optimization program (write this in new MATLAB file).

clc
clear all
warning off
x0 = [0.4;6;9;0.5]; % Starting guess
fprintf('The values of function value and constraints at
starting point\n');
f=Example_4_objfun(x0)
[c,ceq] = Example_8_constraints(x0)
lb=[0.1;0.1;0.1;0.1];
ub=[2;10;10;2];
options = optimset('LargeScale','off');
[x,fval]=fmincon(@Example_8_objfun,x0,[],[],[],[],lb,ub,
@Example_4_constraints,options)
fprintf('The values of constraints at optimum
solution\n');
[c,ceq] = Example_8_constraints(x) % Check the
constraint values at x

This produces the Solution or Output as follows:

The values of function value and constraints at starting
point
f =
5.3904

c =
1.0e+04 *

�

� �

�

750 Solution of Optimization Problems Using MATLAB

-0.5826
-1.7556
-0.0000
-0.0001
-0.0000
-0.0000
-4.8330

ceq =
[]

Local minimum found that satisfies the constraints.
Optimization completed because the objective func-
tion is non-decreasing in
feasible directions, to within the default value of the
optimality tolerance,
and constraints are satisfied to within the default
value of the constraint tolerance.
<stopping criteria details>
x =
0.2444
6.2177
8.2915
0.2444

fval =
2.3810

The values of constraints at optimum solution
c =
-0.0158
-0.2319
-0.0000
-3.0229
-0.1194
-0.2342
-0.0247

ceq =
[]

17.9 SOLUTION OF BINARY PROGRAMMING PROBLEMS

The MATLAB function bintprog can be used to solve a binary (or zero–one) pro-
gramming problem. The following example illustrates the procedure.

Example 17.9 Find the solution of the following binary programming problem using
the MATLAB function bintprog:

Minimize f (X) = −5x1 − 5x2 − 8x3 + 4x4 + 4x5

subject to

3x1 − 6x2 + 7x3 − 9x4 − 9x5 ≤ −10, x1 + 2x2 − x4 − 3x5 ≤ 0

xi binary; i = 1, 2, 3, 4, 5

�

� �

�

17.10 Solution of Multiobjective Problems 751

SOLUTION
Step 1 State the problem in the form required by the program bintprog:

Minimize f (x) = f Tx subject to Ax ≤ b and Aeqx = beq

Here

f T = {−5 − 5 − 8 2 4}, x = {x1 x2 x3 x4 x5}T

A =
[

3 −6 7 −9 −9
1 2 0 −1 −3

]
, b =

{
−10

0

}
Step 2 The input is directly typed on the MATLAB command window and the pro-

gram bintprog is called as indicated below:

clear; clc;
f = [-5 -5 -8 2 4]′;
A = [3 -6 7 -9 -9; 1 2 0 -1 -3];

b = [-10 0]′;
x = bintprog (f, A, b,[])

Step 3 The output of the program is shown below:

Optimization terminated.
x =

1
1
1
1
1

17.10 SOLUTION OF MULTIOBJECTIVE PROBLEMS

The MATLAB function fgoalattain can be used to solve a multiobjective optimiza-
tion problem using the goal attainment method. The following example illustrates the
procedure.

Example 17.10 Find the solution of the following three-objective optimization
problem using goal attainment method using the MATLAB function fgoalattain.

Minimize

f1 = 1
2
(x1 − 2)2 + 1

13
(x2 + 1)2 + 3

f2 = 1
175

(x1 + x2 − 3)2 + 1
17

(2x2 − x1)2 − 13

f3 = 1
8
(3x1 − 2x2 + 4)2 + 1

27
(x1 − x2 + 1)2 + 15

subject to

− 4 ≤ xi ≤ 4; i = 1, 2

4x1 + x2 − 4 ≤ 0

− x1 − 1 ≤ 0

x1 − x2 − 2 ≤ 0

�

� �

�

752 Solution of Optimization Problems Using MATLAB

Assume the initial design variables to be x1 = x2 = 0.1, the weights to be w1 = 0.2,
w2 = 0.5, and w3 = 0.3, and the goals to be b1 = 5, b2 = −8, and b3 = 20.

SOLUTION
Step 1 Create an m-file for the objective functions and save it as fgoalattain_

obj.m

function f = fgoalattainobj(x)
f(1) = (x(1)-2) ̂ 2/2+(x(2)+1) ̂ 2/13+3
f(2) = (x(1)+x(2)-3) ̂ 2/175+(2*x(2)-x(1)) ̂ 2/17-13
f(3) = (3*x(1)-2*x(2)+4) ̂ 2/8+(x(1)-x(2)+1) ̂ 2/27+15

Step 2 Create an m-file for the constraints and save it as fgoalattain_con.m

function [c ceq] = fgoalattaincon(x)
c= [- 4- x(1); …
x(1)- 4; …
- 4- x(2); …
x(2)- 4; …
x(2)+4*x(1)- 4; …
- 1- x(1); …
x(1)- 2- x(2)]
ceq = [];

Step 3 Create an m-file for the main program and save it as fgoalattain_main.m

clc; clear all;
x0 = [0.1 0.1]
weight = [0.2 0.5 0.3]
goal = [5 -8 20]
x,fval,attainfactor,exitflag] = fgoalattain

(@fgoalattainobj,
x0,goal,weight,[],[],[],[],[],[],@fgoalattaincon)

Step 4 Run the program fgoalattain_main.m to obtain the following result:

Initial design vector: 0.1,0.1
Initial objective values: 4.8981 -12.9546 17.1383
Constraints at initial design: -4.1000

-3.9000
-4.1000
-3.9000
-3.5000
-1.1000
-2.0000

Optimum design vector: 0.8308 0.6769
Optimum objective values: 3.8999 -12.9712 18.3498
Constraints at optimum design: -4.8308

-3.1692
-4.6769
-3.3231
-0.0000
-1.8308
-1.8462

�

� �

�

17.10 Solution of Multiobjective Problems 753

Example 17.11 Find the solution of the following two-objective optimization prob-
lem using weighting method using the MATLAB function fmincon.

function Example_11_weight
clear,clc;warning off;
%%%%%%%%initial point
x0=[2 2 4 1 4 5];
lb=[0 0 1 0 1 0];
ub=[10 10 5 6 5 10];
a=0;b=0;

f01=obj1(x0);
f02=obj2(x0);
[cons0,ceq0]=cons(x0);
%%%%%%%%% weighting method
options=optimset('Display','iter');
[xw,fw]=fmincon(@objweight,x0,[],[],[],[],lb,ub,@cons,options)

%%%%%%%%%%
fv1=obj1(xw,a,b);
fv2=obj2(xw,a,b);
[consv,ceqv]=cons(xw);

fprintf('************** Example 10 (Weighted method) ****************\n');
fprintf('**\n');
fprintf(' x0(1) x0(2) x0(3) x0(4) x0(5) x0(6) \n');
fprintf(' %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f\n',
x0(1),x0(2),x0(3),x0(4),x0(5),x0(6));
fprintf('**\n');
fprintf(' f1(x0) f2(x0)\n');
fprintf(' %8.4f %8.4f\n', f01, f02);
fprintf('**\n');
fprintf(' g1(x0) g2(x0) g3(x0) g4(x0) g5(x0) g6(x0)\n');
fprintf(' %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f\n',
cons0(1),cons0(2),cons0(3),cons0(4),cons0(5),cons0(6));
fprintf('**\n');
fprintf('**\n');
fprintf(' x*(1) x*(2) x*(3) x*(4) x*(5) x*(6) \n');
fprintf(' %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f\n',
xw(1),xw(2),xw(3),xw(4),xw(5),xw(6));
fprintf('**\n');
fprintf(' f1(x*) f2(x*)\n');
fprintf(' %8.4f %8.4f\n', fv1, fv2);
fprintf('**\n');
fprintf(' g1(x*) g2(x*) g3(x*) g4(x*) g5(x*) g6(x*)\n');
fprintf(' %4.4f %4.4f %4.4f %4.4f %4.4f %4.4f\n',
consv(1),consv(2),consv(3),consv(4),consv(5),consv(6));
end

%%%%%%%% f01*, f02*
function f1=obj1(x,a,b);
f1=-25*(x(1)-2) ̂ 2-(x(2)-2) ̂ 2-(x(3)-1) ̂ 2-(x(4)-4) ̂ 2-(x(5)-1) ̂ 2;
end
%%%%%%%%%%%%%%%%%% f(2)
function f2=obj2(x,a,b);
f2=x(1) ̂ 2+x(2) ̂ 2+x(3) ̂ 2+x(4) ̂ 2+x(5) ̂ 2+x(6) ̂ 2;
end
%%%%%%%%%%%%%%%%%%%%%
function fw=objweight(x,a,b)
fw=obj1(x)+obj2(x);
end
%%%%%%%%%%%%%%

�

� �

�

754 Solution of Optimization Problems Using MATLAB

function [c,ceq]=cons(x)
c(1)=-x(1)-x(2)+2;
c(2)=x(1)+x(2)-6;
c(3)=-x(1)+x(2)-2;
c(4)=x(1)-3*x(3)-2;
c(5)=(x(3)-3) ̂ 2+x(4) ̂ 2-4;
c(6)=-(x(5)-3) ̂ 2-x(6)+4;
ceq=[];
end

Output:

First-order Norm of
Iter F-count f(x) feasibility optimality Step
0 7 3.900000e+01 0.000e+00 8.055e+00
1 14 -1.667902e+01 0.000e+00 4.478e+01 3.986e+00
2 21 -2.398118e+01 0.000e+00 4.714e+01 4.400e-01
3 28 -5.751137e+01 0.000e+00 6.378e+01 1.488e+00
4 35 -9.288998e+01 0.000e+00 7.769e+01 5.882e-01
5 42 -9.908576e+01 0.000e+00 2.942e+01 9.312e-02
6 49 -1.010258e+02 0.000e+00 2.062e+01 1.158e+00
7 56 -1.015468e+02 0.000e+00 1.062e+00 2.490e-01
8 63 -1.014473e+02 0.000e+00 6.428e-01 2.364e-01
9 70 -1.018941e+02 0.000e+00 1.398e-01 7.860e-02
10 77 -1.020607e+02 0.000e+00 3.594e-02 3.037e-02
11 84 -1.020632e+02 0.000e+00 2.002e-02 4.278e-03
12 91 -1.020632e+02 0.000e+00 6.791e-03 8.403e-03
13 98 -1.020643e+02 0.000e+00 4.064e-05 3.039e-04
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-
decreasing in
feasible directions, to within the default value of the
optimality tolerance,
and constraints are satisfied to within the default value of
the constraint tolerance.
<stopping criteria details>
xw =

0.0000 2.0000 1.0000 0.0000 4.9343 0.2586
fw =
-102.0643
************** Example 10 (Weighted method) ***************
x0(1) x0(2) x0(3) x0(4) x0(5) x0(6)
2.0000 2.0000 4.0000 1.0000 4.0000 5.0000
**
f1(x0) f2(x0)
-27.0000 66.0000

**
g1(x0) g2(x0) g3(x0) g4(x0) g5(x0) g6(x0)
-2.0000 -2.0000 -2.0000 -12.0000 -2.0000 -2.0000

**
x*(1) x*(2) x*(3) x*(4) x*(5) x*(6)
0.0000 2.0000 1.0000 0.0000 4.9343 0.2586
**
f1(x*) f2(x*)
-131.4784 29.4141

�

� �

�

Problems 755

**
g1(x*) g2(x*) g3(x*) g4(x*) g5(x*) g6(x*)

-0.0000 -4.0000 -0.0000 -5.0001 -0.0002 -0.0001

REFERENCES AND BIBLIOGRAPHY

17.1 (2003). Optimization Toolbox for use with MATLABR, User’s Guide, Version 2. The
MathWorks.

17.2 Foster, N. (2016). MATLAB Optimization Functions and Examples. ISBN:
9781520265025.

17.3 Lopez, C.P. (2014). MATLAB Optimization Techniques. Apress. ISBN: 9781484202920.

PROBLEMS

17.1 Find the solution of the optimization problem formulated in Problem 1.32(a) using
MATLAB.

17.2 Find the solution of the optimization problem formulated in Problem 1.33(a) using
MATLAB.

17.3 Find the solution of Problem 1.31 using MATLAB.

17.4 Find the solution of Problem 1.2(a) using MATLAB.

17.5 Find the solution of Problem 1.2(b) using MATLAB.

17.6 Solve Example 3.7 using MATLAB (simplex method).

17.7 Solve Problem 3.12 using MATLAB (simplex method).

17.8 Solve Problem 3.24 using MATLAB (simplex method).

17.9 Find the optimal solution of the LP problem stated in Problem 3.45 using MATLAB
(simplex method).

17.10 Find the optimal solution of the LP problem described in Problem 3.101 using
MATLAB.

17.11 Solve the LP problem stated in Problem 4.9 using MATLAB (interior method).

17.12 Solve the LP problem stated in Problem 4.12 using MATLAB (interior method).

17.13 Solve the LP problem stated in Problem 4.13 using MATLAB (interior method).

17.14 Solve the LP problem stated in Problem 4.36 using MATLAB (interior method).

17.15 Solve the LP problem stated in Problem 4.37 using MATLAB (interior method).

17.16 Solve the following quadratic programming problem using MATLAB:

Maximize f = 2x1 + x2 − x2
1

subject to 2x1 + 3x2 ≤ 6, 2x1 + x2 ≤ 4, x1 ≥ 0, x2 ≥ 0

17.17 Solve the following quadratic programming problem using MATLAB:

Maximize f = 4x1 + 6x2 − x2
1 − x2

2

subject to x1 + x2 ≤ 2, x1 ≥ 0, x2 ≥ 0

�

� �

�

756 Solution of Optimization Problems Using MATLAB

17.18 Solve the following quadratic programming problem using MATLAB:

Minimize f = (x1 − 1)2 + x2 − 2

subject to − x1 + x2 − 1 = 0, x1 + x2 − 2 ≤ 0, x1 ≥ 0, x2 ≥ 0

17.19 Solve the following quadratic programming problem using MATLAB:

Minimize f = x2
1 + x2

2 − 3x1x2 − 6x1 + 5x2

subject to x1 + x2 ≤ 4, 3x1 + 6x2 ≤ 20, x1 ≥ 0, x2 ≥ 0

17.20 Write a computer program, in the form of a subroutine, to implement the Fibonacci
method.

17.21 Write a computer program, in the form of a subroutine, to implement the golden section
method.

17.22 Write a computer program, in the form of a subroutine, to implement the quadratic
interpolation method.

17.23 Write a computer program, in the form of a subroutine, to implement the cubic inter-
polation method.

17.24 Write a computer program, in the form of a subroutine, to implement the secant method.

17.25 Find the maximum of the function given by Eq. (4) in Problem 5.5 using MATLAB.
Assume the bounds on 𝜆 as 0 and 3.

17.26 Find the minimum of the function f (𝜆) given in Problem 5.16, in the range 0–5, using
MATLAB.

17.27 Find the minimum of f(x) = x(x − 1.5) in the interval (0, 1) using MATLAB.

17.28 Find the minimum of the function f (x) = x3

16
27x
4

in the range (0, 10) using MATLAB.

17.29 Find the minimum of the function f(x) = x3 + x2 − x − 2 in the interval −4 and 4 using
MATLAB.

17.30 Find the minimum of the function f (x) = − 1.5
x

6(10−6)
x9

in the interval −4 and 4 using
MATLAB.

17.31 Write a computer program to implement Powell’s method using the golden section
method of one-dimensional search.

17.32 Write a computer program to implement the Davidon–Fletcher–Powell method using
the cubic interpolation method of one-dimensional search. Use a finite-difference
scheme to evaluate the gradient of the objective function.

17.33 Write a computer program to implement the BFGS method using the cubic interpolation
method of one-dimensional minimization. Use a finite-difference scheme to evaluate the
gradient of the objective function.

17.34 Write a computer program to implement the steepest descent method of unconstrained
minimization with the direct root method of one-dimensional search.

17.35 Write a computer program to implement the Marquardt method coupled with the direct
root method of one-dimensional search.

17.36 Find the minimum of the quadratic function given by Eq. (6.141) starting from the
solution X1 = {0, 0}T using MATLAB.

17.37 Find the minimum of the Powell’s quartic function given by Eq. (6.142) starting from
the solution X1 = {3, −1, 0, 1}T using MATLAB.

�

� �

�

Problems 757

17.38 Find the minimum of the Fletcher and Powell’s helical valley function given by
Eq. (6.143) starting from the solution X1 = {−1, 0, 0}T using MATLAB.

17.39 Find the minimum of the nonlinear function given by Eq. (6.144) starting from the
solution X1 = {0, 1, 2}T using MATLAB.

17.40 Find the minimum of the Wood’s function given by Eq. (6.149) starting from the solu-
tion X1 = {−3, −1, −3, −1}T using MATLAB.

17.41 Write a computer program to implement the interior penalty function method with
the DFP method of unconstrained minimization and the cubic interpolation method of
one-dimensional search.

17.42 Write a computer program to implement the exterior penalty function method with
the BFGS method of unconstrained minimization and the direct root method of
one-dimensional search.

17.43 Write a computer program to implement the augmented Lagrange multiplier method
with a suitable method of unconstrained minimization.

17.44 Write a computer program to implement the sequential linear programming method.

17.45 Find the solution of the welded beam design problem formulated in Section 7.22.3 using
the MATLAB function fmincon with the starting point X1 = {0.4, 6.0, 9.0, 0.5}T

17.46 Find the solution of the following problem (known as Rosen–Suzuki problem) using
the MATLAB function fmincon with the starting point X1 = {0, 0, 0, 0}T:
Minimize

f (X) = x2
1 + x2

2 + 2x2
3 − x2

4 − 5x1 − 5x2 − 21x3 + 7x4 + 100

subject to

x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 100 ≤ 0

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0

2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5 ≤ 0

− 100 ≤ xi ≤ 100, i = 1, 2, 3, 4

17.47 Find the solution of the following problem using the MATLAB function fminconwith
the starting point X1 = {0.5, 1.0}T:
Minimize

f (X) = x2
1 + x2

2 − 4x1 − 6x2

subject to

x1 + x2 ≤ 2

2x1 + 3x2 ≤ 12

xi ≥ 0, i = 1, 2

17.48 Find the solution of the following problem using the MATLAB function fminconwith
the starting point: X1 = {0.5, 1.0, 1.0}:

Minimize f (X) = x2
1 + 3x2

2 + x3

subject to
x2

1 + x2
2 + x2

3 = 16

�

� �

�

758 Solution of Optimization Problems Using MATLAB

17.49 Find the solution of the following problem using the MATLAB functionfminconwith
the starting point: X1 = {1.0, 1.0}T:

Minimize f (X) = x2
1 + x2

2

subject to

4 − x1 − x2
2 ≤ 0

3x2 − x1 ≤ 0

− 3x2 − x1 ≤ 0

17.50 Find the solution of the following binary programming problem using the MATLAB
function bintprog:

Minimize f Tx subject to Ax ≤ b and Aeq x = beq

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

0

0

0

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Aeq = [1 1 1 1 1 1 1 1 1] and beq = {5}

17.51 Find the solution of the following binary programming problem using the MATLAB
function bintprog:

Minimize f Tx subject to Ax ≤ b

where
f T = {−2 − 3 − 1 − 4 − 3 − 2 − 2 − 1 − 3}

x = {x1 x2 x3 x4 x5 x6 x7 x8 x9}T

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −3 0 −1 −1 0 0 0 0

1 1 0 0 0 0 0 0 0

0 1 0 1 −1 −1 0 0 0

0 −1 0 0 0 −2 −3 −1 −2

0 0 −1 0 2 1 2 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, b

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−3

1

−1

−4

5

⎫⎪⎪⎪⎬⎪⎪⎪⎭
17.52 Consider the following two-objective optimization problem:

Find X = {x1 x2 x3 x4 x5 x6}T

to minimize

f1(X) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2

f2(X) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

�

� �

�

Problems 759

subject to

− x1 − x2 + 2 ≤ 0; x1 + x2 − 6 ≤ 0; −x1 + x2 − 2 ≤ 0; x1 − 3x2 − 2 ≤ 0;

(x3 − 3)2 + x2
4 − 4 ≤ 0; −(x5 − 3)2 − x6 + 4 ≤ 0; 0 ≤ xi ≤ 10, i = 1, 2, 6

1 ≤ xi ≤ 5, i = 3, 5; 0 ≤ x4 ≤ 6

Find the minima of the individual objective functions under the stated constraints using
the MATLAB function fmincon.

17.53 Find the solution of the two-objective optimization problem stated in Problem 17.52
using the weighting function method with the weights w1 = w2 = 1. Use the MATLAB
function fmincon for the solution.

17.54 Find the solution of the two-objective optimization problem stated in Problem 17.52
using the global criterion method with p = 2. Use the MATLAB function fmincon for
the solution.

17.55 Find the solution of the two-objective optimization problem stated in Problem 17.52
using the bounded objective function method. Take the lower and upper bounds on f2
as 80 and 120% of the optimum value f ∗2 found in Problem 17.52. Use the MATLAB
function fmincon for the solution.

17.56 Find the solution of the two-objective optimization problem stated in Problem 17.52
using the goal attainment method. Use the MATLAB function fgoalattain for the
solution. Use suitable goals for the objectives.

17.57 Consider the following three-objective optimization problem:
Find X = {x1 x2}T to minimize

f1(X) = 1.5 − x1(1 − x2)

f2(X) = 2.25 − x1(1 − x2
2)

f3(X) = 2.625 − x1(1 − x3
2)

subject to

− x2
1 − (x2 − 0.5)2 + 9 ≤ 0

(x1 − 1)2 + (x2 − 0.5)2 − 6.25 ≤ 0

− 10 ≤ xi ≤ 10; i = 1, 2

Find the minima of the individual objectives under the stated constraints using the MAT-
LAB function fmincon.

17.58 Find the solution of the three-objective problem stated in Problem 17.57 using the
weighting function method with the weights w1 = w2 = w3 = 1. Use the MATLAB
function fmincon for the solution.

17.59 Find the solution of the multiobjective problem stated in Problem 17.57 using the goal
attainment method.
Use the MATLAB function fgoalattain for the solution. Use suitable goals for the
objectives.

�

� �

�

�

� �

�

A

Convex and Concave Functions

Convex Function. A function f (X) is said to be convex if for any pair of points

X1 =

⎧⎪⎪⎨⎪⎪⎩

x(1)1

x(1)2

⋮

x(1)n

⎫⎪⎪⎬⎪⎪⎭
and X2 =

⎧⎪⎪⎨⎪⎪⎩

x(2)1

x(2)2

⋮

x(2)n

⎫⎪⎪⎬⎪⎪⎭
and all 𝜆, 0≤ 𝜆≤ 1,

f [λX2 + (1 − λ)X1] ≤ λf (X2) + (1 − λ)f (X1) (A.1)

that is, if the segment joining the two points lies entirely above or on the graph of
f (X). Figures A.1a and A.2a illustrate a convex function in one and two dimensions,
respectively. It can be seen that a convex function is always bending upward and hence
it is apparent that the local minimum of a convex function is also a global minimum.

Concave Function. A function f (X) is called a concave function if for any two
points X1 and X2, and for all 0≤ 𝜆≤ 1,

f [λX2 + (1 − λ)X1] ≥ λf (X2) + (1 − λ)f (X1) (A.2)

that is, if the line segment joining the two points lies entirely below or on the graph of
f (X).

Figures A.1b and A.2b give a concave function in one and two dimensions, respec-
tively. It can be seen that a concave function bends downward and hence the local
maximum will also be its global maximum. It can be seen that the negative of a convex
function is a concave function, and vice versa. Also note that the sum of convex func-
tions is a convex function and the sum of the concave functions is a concave function.
A function f (X) is strictly convex or concave if the strict inequality holds in Eqs. (A.1)
or (A.2) for any X1 ≠X2. A linear function will be both convex and concave since it
satisfies both inequalities (A.1) and (A.2). A function may be convex within a region
and concave elsewhere. An example of such a function is shown in Figure A.3.

Testing for Convexity or Concavity. In addition to the definition given, the following
equivalent relations can be used to identify a convex function.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

761

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

762 Convex and Concave Functions

(a) (b)

Figure A.1 Functions of one variable: (a) convex function in one variable; (b) concave
function in one variable.

(a) (b)

Figure A.2 Functions of two variables: (a) convex function in two variables; (b) concave
function in two variables.

Figure A.3 Function that is convex over a certain region and concave over a certain other
region.

�

� �

�

Convex and Concave Functions 763

Theorem A.1 A function f (X) is convex if for any two points X1 and X2, we have

f (X2) ≥ f (X1) + ∇f T(X1)(X2 − X1)

Proof: If f (X) is convex, we have by definition

f [λX2 + (1 − λ)X1] ≤ λf (X2) + (1 − λ) f (X1)

that is,
f [X1 + λ(X2 − X1)] ≤ f (X1) + λ[f (X2) − f (X1)] (A.3)

This inequality can be rewritten as

f (X2) − f (X1) ≥
{

f [X1 + λ(X2 − X1)] − f (X1)
λ(X2 − X1)

}
(X2 − X1) (A.4)

By defining ΔX = 𝜆(X2 −X1), the inequality (A.4) can be written as

f (X2) − f (X1) ≥ f [X1 + ΔX] − f (X1)
ΔX

(X2 − X1) (A.5)

By taking the limit as ΔX→ 0, inequality (A.5) becomes

f (X2) − f (X1) ≥ ∇f T (X1)(X2 − X1) (A.6)

which can be seen to be the desired result. If f (X) is concave, the opposite type of
inequality holds true in (A.6).

Theorem A.2 A function f (X) is convex if the Hessian matrix H (X) = [𝜕2f (X)/
𝜕xi𝜕xj] is positive semidefinite.

Proof: From Taylor’s theorem we have

f (X∗ + h) = f (X∗) +
n∑

i=1

hi
𝜕f

𝜕xi
(X∗)

+ 1
2!

n∑
i=1

n∑
j=1

hihj
𝜕

2f

𝜕xi𝜕xj

||||||X=X∗+𝜃h

(A.7)

where 0 <𝜃 < 1. By letting X* = X1, X* +h = X2 and h = X2 −X1, Eq. (A.7) can be
rewritten as

f (X2) = f (X1) + ∇f T(X1)(X2 − X1) +
1
2
(X2 − X1)T

×H{X1 + 𝜃(X2 − X1)}(X2 − X1) (A.8)

It can be seen that inequality (A.6) is satisfied [and hence f (X) will be convex] if H
(X) is positive semidefinite. Further, if H (X) is positive definite, the function f (X) will
be strictly convex. It can also be proved that if f (X) is concave, the Hessian matrix is
negative semidefinite.

�

� �

�

764 Convex and Concave Functions

The following theorem establishes a very important relation, namely, that any
local minimum is a global minimum for a convex function.

Theorem A.3 Any local minimum of a convex function f (X) is a global minimum.

Proof: Let us prove this theorem by contradiction. Suppose that there exist two dif-
ferent local minima, say, X1 and X2, for the function f (X). Let f (X2) < f (X1). Since
f (X) is convex, X1 and X2 have to satisfy the relation (A.6), that is,

f (X2) − f (X1) ≥ ∇f T(X1)(X2 − X1) (A.6)

or
∇f T (X1)S ≤ 𝟎 (A.9)

where S = (X2 −X1) is a vector joining the points X1 to X2. Equation (A.9) indicates
that the value of the function f (X) can be decreased further by moving in the direction
S = (X2 −X1) from point X1. This conclusion contradicts the original assumption that
X1 is a local minimum. Thus, there cannot exist more than one minimum for a convex
function.

Example A.1 Determine whether the following functions are convex or concave.
(a) f (x) = ex

(b) f (x) = −8x2

(c) f (x1, x2) = 3x3
1 − 6x2

2

(d) f (x1, x1, x3) = 4x2
1 + 3x2

2 + 5x2
3 + 6x1x2 + x1x3 − 3x1 − 2x2 + 15

SOLUTION
(a) f (x) = ex: H (x) = d2f/dx2 = ex

> 0 for all real values of x. Hence f (x) is strictly
convex.

(b) f (x) = −8x2: H (x) = d2f/dx2 = −16 < 0 for all real values of x. Hence f (x) is
strictly concave.

(c) f = 2x3
1 − 6x2

2 ∶

H(X) =

[
𝜕

2f∕𝜕x2
1 𝜕

2f∕𝜕x1𝜕x2

𝜕
2f∕𝜕x1𝜕x2 𝜕

2f∕𝜕x2
2

]
=

[
12x1 0

0 −12

]

Here 𝜕2f/𝜕x1
2 = 12x1 ≤ 0 for x1 ≤ 0 and≥ 0 for x1 ≥ 0, and

|H(X)| = −144x1 ≥ 0 for x1 ≤ 0 and ≤ 0 for x1 ≥ 0

Hence H (X) will be negative semidefinite and f (X) is concave for x1 ≤ 0.

f = 4x2
1 + 3x2

2 + 5x2
3 + 6x1x2 + x1x3 − 3x1 − 2x2 + 15 ∶

H(X) =
⎡⎢⎢⎢⎣
𝜕

2f∕𝜕x2
1 𝜕

2f∕𝜕x1𝜕x2 𝜕
2f∕𝜕x1𝜕x3

𝜕
2f∕𝜕x1𝜕x2 𝜕

2f∕𝜕x2
2 𝜕

2f∕𝜕x2𝜕x3

𝜕
2f∕𝜕x1𝜕x3 𝜕

2f∕𝜕x2𝜕x3 𝜕
2f∕𝜕x2

3

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣
8 6 1
6 6 0
1 0 10

⎤⎥⎥⎦

�

� �

�

Convex and Concave Functions 765

Here the principal minors are given by

∣ 8 ∣ = 8 > 0||||8 6
6 6

|||| = 12 > 0

||||||
8 6 1
6 6 0
1 0 10

|||||| = 114 > 0

and hence the matrix H (X) is positive definite for all real values of x1, x2,
and x3. Therefore, f (X) is a strictly convex function.

�

� �

�

�

� �

�

B

Some Computational Aspects
of Optimization

Several methods were presented for solving different types of optimization problems
in Chapters 3–14. This appendix is intended to give some guidance to the reader in
choosing a suitable method for solving a particular problem along with some computa-
tional details. Most of the discussion is aimed at the solution of nonlinear programming
problems.

B.1 CHOICE OF METHOD

Several factors are to be considered in deciding a particular method to solve a given
optimization problem. Some of them are

1. The type of problem to be solved (general nonlinear programming problem,
geometric programming problem, etc.)

2. The availability of a ready-made computer program
3. The calendar time required for the development of a program
4. The necessity of derivatives of the functions f and gj, j = 1, 2, . . . , m
5. The available knowledge about the efficiency of the method
6. The accuracy of the solution desired
7. The programming language and quality of coding desired
8. The robustness and dependability of the method in finding the true optimum

solution
9. The generality of the program for solving other problems

10. The ease with which the program can be used and its output interpreted

B.2 COMPARISON OF UNCONSTRAINED METHODS

A number of studies have been made to evaluate the various unconstrained minimiza-
tion methods. Moré et al. [B.1] provided a collection of 35 test functions for testing the
reliability and robustness of unconstrained minimization software. The performance
of eight unconstrained minimization methods was evaluated by Box [B.2] using a
set of test problems with up to 20 variables. Straeter and Hogge [B.3] compared

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

767

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

768 Some Computational Aspects of Optimization

four gradient-based unconstrained optimization techniques using two test problems.
A comparison of several variable metric algorithms was made by Shanno and Phua
[B.4]. Sargent and Sebastian presented numerical experiences with unconstrained
minimization algorithms [B.5]. On the basis of these studies, the following general
conclusions can be drawn.

If the first and second derivatives of the objective function (f) can be evaluated
easily (either in closed form or by a finite-difference scheme), and if the number of
design variables is not large (n≤ 50), Newton’s method can be used effectively. For
n greater than about 50, the storage and inversion of the Hessian matrix at each stage
becomes quite tedious and the variable metric methods might prove to be more useful.
As the problem size increases (beyond n = 100 or so), the conjugate gradient method
becomes more powerful.

In many practical problems, the first derivatives of f can be computed more accu-
rately than the second derivatives. In such cases, the Broydon–Fletcher–Goldfarb–
Shanno (BFGS) and Davidon–Fletcher–Powell (DFP) methods become an obvious
choice of minimization. Of these two, the BFGS method is more stable and efficient.
If the evaluation of the derivatives of f is extremely difficult or if the function does
not possess continuous derivatives, Powell’s method can be used to solve the problem
efficiently.

With regard to the one-dimensional minimization required in all the unconstrained
methods, the Newton and cubic interpolation methods are most efficient when the
derivatives of f are available. Otherwise, the Fibonacci or the golden section method
has to be used.

B.3 COMPARISON OF CONSTRAINED METHODS

The comparative evaluation of nonlinear programming techniques was conducted by
several investigators. Colville [B.6] compared the efficiencies of 30 codes using eight
test problems that involve 3–16 design variables and 0–14 constraints. However, the
codes were tested at different sites on different computers and hence the study was
not considered reliable. Eason and Fenton [B.7] conducted a comparative study of 20
codes using 13 problems that also included the problems used by Colville. However,
their study was confined primarily to penalty function-type methods. Sandgren and
Ragsdell [B.8] studied the relative efficiencies of the leading nonlinear programming
methods of the day more systematically. They studied 24 codes using 35 problems,
including some of those used by Colville and Eason and Fenton.

The number of design variables varied from 2 to 48 and the number of constraints
ranged from 0 to 19; some problems involved equality constraints, too. They found the
generalized reduced gradient (GRG) method to be most robust and efficient followed
by the exterior and interior penalty function methods.

Schittkowski published the results of his study of nonlinear programming codes in
1980 [B.9]. He experimented with 20 codes on 180 randomly generated test problems
using multiple starting points. Based on his study, the sequential quadratic program-
ming was found to be most efficient, followed by the GRG, method of multipliers, and
penalty function methods, in that order. Similar comparative studies of geometric pro-
gramming codes were also conducted [B.10–B.12]. Although the studies above were
quite extensive, the conclusion may not be of much use in practice since the stud-
ies were limited to relatively few methods and further, they are limited to specially
formulated test problems that are not related to real-life problems. Thus, each new

�

� �

�

B.4 Availability of Computer Programs 769

practical problem has to be tackled almost independently based on past experience.
The following guidelines are applicable for a general problem.

The sequential quadratic programming approach can be used for solving a vari-
ety of problems efficiently. The GRG method and Zoutendijk’s method of feasible
directions, although slightly less efficient, can also be used for the efficient solution of
constrained problems. The augmented Lagrange multiplier (ALM) and penalty func-
tion methods are less efficient but are robust and reliable in finding the solution of
constrained problems.

B.4 AVAILABILITY OF COMPUTER PROGRAMS

Many computer programs are available to solve nonlinear programming problems.
Notable among these is the book by Kuester and Mize [B.13], which gives Fortran
programs for solving linear, quadratic, geometric, dynamic, and nonlinear program-
ming problems. During practical computations, it is important to note that a method
that works well for a given class of problems may work poorly for others. Hence it
is usually necessary to try more than one method to solve a particular problem effi-
ciently. Further, the efficiency of any nonlinear programming method depends largely
on the values of adjustable parameters such as starting point, step length, and conver-
gence requirements. Hence a proper set of values to these adjustable parameters can
be given only by using a trial-and-error procedure or through experience gained in
working with the method for similar problems. It is also desirable to run the program
with different starting points to avoid local and false optima. It is advisable to test
the two convergence criteria stated in Section 7.21 before accepting a point as a local
minimum.

Moré and Wright present information on the current state of numerical optimiza-
tion software in [B.16]. Several software systems such as IMSL, MATLAB, and ACM
contain programs to solve optimization problems. The relevant addresses are

IMSL
7500 Bellaire Boulevard
Houston, TX 77036

MATLAB
The MathWorks, Inc.
24 Prime Park Way
Natick, MA 01760

ACM Distribution Service
c/o International Mathematics and Statistics Service
7500 Bellaire Boulevard
Houston, TX 77036

In addition, the commercial structural optimization packages listed in Table B.1
are available in the market [B.14, B.15]. Most of this software is based on a
finite-element-based analysis for objective and constraint function evaluations and
use several types of approximation strategies.

�

� �

�

770 Some Computational Aspects of Optimization

Table B.1 Summary of some structural optimization packages.

Software system
(program)

Source
(developer)

Capabilities and
characteristics

ASTROS (Automated
Structural
Optimization System)

Air Force Wright Laboratories
FIBRA
Wright-Patterson Air Force

Base, OH 45433-6553

Structural optimization with
static, eigenvalue, modal
analysis, and flutter
constraints; approximation
concepts; compatibility
with NASTRAN;
sensitivity analysis

ANSYS Swanson Analysis
Systems, Inc.

P.O. Box 65
Johnson Road
Houston, PA 15342-0065

Optimum design based on
curve-fitting technique to
approximate the response
using several trial design
vectors

MSC/NASTRAN
MacNeal Schwendler
Corporation/NASA
Structural Analysis)

MacNeal-Schwendler
Corporation

5 Colorado Boulevard
Los Angeles, CA 90041

Structural optimization
capability based on static,
natural frequency, and
buckling analysis;
approximation concepts
and sensitivity analysis

NISAOPT Engineering Mechanics
Research Corporation

P.O. Box 696
Troy, MI 48099

Minimum-weight design
subject to displacement,
stress, natural frequency
and buckling constraints;
shape optimization

GENESIS VMA Engineering Inc.
Manderin Avenue, Suite F
Goleta, CA 93117

Structural optimization;
approximation concepts
used to tightly couple the
analysis and redesign tasks

B.5 SCALING OF DESIGN VARIABLES AND CONSTRAINTS

In some problems there may be an enormous difference in scale between variables
due to difference in dimensions. For example, if the speed of the engine (n) and
the cylinder wall thickness (t) are taken as design variables in the design of an IC
engine, n will be of the order of 103 (revolutions per minute) and t will be of the
order of 1 (cm). These differences in scale of the variables may cause some difficul-
ties while selecting increments for step lengths or calculating numerical derivatives.
Sometimes the objective function contours will be distorted due to these scale dispar-
ities. Hence it is a good practice to scale the variables so that all the variables will be
dimensionless and vary between 0 and 1 approximately. For scaling the variables, it
is necessary to establish an approximate range for each variable. For this we can take
some estimates (based on judgment and experience) for the lower and upper limits on
xi(xi

min and xi
max), i = 1, 2, . . . , n. The values of these bounds are not critical and there

will not be any harm even if they span partially the infeasible domain. Another aspect
of scaling is encountered with constraint functions. This becomes necessary whenever
the values of the constraint functions differ by large magnitudes. This aspect of scaling
(normalization) of constraints was discussed in Section 7.13.

�

� �

�

B.6 Computer Programs for Modern Methods of Optimization 771

B.6 COMPUTER PROGRAMS FOR MODERN METHODS OF
OPTIMIZATION

Fuzzy logic toolbox. MATLAB has a fuzzy logic toolbox for designing systems
based on fuggy logic. Graphical user interfaces (GUI) are available to guide the
user through the steps of fuzzy interface system design. The toolbox can be used
to model complex system behaviors using simple logic rules and then implement
the rules in a fuzzy interface system. Fuzzy optimization can be implemented
using fuzzy logic toolbox in conjunction with an optimization program such as
fmincon.

Genetic algorithm and direct search toolbox. The genetic algorithm and direct
search toolbox, which can be used to solve problems that are difficult to solve
with traditional optimization techniques, is available with MATLAB. The genetic
algorithm of the toolbox can be used when the function, such as the objective or
constraint function, is discontinuous, highly nonlinear, stochastic, or has unreli-
able or undefined derivatives. In this toolbox also, GUI are available for quick
setting up of problems, selecting algorithmic options, and monitoring progress.
Naturally, the options of creating initial population, fitness scaling, parent selec-
tion, crossover and mutation are available in the toolbox. The MATLAB optimiza-
tion programs (using direct search methods) can be integrated with the genetic
algorithm.

Neural network toolbox. The neural network toolbox is available with MAT-
LAB for designing, implementing, visualizing and simulating neural networks.
The GUI available with the toolbox helps in creating, training and simulating
neural networks. It permits modular network representation to have any number
of input-setting layers and network interconnection and a graphical view of the
network architecture. Optimization programs can be used in conjunction with the
functions of the neural network toolbox to accomplish neural network-based opti-
mization. The neural network toolbox can also be used to apply neural networks
for the identification and control of nonlinear systems.

Simulated annealing algorithm. An m-file to implement the simulated anneal-
ing algorithm to solve function minimization problems in the MATLAB environ-
ment was created by Joachim Vandekerckhove. The link is given below:
http://www.mathworks.com/matlabcentral/fileexchange/10548

Particle swarm optimization. An m-file to implement the particle swarm opti-
mization method in the MATLAB environment was created by Wael Korani. The
link is given below:
http://www.mathworks.com/matlabcentral/fileexchange/20205

Ant colony optimization. An m-file to implement the ant colony optimization
method in the MATLAB environment for the solution of symmetrical and unsym-
metrical traveling salesman problem was created by H. Wang. The link is given
below:
http://www.mathworks.com/matlabcentral/fileexchange/14543

http://www.mathworks.com/matlabcentral/fileexchange/10548
http://www.mathworks.com/matlabcentral/fileexchange/20205
http://www.mathworks.com/matlabcentral/fileexchange/14543

�

� �

�

772 Some Computational Aspects of Optimization

Multiobjective optimization. An m-file to implement multiobjective optimiza-
tion using evolutionary algorithms (based on nondominated sorting genetic algo-
rithm, abbreviated NSGA) in the MATLAB environment was created by Arvind
Seshadri. The link is given below:
http://www.mathworks.com/matlabcentral/fileexchange/10429

REFERENCES AND BIBLIOGRAPHY

B.1 Moré, J.J., Garbow, B.S., and Hillstrom, K.E. (1981). Testing unconstrained optimiza-
tion software. ACM Transactions on Mathematical Software 7 (1): 17–41.

B.2 Box, M.J. (1966). A comparison of several current optimization methods, and the use
of transformations in constrained problems. Computer Journal 9 (1): 67–77.

B.3 Straeter, T.A. and Hogge, J.E. (1970). A comparison of gradient dependent techniques
for the minimization of an unconstrained function of several variables. AIAA Journal 8
(12): 2226–2229.

B.4 Shanno, D.F. and Phua, K.H. (1978). Numerical comparison of several variable-metric
algorithms. Journal of Optimization Theory and Applications 25 (4): 507–518.

B.5 Sargent, R.W.H. and Sebastian, D.J. (1972). Numerical experience with algorithms for
unconstrained minimization. In: Numerical Methods for Nonlinear Optimization (ed.
F.A. Lootsma), 45–113. London: Academic Press.

B.6 Colville, A.R. (1968). A Comparative Study of Nonlinear Programming Codes, Tech-
nical Report 320–2949. IBM New York Scientific Center, June.

B.7 Eason, E.D. and Fenton, R.G. (1974). A comparison of numerical optimization methods
for engineering design. Journal of Engineering for Industry 96 (1): 196–200.

B.8 Sandgren, E. and Ragsdell, K.M. (1980). The utility of nonlinear programming algo-
rithms: a comparative study, parts I and II. Journal of Mechanical Design 102 (3):
540–551.

B.9 Schittkowski, K. (1980). Nonlinear Programming Codes: Information, Tests, Perfor-
mance, Lecture Notes in Economics and Mathematical Systems, vol. 183. New York:
Springer-Verlag.

B.10 Sarma, P.V.L.N., Martens, X.M., Reklaitis, G.V., and Rijckaert, M.J. (1978). A com-
parison of computational strategies for geometric programs. Journal of Optimization
Theory and Applications 26 (2): 185–203.

B.11 Fattler, J.E., Sin, Y.T., Root, R.R. et al. (1982). On the computational utility of
posynomial geometric programming solution methods. Mathematical Programming
22: 163–201.

B.12 Dembo, R.S. (1978). The current state-of-the-art of algorithms and computer software
for geometric programming. Journal of Optimization Theory and Applications 26: 149.

B.13 Kuester, J.L. and Mize, J.H. (1973). Optimization Techniques with Fortran. New York:
McGraw-Hill.

B.14 Johnson, E.H. (1993). Tools for structural optimization. Chapter 29,. In: Structural Opti-
mization: Status and Promise (ed. M.P. Kamat), 851–863. Washington, DC: AIAA.

B.15 Hörnlein, H.R.E.M. and Schittkowski, K. (1993). Software Systems for Structural Opti-
mization. Basel: Birkhauser.

B.16 Moré, J.J. and Wright, S.J. (1993). Optimization Software Guide. Philadelphia, PA:
Society of Industrial and Applied Mathematics.

http://www.mathworks.com/matlabcentral/fileexchange/10429

�

� �

�

C

Introduction to MATLAB®

MATLAB, derived from MATrix LABoratory, is a software package that was origi-
nally developed in the late 1970s for the solution of scientific and engineering prob-
lems. The software can be used to execute a single statement or a list of statements,
called a script or m-file. MATLAB family includes the Optimization Toolbox, which
is a library of programs or m-files to solve different types of optimization problems.
Some basic features of MATLAB are summarized in this appendix.

C.1 FEATURES AND SPECIAL CHARACTERS

Some of the important features and special characters used in MATLAB are indicated
below:

1. Symbol ≫: This is the default prompt symbol in MATLAB
2. Symbol ;: A semicolon at the end of a line avoids the echoing the information

entered before the semicolon
3. Symbol . . . : Three periods at the end of a line indicates the continuation of

the code in the next line
4. help command_name: This displays information on different ways the com-

mand can be used
5. Symbol %: Any text after this symbol is considered a comment and will not

be operational
6. MATLAB is case sensitive. Uppercase and lowercase letters are treated sep-

arately.
7. MATLAB assumes all variables to be arrays. As such, separate dimension

statements are not needed. Scalar quantities need not be given as arrays.
8. Names of variables: variable names should start with a letter and can have a

length of up to 31 characters in any combination of letters, digits, and under-
scores.

9. The symbols for the basic arithmetic operations of addition, subtraction, mul-
tiplication, division, and exponentiation are +, −, *, /, and ∧, respectively.

10. MATLAB has some built-in variable names and, as such, we should avoid
using those names for variables in writing a MATLAB program or m-file.
Examples of built-in names: pi (for 𝜋), sin (for sine of an angle), etc.

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

773

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

774 Introduction to MATLAB®

C.2 DEFINING MATRICES IN MATLAB

Before performing arithmetic operations or using them in developing MATLAB
programs or m-files, the relevant matrices need to be defined using statements such
as the following.

1. A row vector or 1× n matrix, denoted A, can be defined by enclosing its
elements in brackets and separated by either spaces or commas.

Example: A = [1 2 3]

2. A column vector or n× 1 matrix, denoted A, can be defined by entering its
elements in different lines or in a single line using a semicolon to separate
them or in a single line using a row vector with a prime on the right-side bracket
(to denote the transpose).

Example: [1

A = 2 , A = [1; 2; 3], or A = [1 2 3]′.

3]

3. A matrix of size m× n, denoted A, can be defined as follows (similar to the
procedure used for a column vector).

Example: [1 2 3

A = 4 5 6 , or A = [1 2 3; 4 5 6; 7 8 9].

7 8 9]

4. Definitions of some special matrices:

A = eye (3)
implies an identity matrix of order 3: A =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ .
A = ones (3)
implies a square matrix of order 3 with all elements equal to one: A =

⎡⎢⎢⎣
1 1 1
1 1 1
1 1 1

⎤⎥⎥⎦ .
A = zeros (2, 3)
implies a 2× 3 matrix with all elements equal to zero: A =

[
0 0 0
0 0 0

]
.

5. Some uses of the colon operator (:):

(i) To generate all numbers between 100 and 50 in increments of −7

> > 100 ∶ −7 ∶ 50

This command generates the numbers 100 93 86 79 65 58 51

�

� �

�

C.4 Optimization Toolbox 775

(ii) To generate all numbers between 0 and 𝜋 in increments of 𝜋/6

>> 0 ∶ pi∕6 ∶ pi

This command generates the numbers

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416

C.3 CREATING m-FILES

MATLAB can be used in an interactive mode by typing each command from the
keyboard. In this mode, MATLAB performs the operations much like an extended
calculator. However, there are situations in which this mode of operation is inefficient.
For example, if the same set of commands is to be repeated a number of times with dif-
ferent values of the input parameters, developing a MATLAB program will be quicker
and efficient.

A MATLAB program consists of a sequence of MATLAB instructions written
outside MATLAB and then executed in MATLAB as a single block of commands.
Such a program is called a script file, or m-file. It is necessary to give a name to the
script file. The name should end with .m (a dot followed by the letter m). A typical
m-file (called fibo.m) is

file “fibo.m”

% m-file to compute Fibonacci numbers
f=[1 1];
i=1;
while f(i)+f(i+1)<1000

f(i+2)=f(i)+f(i+1);
i=i+1;

end

C.4 OPTIMIZATION TOOLBOX

The Optimization Toolbox includes programs or m-files that can be used to solve dif-
ferent types of optimization problems. The following publication gives information on
the optimization toolbox, including algorithms and examples for different programs:

T. F. Coleman, M. A. Branch, and A. Grace, Optimization Toolbox – for Use with
MATLAB, User’s Guide, Version 2, Math Works, Inc., Natick, MA, 1999.

The use of any program or m-file in the optimization toolbox requires the
following:

• Selecting the appropriate program or m-file to solve the specific problem at
hand.

• Formulation of the optimization problem in the format expected by MATLAB.
In general, this involves stating the objective function in a specific form such
as a “minimization” type and the constraints in a specific form such as “less
than or equal to zero” type.

�

� �

�

776 Introduction to MATLAB®

• Distinction between linear and nonlinear constraints.
• Identification of lower and upper bounds on design variables.
• Setting/changing the parameters of the optimization algorithm (based on the

available options).

Using MATLAB Programs

Each program or m-file in MATLAB can be implemented in several ways. The details
can be found either in the reference given above or online using the help command. For
illustration, the help command and the response for the program fmincon are shown
below.

The function fmincon can be used in 12 different ways as indicated below (by
the help command). The differences depend on the available data in the mathematical
model of the problem and the information required from the solution of the problem.
In using the different function calls, any data missing in the mathematical model of
the optimization problem need to be indicated using a null vector as []. Note that the
response is edited for brevity.

» help fmincon

FMINCON Finds the constrained minimum of a function of
several variables.

FMINCON solves problems of the form:
min F(X) subject to:

A*X <= B, Aeq*X = Beq (linear constraints)
C(X) <= 0, Ceq(X) = 0 (nonlinear constraints)
LB <= X <= UB

X=FMINCON (FUN,X0,A,B)
X=FMINCON (FUN,X0,A,B,Aeq,Beq)
X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB)
X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON)
X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS)
X=FMINCON (FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS,...

P1,P2,...)
[X,FVAL] = FMINCON (FUN,X0,...)
[X,FVAL,EXITFLAG] = FMINCON (FUN,X0,...)
[X,FVAL,EXITFLAG,OUTPUT]=FMINCON (FUN,X0,...)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] =FMINCON (FUN,X0,...)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD]=FMINCON (FUN,X0,...)
[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN]=FMINCON
(FUN,X0,...).

The solution of representative constrained nonlinear programming problems using the
function fmincon is illustrated in Chapters 1 and 7.

�

� �

�

Answers to Selected Problems

CHAPTER 1

1.1 Min. f = 5xA − 80xB + 160xC + 15xD, 0.05xA + 0.05xB + 0.1xC + 0.15xD ≤ 1000,
0.1xA + 0.15xB + 0.2xC + 0.05xD ≤ 2000, 0.05xA + 0.1xB + 0.1xC + 0.15xD ≤ 1500, xA ≥ 5000,
xB ≥ 0, xC ≥ 0, xD ≥ 4000

1.2 (a) X* = {0.65, 0.53521}, (b) X* = {0.9, 2.5}, (c) X* = {0.65, 0.53521}

1.5 x∗1 = x∗2 = 300

1.9 (a) R∗
1 = 4.472, R∗

2 = 2.236, (b) R∗
1 = 3.536, R∗

2 = 3.536 (c) R∗
1 = 6.67, R∗

2 = 3.33

1.11 (a) y1 = ln x1, y2 = ln x2, ln f = 2y1 + 3y2,
(b) f = 10y2x2 , x1 = 10y2 , ln (log10 f) = ln (log10 x1)+ ln x2

1.14 xij = 1 if city j is visited immediately after city i, and = 0 otherwise.

Find {xij} to minimize f =
n∑

i=1

n∑
j=1

dijxij subject to
n∑

i=1
xij = 1 (i = 1, 2, . . . , n),

i ≠ j and
n∑

j=1
xij = 1 (i = 1, 2, . . . , n), j ≠ i

1.19 Min. f = 𝜌lbd,
Py

bd
+

6Pxl

bd2
≤ 𝜎y,

Py

bd
+

6Pxl

bd2
≤ 𝜋

2Ed2

48l2
, b ≥ 0.5, b ≤ 2d.

1.25 Max. f = 2
3

tm + 3
5

td, tm + td ≤ 40, td ≥ 1.25tm, 0 ≤ tm ≤ 24 , 0 ≤ td ≤ 20.

1.29 Min. f = 𝜋x3[x2
1 − (x1 − x2)2] +

4
3
𝜋[x3

1 − (x1 − x4)3], 𝜋x3(x1 − x2)2+
4
3
𝜋(x1 − x4)3 − 4,619, 606 ≤ 0, x2 −

pR0

S.e + 0.4p
≤ 0, x4 −

pR0

S.e + 0.8p
≤ 0

CHAPTER 2

2.1 r* = R

2.3 x* = 1.5 (inflection point)

2.5 x = −1 (not min, not max), x = 2 (min)

2.9 d =
(

D5

8 f l

)1∕4

2.10 35.36 m

2.11 (a) 79.28∘, (b) 0.911 from end of stroke

Engineering Optimization: Theory and Practice, Fifth Edition. Singiresu S Rao.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
Companion Website: www.wiley.com/go/Rao/engineering_optimization

777

http://www.wiley.com/go/Rao/engineering_optimization

�

� �

�

778 Answers to Selected Problems

2.13 positive semidefinite

2.15 positive definite

2.17 negative definite

2.19 indefinite

2.21 x∗1 = 0.2507 m, x∗2 = 5.0879× 10−3 m

2.23 a = 328, b = −376

2.26 x* = 27, y* = 21

2.27 x* = 100

2.28 (a) minimum, (b) minimum, (c) saddle point, (d) none

2.30 saddle point at (0, 0)

2.33 dx1 = arbitrary, dx2 = 0

2.36 radius = 2r/3, length = h/3

2.38 length = (a2/3 + b2/3)3/2

2.40 h* =
(4V
𝜋

)1∕3

, r∗ = h∗

2

2.41 x∗1 = x∗3 = (S∕3)1∕2
, x∗2 = (S∕12)1∕2

2.43 d∗ = 1
6
{(a + b) −

√
a2 − ab + b2}

2.47 200 mm× 250 mm

2.50 X* = {4, 2, 2}

2.53 198.43 ft× 113.39 ft

2.55 (a) f ∗new = 15𝜋, (b) f ∗new = 18𝜋

2.57 (a) f* = 1/ 3, (b) f* = −1/9

2.61 X2 is local minimum

2.63 (a) Kuhn–Tucker conditions satisfied, (b) 𝜆1 = 0.4, 𝜆2 = 0.2, 𝜆3 = 0

2.65 (a) S = {1, −3}, (b) none

2.67 optimum

2.69 x∗1 = 3
4
, x∗2 = 4

9
16

2.73 convex

2.75 none optimum

CHAPTER 3

3.3 x1 = 1, x2 = 2, x3 = 3

3.5 x1 = 2, x2 = 4, x3 = 6

3.7 x∗1 = 1∕3, x∗2 = 4∕3

�

� �

�

Answers to Selected Problems 779

3.9 x∗1 = 2
2
5
, x∗2 = 1

1
5

3.12 x∗ = 3
3

11
, y∗ = 3

2
11

3.15 x∗ = 5
1

13
, y∗ = 1

1
13

3.17 all points on line joining (2, 10) and (7.4286, 15.4286)

3.18 x* = 10, y* = 18

3.20 x* = 9/ 7, y* = 40/ 7

3.23 x* = 6, y* = 1

3.25 x* = 6, y* = 0

3.27 x* = 75/ 8, y* = 27/ 8

3.29 x* = 3, y* = −2.5

3.31 x* = 4, y* = 0

3.33 unbounded

3.35 x* = 4/ 7, y* = 30/ 7

3.37 x* = 36/ 7, y* = 15/ 7

3.39 x* = 16/ 5, y* = 1/ 5

3.41 infeasible

3.43 unbounded

3.48 x∗1 = 3000.0, x∗2 = 416.7, x∗3 = 1200.0

3.50 x∗1(barley) = 40, x∗2 = x∗3 = x∗4 = 0, x∗5 (leased) = 160

3.55 x∗A = 1.5, x∗B = 0

3.57 x∗m = 16, x∗d = 20

3.60 x* = 36/11, y* = 35/11

3.66 all points on the line joining (7.4286, 15.4286) and (10, 18)

3.71 x* = 3.6207, y* = 8.4483

3.75 x* = 2/ 7, y* = 30/ 7

3.79 x* = 56/ 23, y* = 45/ 23

3.85 x* = −4/ 3, y* = 7

3.89 x* = 0, y* = 3

3.92 (x1, x2) = amounts of mixed nuts (A, B) used, lb. x∗1 = 80∕7, x∗2 = 120∕7

3.94 x∗A = 62.5, x∗B = 31.25

3.96 xi = number of units of Pi produced per week. x∗1 = 100∕3, x∗2 = 250∕3

3.99 (x1, x2) = number of units of (A, B) sold per month. x∗1 = 19.17, x∗2 = 45

3.102 xi = number of days used in a month for process type i (i = 1, 2, 3, 4).

x∗1 = 30, x∗2 = x∗3 = x∗4 = 0

�

� �

�

780 Answers to Selected Problems

CHAPTER 4

4.1 X* = {2.333, 1.333, 0, 0}

4.3 x∗i = 0, i = 1, 2, 3, x∗4 = 2∕5, x∗5 = 2∕5

4.5 solution unbounded

4.9 x∗i = 0, i = 1, 2, 5, 6, 7 x∗3 = 0.5, x∗4 = 1.5

4.12 x∗1 = 2.35, x∗2 = 0.1, x∗3 = 2.7, x∗4 = 1.2

4.15 x∗1 = x∗2 = x∗3 = x∗6 = 0, x∗4 = 120, x∗5 = 100

4.17 optimum solution remains same, f ∗new = −27 600/ 3

4.19 (x1, x2, x3, x4) = number of units of products (A, B, C, D) produced.

x∗1 = 4000∕3, x∗2 = x∗3 = 0, x∗4 = 200∕3

4.23 x∗1 = 1000∕3, x∗2 = x∗3 = 0, x∗4 = 800∕3

4.29 x∗1 = 0, x∗2 = 0.5

4.31 x∗1 = 0, x∗2 = 0.5

4.33 infinite solutions

4.35 x∗1 = 0, x∗2 = 0.5

4.37 X(2) = {0.3367, 0.3112, 0.3250}

4.40 x∗1 = 0.9815, x∗2 = 1.2323, x∗3 = 0.4471

CHAPTER 5

5.2 0.484

5.3 0.481

5.4 0.49

5.6 0.8

5.9 0.7817

5.11 (a) 0.786151, (b) 0.786142, (c) 0.786192

5.14 (a) 999, (b) 20, (c) 19, (d) 14, (e) 14

5.17 (a) 2.7814, (b) 2.7183

5.18 (a) 2.7183 (b) 2.7289 (c) 2.7183

5.20 0.25

5.21 0.001257

5.22 0.00126

5.24 0.00125631

�

� �

�

Answers to Selected Problems 781

CHAPTER 6

6.1 Min. f = P0(0.5u2
1 + 0.5u2

2 − u1u2 − u2)

6.2 f̃1 = 7.0751, f̃2 = 74.8087 where f̃ =
3f𝜌l4

Eh2

6.4 x1 = 65.567, x2 = 52.974

6.5 x∗1 = 4.5454, x∗2 = 5.4545

6.7
f = 4250x2

1 − 1000x1x2 − 2500x1x3 + 1500x2
2 − 500x2x3 + 5750x2

3
−1000x1 − 2000x2 − 3000x3, X∗ = {0.3241, 0.8360, 0.3677}

6.9 X*≈ {1, 1}

6.12 X* = {0.9465, 2.0615, 2.9671}

6.14 f (z1, z2) = −5 + 1.0429z1 − 0.7244z2 + 0.5z2
1 + 0.5z2

2

6.16 (a) yes, (b) no

6.19 (a) 60 002.0, (b) 241.3729

6.30 X1 = {2, −1, −8} X2 = {2, −0.7, −8} X3 = {2.26, −0.85, −8} X4 = {2.15, −0.74,
−7.755}

6.35 X2 = {5.57, 0}, f2 > f1

6.38 x∗1 = 1, x∗2 = 1

6.45 X5 = {2.0869, 1.7390}, f5 = −8.3477

6.47 X* = {−2, 1, 4}

6.48 x* = 1.1423, y* = 0.8337

6.50 x∗1 = 1.698105, x∗2 = 0.883407

6.52 X* = {5, −8}

6.55 (a) no, (b) yes

CHAPTER 7

7.1 X* = {2, 3}, f * = −50

7.6 (a) Min. f = 12x2
1 + 30x2

2 − 8x1x2 − 22x1 + 60x2 − 78, x2 + 2 = 0, x1 + x2 ≤ 0
(b) Min. f = 18x1 − 68x2 − 70, x2 + 2 = 0, x1 + x2 ≤ 0

7.8 X* = {1.74558, 1.95265}, f * = −9.23478

7.11 Max. f = 3.5483d4w, 2.2227× 10−6d4 − 1≤ 0, 0.2223d2w− 150≤ 0, d≤ 25

7.13 −8s1 + 4s2 < 0, s1 + 2s2 ≤ 0, −s1 ≤ 0

7.15 X* = {0.75, 4.56249}, f * = 0.25391

7.18 X* = {3, 3}, f * = 18

7.21 x∗1 = 24 cm, x∗2 = x∗3 = 12 cm

�

� �

�

782 Answers to Selected Problems

7.23 (a) 𝜙k = 2x − rk

(1
2 − x

+ 1
x − 10

)
, (b) 𝜙k = 2x+ rk (⟨2− x⟩2 + ⟨x− 10⟩2)

7.27 x∗1 = 0.989637, x∗2 = 1.979274

7.29
1
4

x2
1 +

1
16

x2
2 − 1 ≤ 0, x1∕5 + x2∕3 − 1 ≤ 0, r1 = 1.5

7.31 x∗1 = 4.1, x∗2 = 5.9

7.34 X*≈ {0.8984, 0}, f *≈ 2.2079

7.36 X*≈ {1.671, 17.6}

7.39 x1 = 0.4028, x2 = 0.8056

7.42 optimum, λ1 = λ2 = 1

4
√

2
, λ3 = 11

7.45 X*≈ {1.3480, 0.7722, 0.4299}, f *≈ 0.1154

CHAPTER 8

8.1 f≥ 2.268866

8.2 f≥ 3.464102

8.3 f≥ 3

8.5 radius = 0.4174 m, height = 1.6695 m

8.6 radius = 0.3633 m, height = 2.9067 m

8.7 x∗1 = 1.5 × 106
, x∗2 = 1.0 × 106

8.9 x∗1 = 5.7224, x∗2 = 0.8737, x∗3 = 7.2813

8.10 x∗1 = 1.0845, x∗2 = 1.1761

8.11 x∗1 = 8.6365, x∗2 = 0.9397, x∗3 = 6.8219, x∗4 = 0.9609

8.12 x∗1 = 1.1262, x∗2 = 1.1945, x∗3 = 1.6575

8.13 x∗1 = 2.2629, x∗2 = 7.1689, x∗3 = 4.5850

8.14 x∗1 = 0.3780, x∗2 = 0.5345, x∗3 = 0.5714

8.17 d* = 0.002808 m, D* = 0.02935 m

8.18 V* = 323.3201 ft/min, F* = 0.005 in./rev

8.20 2

8.22 R* = 0.2118, L* = 0.2907

8.23 R* = 1.2821, L* = 0.5266, f * = 16.2056

CHAPTER 9

9.1 x∗1 = 2, x∗2 = x∗3 = 0, x∗4 = 3

9.2 A-B-F-J-K-L-P

9.3 n1 = 2, n2 = 3, n3 = 1

�

� �

�

Answers to Selected Problems 783

9.4 24 000 ft at B, C, D, and E

9.5 D-H-L-K-J-I-M

9.6 stage 1 (0, n), stage 2 (0, 2n/ 3), stage 3 (4n/ 9, 0)

9.7 A B1 C1 D1 E

9.9 units invested in stations 1, 2, 3: (0, 2, 1)

9.10 x∗1 = 7.5, x∗2 = 10.0

9.11 x∗1 = 60, x∗2 = 70, x∗3 = 80

9.13 x∗1 = 5, x∗2 = 0, x∗3 = 5, x∗4 = 0

CHAPTER 10

10.1 X* = {2, 1}, f * = 13

10.3 X* = {0, 9}, f * = 27

10.4 X* = {1, 0}, f * = 3

10.5 X* = {0, 3}, f * = 3

10.6 X* = {3, 3}, f * = 39

10.7 X* = {4, 3}, f * = 10

10.8 187 = 1 0 1 1 1 0 1 1

10.9 X* = {1, 2, 0}, f * = 3

10.12 X* = {1, 1, 1}, f * = 18

10.13 X* = {1, 1, 1, 1, 0}, f * = 9

10.15 X* = {4, 0}, f * = 4

10.16 X* = {2, 2.5}, f * = 20.5

CHAPTER 11

11.2 V = 2√
𝜋h
, 𝜎v =

2
h

√
3
8
− 1
𝜋

11.3 X = 3.2, 𝜎X = 0.8

11.4 a = 769.2308, 𝜇X = 1, 𝜎X = 0.048038

11.7 fX(x) = x+ 1.5x2, fY(y) = y+ 1.5y2

11.8 𝜎X = 0.006079 cm, rejects = 1.32%

11.9 independent

11.10 dependent

11.11 (a) 0.99904, (b) 0.0475, (c) 3616 kgf/cm2

11.12 0.6767

�

� �

�

784 Answers to Selected Problems

11.13 R = 268.9520 ft, 𝜎R = 56.1941 ft, Rsecond order = 270.1673 ft

11.15 X* = {0, 0, 0, 12}, f * = 12

11.17 (a) X* = {0.0, 36.93, 174.40}, f * = 1891.72 (b) X* = same as in (a), 𝜎∗f = 524.50

(c) X* = same as in (a), (f + 𝜎f)∗ = 2416.22

CHAPTER 12

12.3 x(t) = c1et + (2− c1)e−t − t where c1 is a constant

12.4 circle of radius L/(2𝜋)

12.6 X∗ =
{

0.2
0.2

}
in.2

12.7 X∗ =
{

1.2169
0.3805

}

CHAPTER 13

13.1 Before: X1 =
{

17
13

}
, X2 =

{
15
22

}
; After: X1 =

{
23
22

}
, X2 =

{
9
13

}
13.3 (a) 9, (b) 10, (c) 11

13.4 10

13.6 (i j) = (i 4)

13.8 x* = 2

13.9 x1(2) = 2.8297, x2(2) = 1.9345, x3(2) = 1.6362, x4(2) = 1.1887

13.12 Number of copies of strings 1, 2, 3, 4, 5, 6, 7 are 0, 0, 1, 2, 5, 2, 2, respectively

13.14 String length = 37

CHAPTER 15

15.1 c∗1 = 0.04, c∗2 = 0.81

15.3 (a) {0.001165, 0.002329, 0.03949, −0.05635}, (b) {0.0009705, 0.001941, 0.05273,
−0.084102}, (c) {0.0009704, 0.001941, 0.05265, −0.08395}

15.5
{
𝜕yi

𝜕x1

}
= {−0.000582, −0.001165, −0.002329, 0.002329}

15.7
{
𝜕yi

𝜕x3

}
= {0.4693 × 10−7

, 0.9477 × 10−7
,−0.027948, 0.027947}

15.9 (a)
{

0.000125
0.000458

}
, (b)

{
−0.000229
−0.000229

}
,

{
0.0
0.000333

}
, (c)

{
−275

0

}
,

{
0
200

}

�

� �

�

Answers to Selected Problems 785

15.11
𝜕λ1

𝜕A2
= 2.28840,

𝜕λ2

𝜕A2
= 46.8649,

𝜕Y1

𝜕A2
=
{
−0.312639 × 10−12

0.391666 × 10−6

}
,

𝜕Y1

𝜕A2
=
{

0.698492 × 10−8

0.883790 × 10−2

}
15.15

𝜕𝜔1

𝜕D
= −1.584664,

𝜕𝜔2

𝜕D
= −2.744719

CHAPTER 16

16.1 y* = 3, A∗
1 = 0.316228 × 10−7

,A∗
2 = 0.948683 × 10−7, f * = 0.6× 10−6

16.2 y* = 0.25, A∗
1 = 1.0, A∗

2 = 1.0, f * = 43.7565

16.4 X* = {0.7635, 1.0540}, f * = 187.5670 with f = 0.625 f1 + 1061.0 f2

16.5 X* = {0.8, 1.1}, F* = 3.1267

16.6 X* = {0.75, 1.25}

�

� �

�

�

� �

�

Index

A
Absolute minimum, 57
Acceptable point, 8
ACO process as multi-layered network,

653
Active constraint, 8, 86
Addition of constraints, 197
Addition of new variables, 194
Additive algorithm, 552
Adjoint equations, 622
Adjoint variable, 622
Admissible variations, 71
All-integer problem, 537
Analytical methods, 229
Answers to selected problems, 777
Ant colony optimization (ACO), 633,

652, 674
algorithm, 655
ant searching behavior, 653
basic concept, 652
evaporation, 654
path retracing, 654
pheromone trail, 654
pheromone updating, 654

Applications of dynamic programming,
526

Applications of geometric programming,
480

Approximate mean, 584
Approximate variance, 584
Arithmetic-geometric inequality, 457
Artificial variables, 127
Augmented Lagrange multiplier method,

422
equality-constrained problems, 422
inequality-constrained problems, 423
mixed equality-inequality-constrained

problems, 425
Augmented Lagrangian function, 422
Availability of computer programs, 769
Average, 578

B
Balas algorithm, 551
Balas method, 551
Barrier methods, 396

Basic feasible solution, 119, 124
Basic set operations, 661, 662
Basic solution, 119, 124
Basic variables, 124
Basis, 119
Basis vector approach, 704
Beale’s function, 332
Beam-column, 50
Bearing, 486
Behavior constraints, 7
BFGS formula, 321
BFGS method, 327
Bias of random directions, 283
Binary numbers, 554
Binary programming, 750
Binary variables, 553
Bivariate distribution, 581
Boltzmann’s constant, 642
Boltzmann’s probability distribution, 642
Boundary value problem, 501
Bounded objective function method, 730
Bound point, 8
Brachistochrone problem, 612
Bracket function, 406, 636
Branch and bound method, 556
Branching, 556
Brown’s badly scaled function, 332
Broydon–Fletcher–Goldfarb–Shanno

method, 327

C
Calculus methods, 3
Calculus of variations, 3, 609
Canonical form, 122
Cantilever beam, 482
Cauchy method, 308
Cauchy’s inequality, 457
Central limit theorem, 589
Chance constrained programming, 589
Change in constraint coefficients, 195
Change in cost coefficients, 192
Change in right hand side constants, 188
Characteristics of constrained problem,

347
Checking convergence

of constrained problems, 426

787

�

� �

�

788 Index

Checking convergence (continued)
perturbing the design vector, 427
testing Kuhn–Tucker conditions, 427

Choice of method, 767
Circular annular plate, 629
Classical optimization techniques, 57
Classification

of optimization problems, 14
of unconstrained minimization

methods, 276
Classification of optimization problems

based on
deterministic nature of variables, 28
existence of constraints, 14
nature of design variables, 14
nature of equations involved, 18
number of objective functions, 31
permissible values of design variables,

27
physical structure of the problem, 15
separability of the functions, 29

Closed half space, 118
Cluster analysis, 3
Coefficient of variation, 579
Collapse mechanism, 111
Comparison

of constrained methods, 768
of elimination methods, 246
of methods, 266
of unconstrained methods, 767

Complementary geometric programming,
475

degree of difficulty, 478
solution procedure, 477

Complement of a fuzzy set, 662
Complex method, 351
Composite constraint surface, 8
Computational aspects of optimization,

768
Computer programs, availability of, 769,

770
Computer program for

ant colony optimization, 771
fuzzy logic toolbox, 771
genetic algorithm and direct search

toolbox, 771
modern optimization methods, 771
multiobjective optimization, 772
neural network toolbox, 771
particle swarm optimization, 771
simulated annealing algorithm, 771

Concave function, 761
Concept of cutting plane, 540

Concept of suboptimization, 501
Concrete beam, 28
Condition number of a matrix, 277
Cone clutch, 45, 483
Conjugate directions, 289
Conjugate gradient method, 310, 322
Consistency condition, 200
Constrained minimization (GMP), 508
Constrained optimization problem, 6, 347

characteristics, 347
Constrained optimization techniques, 347,

348
complex method, 351
direct methods, 350
indirect methods, 392
random search methods, 350

Constrained variation, 71
Constraint qualification, 90, 91
Constraints, 6
Constraint surface, 7, 8
Contact stress between cylinders, 269
Contact stress between spheres, 228
Continuous beams, 526
Continuous dynamic programming, 523
Continuous feasible solution, 556
Continuous random variable, 576
Contours of objective function, 10
Contraction, 301
Contraction coefficient, 302
Control variables, 15
Control vector, 619
Convergence of constrained problems,

426
by perturbing design vector, 427
by testing Kuhn–Tucker conditions, 427

Convergence of order p, 276
Conversion of any 0-1 problem to 0-1 LP

problem, 555
Conversion of final to initial value

problem, 517
Conversion of nonserial to serial system,

500
Convex

function, 96
polygon, 117
polyhedron, 117, 119
polytope, 119
programming problem, 96, 405
set, 118

Cooling fin, 616
Correlation, 583
Correlation coefficient, 583
Correlation matrix, 589

�

� �

�

Index 789

Covariance, 583
Covariance matrix, 590
CPM and PERT, 3
Crane hook, 54
Crisp set theory, 660
Criterion function, 9
Critical points, 711
Crossover, 639
Crow search algorithm, 680
Cubic interpolation method, 253, 257
Cumulative distribution function, 577
Curse of dimensionality, 497
Curve of minimum time of descent, 612
Cutting plane, concept 540
Cutting plane method, 540

algorithm, 541
geometric interpretation, 540

Cyclic process, 301
Cylinders in contact, 269

D
Dantzig, 109
Darcy–Weisbach equation, 605
Darwin’s theory, 634
Davidon–Fletcher–Powell method, 321
DC motor, 48
Decision variables, 6
Decomposition principle, 159, 180
Degenerate solution, 130
Degree of difficulty, 453
Derivatives

of eigenvalues and eigenvectors, 707
of static displacements and stresses, 705
of transient response, 709

Descent direction, 306
Descent methods, 276, 304
Design constraints, 7
Design equations, 499
Design of

cantilever beam, 482
column, 10
cone clutch, 483
continuous beams, 526
drainage system, 529
experiments, 3
four bar mechanism, 489
gear train, 528
helical spring, 484, 601
hydraulic cylinder, 482
lightly loaded bearing, 486
planar truss, 226
two bar truss, 487

Design point, 7

Design space, 6
Design variable linking technique, 698
Design variables, 6
Design variable space, 6
Design vector, 6
Determinantal equation, 65
DFP formula, 320
DFP method, 321
Dichotomous search, 234
Differential calculus methods, 229, 450
Differential of f, 62
Direction finding problem, 362
Direction of steepest ascent, 304, 305
Direct methods, 348, 350
Direct root method, 259
Direct search methods, 280
Direct substitution, 69
Discrete programming problem, 537
Discrete random variable, 576, 577
Discriminate analysis, 3
Drainage system, 529
Dual function, 458
Duality in linear programming, 173
Duality theorems, 176
Dual problem, 173, 465
Dual simplex method, 176
Dual simplex algorithm, 177
Dynamic programming, 3, 38, 497

applications, 526
calculus method of solution, 507
computational procedure, 505
continuous, 523
conversion of final to initial value

problem, 517
problem of dimensionality, 572
recurrence relation, 503
tabular method of solution, 512

E
Eigenvalue, 65
Electrical bridge network, 47
Elementary operations, 122
Elimination methods, 229, 231
Elimination methods–comparison, 246
Engineering applications of optimization,

5
Engineering optimization literature, 34
Equality constraints, 6, 69
Equivalent deterministic NLP, 592
Euler equation, 612
Euler–Lagrange equation, 612
Evaluation of gradient, 306
Event, 576

�

� �

�

790 Index

Exhaustive search, 229, 232
Expansion, 301
Expansion coefficient, 301
Expected value

continuous case, 578
discrete case, 578

Experiment, 576
Extended interior penalty function, 414
Exterior penalty function method, 406,

418
algorithm, 408
convergence proof, 410
mixed equality-inequality constraints,

416
parametric constraints, 420

Extrapolation of design vector, 410
Extrapolation of objective function, 412
Extrapolation techniques, 410

design vector, 410
objective function, 412

Extreme point, 72, 119

F
Factor analysis, 3
Failure mechanisms of portal frame, 222
Fast reanalysis techniques, 700

Basis vector approach, 704
incremental response approach, 700

Fathomed, 557
Feasible direction, 87
Feasible direction methods, 360
Feasible solution, 119
Feasible space, 8
Fibonacci method, 238, 242

flow chart, 242
Fibonacci numbers, 239
Final interval of uncertainty, 239, 246
Final value problem, 501
Finding the optimal values of design

variables, 453
Fireflies-general information, 681

behavior, 682
light production, 682

Firefly optimization, 675, 681
First level problem, 723
First order methods, 276
Fitness function, 635, 636
Fletcher and Powell’s helical valley

function, 331
Fletcher–Reeves method, 310, 341

iterative procedure, 311
Floor design, 495
Flow chart

for augmented Lagrange multiplier
method, 424

for cubic interpolation method, 257
for Fibonacci search method, 242
for linear extended penalty function

method, 415
for Powell’s method, 295
for simplex algorithm, 131
for simplex method, 140, 141
for simulated annealing, 645
for two-phase simplex method, 140,

141
Flywheel design, 441
Forced boundary conditions, 612
Four bar mechanism, 489
Four bar truss, 55, 508
Free boundary conditions, 612
Free point, 8
Freudenstein and Roth function, 331
Fruitfly algorithm, 679, 683, 684
Functional, 609
Functional constraints, 7
Function of a random variable, 580
Function of several random variables, 583

mean, 584
variance, 584

Fuzzy decision, 662
Fuzzy feasible region, 663
Fuzzy optimization, 633, 660, 662

computational procedure, 663
Fuzzy set, 661
Fuzzy set theory, 660

valuation set, 660
Fuzzy systems, 660, 662

G
Game theory, 3
Gaussian distribution, 585
Gear train, 528
General engineering design, 35
General iterative scheme of optimization,

276
Generalized penalty function method, 564

choice of initial values of rk, sk and
𝛽k, 566

Generalized reduced gradient, 380
Generalized reduced gradient method,

377
algorithm, 380

General NLP theory, 36
General nonlinear programming, 36
General primal dual relations, 174
Genetic algorithms, 633, 640, 674

�

� �

�

Index 791

representation of constraints, 635
representation of design variables, 634
representation of objective function,

635
Genetic operators, 636

crossover, 639
mutation, 640
reproduction, 637

Geometric boundary conditions, 612
Geometric constraints, 7
Geometric programming, 3, 21, 37, 449

applications, 480
arithmetic-geometric inequality, 457
complementary geometric

programming, 475
constrained problem, 464
constrained problem solution, 465
degree of difficulty, 453
differential calculus, 450
mixed inequality constraints, 473
normality condition, 452
optimal values of design variables, 453
orthogonality conditions, 452
primal dual relations, 458
unconstrained problem, 450

Geometry of a cooling fin, 616
Geometry of linear programming

problems, 114
George B. Dantzig, 109
Global criterion method, 730
Global maximum, 57
Global minimum, 57
Goal programming method, 732
Golden mean, 245
Golden section, 245
Golden section method, 243
Gomory’s constraint, 541
Gomory’s method, 540

solution procedure, 547
Gomory’s cutting plane method, 540

for all integer problem, 541
computational procedure, 542
graphical representation, 542
for mixed integer problem, 547

Gradient, 87, 304
Gradient evaluation, 306
Gradient methods, 304
Gradient of a function, 304
Gradient projection method, 369

algorithm, 374
Graphical optimization, 13
Graphical representation, 538
Grid search method, 276, 285

H
Hamiltonian, 620
Harmony memory size, 685
Harmony search method, 677, 684
Heat exchanger design, 435
Helical spring, 21, 484
Helical torsional spring, 495
Hessian matrix, 65, 276
Heuristics, 673
Heuristic search methods, 348, 673
Historical development, 3
Hitchcock–Koopman’s problem, 200
Hollow circular shaft, 46
Honey bee algorithm, 675, 689, 690

bee colony, 689
Honey bee swarm optimization, 689
Hopfield network, 666
Huang’s family of updates, 321
Hydraulic cylinder design, 482
Hyperplane, 117

I
Identifying optimal point, 128
Ill conditioned matrix, 277
Imperialist competitive algorithm, 677,

680
Improving nonoptimal solution, 129
Inactive constraint, 86
Incremental response approach, 700
Independent events, 576
Independent random variables, 582
Indirect search methods, 304, 347, 392
Indirect updated method, 328
Inequality constraints, 6, 85
Infeasibility form, 139
Infinite number of solutions, 135
Infinite-stage or continuous problems,

523
Inflection point, 59
Initial value problem, 501
Input state variables, 499
Integer feasible solution, 556
Integer lattice points, 540
Integer linear programming, 538
Integer nonlinear programming, 553
Integer polynomial programming, 553
Integer programming, 3, 27, 37, 537

graphical representation, 538
Integer programming methods, 538
Integer representation in terms of binary

variables, 553
Intelligent water drops algorithm, 679
Interior method, 202

�

� �

�

792 Index

Interior penalty function method, 396, 416
convergence proof, 402
extrapolation technique, 410
iterative process, 397
penalty parameter, 399
starting feasible point, 397

Interpolation methods, 247
Interpretation of Lagrange multipliers, 83
Intersection of convex sets, 120
Intersection of fuzzy sets, 662
Interval halving method, 236
Interval of uncertainty, 238
Introduction to optimization, 1
Inverse update formulas, 320
Inverted utility function method, 730
Iterative process of optimization, 229

J
Jacobian, 75
Joint density function, 581
Joint distribution function, 582
Jointly distributed random variables, 581
Joint normal density function, 588

K
Karmarkar’s interior method, 202

algorithm, 205
conversion of problem, 203
interior method, 202
statement of problem, 203

Kohonen network, 666
Kuhn and Tucker, 90, 109
Kuhn–Tucker conditions, 90, 109, 427

testing, 427

L
Lagrange multiplier method, 77

necessary conditions, 79
sufficiency conditions, 80

Lagrange multipliers, 77, 78, 615, 623
interpretation, 83

Lagrangian function, 78, 80
Learning process, 665
Levy distribution, 684
Lexicographic method, 731
Limit design of frames, 111
Linear convergence, 277
Linear extended penalty function, 414
Linearization of constraints, 354
Linearization of objective, 354
Linear programming, 3, 25, 37, 109, 110

additional topics, 159
applications, 110

definitions, 117
post optimality analysis, 187
sensitivity analysis, 187

addition of constraints, 197
addition of new variables, 194
changes in constraint coefficients,

195
changes in cost coefficients, 192
changes in right hand side constants,

188
theorems, 117
two phases, 137

Linear programming problem, 25, 112
basic feasible solution, 119
basic solution, 119, 124
basis, 119
as a case of dynamic programming

problem, 519
extensions, 159
feasible solution, 119
geometry, 114
infinite solutions, 116, 135
matrix form, 112
nondegenerate basic feasible solution,

119
optimal basic solution, 120
optimum solution, 120
scalar form, 112
standard form, 112
unbounded solution, 116

Linear simultaneous equations, 122
canonical form, 124
pivot operation, 123
pivot reduction, 123
solution, 122

Line segment, 117
Local maximum, 57
Local minimum, 57

M
Machining economics problem, 480
Marginal density function, 582
Markov processes, 3
Marquardt method, 276, 316
Mathematical programming problem, 9
Mathematical programming techniques,

1, 3
MATLAB®, 773

creating m-files, 775
defining matrices, 774
features, 773
introduction, 773
optimization toolbox, 775

�

� �

�

Index 793

special characters, 773
using programs, 776

MATLAB® programs/functions for
optimization problems, 740

Binary programming problems, 750
Constrained problems, 747
General NLP problems, 740
Linear programming problems, 742
LP problems using interior point

method, 743
Multiobjective problems, 751
One-dimensional minimization

problems, 746
Quadratic programming problems, 745
Unconstrained optimization problems,

746
MATLAB® solutions, 739
Matrix methods of structural analysis, 225
Maxwell distribution, 604
Mean, 578, 581
Mechanical design, 35
Membership function, 660
Merit function, 9
Meta, 673
Metaheuristic algorithms, 39, 680
Metaheuristic optimization methods, 673
Metaphors, 673
Method of constrained variation, 71
Method of Lagrange multipliers, 77
Methods of feasible directions, 360

basic approach, 360
Zoutendijk’s method, 360

Methods of operations research, 3
Metropolis criterion, 642
Military operations, 1
Minimum cost pipeline, 534
Minimum drag, 613
Minimum weight design problem, 626
Mixed constraints, 416

exterior penalty function method, 418
interior penalty function method, 416

Mixed equality and inequality constraints,
416

Mixed integer programming problem, 537
Model coordination method, 722
Modern methods of optimization, 4, 633
Monotonicity, 500
Motivation of simplex method, 127
Multibay cantilever truss, 528
Multilayer feedforward network, 666
Multilevel optimization, 721
Multimodal function, 231

Multiobjective optimization, 9, 31, 38,
721, 729

Bounded objective function method,
730

Game theory approach, 733
Goal attainment method, 732
Goal programming method, 732
Global criterion method, 730
Inverted utility function method, 730
Lexicographic method, 731
Solution using MATLAB, 735
Utility function method, 730

Multiobjective programming, 3, 9, 31
Multiobjective programming problem, 9,

31
Multiple objective functions, 9
Multistage decision problem, 497, 501
Multistage decision process, 498
Multistage decision representation, 499
Multivariable optimization, 62

with equality constraints, 69
with inequality constraints, 85
necessary conditions, 63, 74, 79, 86
with no constraints, 62
sufficiency conditions, 64, 76

Multivariate distribution, 581
Mutation, 640

N
Natural boundary conditions, 612
Necessary conditions for optimal control,

619
Negative definite matrix, 65
Network methods, 3
Neural network, 665
Neural network based optimization, 633,

665
Neuron, 665
Newton method, 259, 276, 313
Newton Raphson method, 260
Node, 557
Nonbasic variables, 124
Nonconvex sets, 118
Nondegenerate solution, 119
Nongradient methods, 276
Nonlinear programming, 3, 225, 273, 347
Nonlinear programming problem, 18
Nonpivotal variables, 124
Nontraditional optimization techniques,

3, 39
Normal distribution, 585
Normality condition, 452
Normalization condition, 578

�

� �

�

794 Index

Normalization of constraints, 399
Normalized beta function integrand, 565
Norm of a matrix, 277
Norm of a vector, 277
Number of experiments, 247
Numerical integration, 421

O
Objective function, 6, 9
Objective function surfaces, 9
Offspring, 639
One degree of difficulty problem, 470,

481, 487
One dimensional minimization methods,

225, 229
comparison of methods, 266
how to make them efficient, 265
in multivariable problems, 266
practical considerations, 265

One-stage policy, 504
Operations research, 1

methods, 3
Optimal basic solution, 120
Optimal control–necessary conditions,

619
Optimal control problem, 37
Optimal control theory, 609
Optimality criteria methods, 622

multiple displacement constraints, 624
single displacement constraint, 623

Optimal layout of a truss, 527
Optimal solution (LP), 120
Optimization, 1
Optimization of fuzzy systems, 660, 662
Optimization problems

classification, 14
statement, 6

Optimization techniques, 3, 33
Optimization toolbox, 739
Optimum design variables, 466
Optimum machining conditions, 480
Orthogonal directions, 290
Orthogonality conditions, 452
Output state variables, 499
Overachievement, 732

P
Parallel processing, 726
Parameter optimization problem, 14
Parametric constraint, 418

exterior penalty function method, 422
interior penalty function method, 420

Parametric programming, 187

Parent, 639
Pareto optimum solution, 729
Particle, 647
Particle swarm optimization, 633, 647,

674
alignment, 647
cohesion, 647
computational implementation, 648
constrained problem, 649
improvements, 649
separation, 647

Passing vehicle search algorithm, 677
Pattern directions, 288
Pattern recognition, 3
Pattern search methods, 276, 288
Penalty function, 394, 396, 406, 416, 636
Penalty function method

basic approach, 394
convergence criteria, 399
convergence proof, 402, 410
exterior method, 406
extrapolation, 410
initial value of parameter, 398
interior method, 396
iterative process, 397, 408
mixed equality and inequality

constraints, 416
normalization of constraints, 399
parametric constraints, 418
penalty parameter, 398
starting feasible point, 397

Penalty parameter, 398
Performance index, 15, 619
Perturbing the design vector, 427
Phase I of simplex method, 137, 138
Phase II of simplex method, 137, 139
Pivot operation, 123
Pivot reduction, 123
Point in n-dimensional space, 117
Polynomial programming problem, 538
Population, 634, 637
Positive definite matrix, 65
Positive semidefinite matrix, 65
Post optimality analysis (LP), 187
Posynomial, 21, 449
Powell’s badly scaled function, 332
Powell’s method, 276, 289

algorithm, 293
convergence criterion, 296
flow chart, 295

Powell’s quartic function, 331
Power screw, 52
Practical aspects of optimization, 697

�

� �

�

Index 795

Practical considerations (1-d problem),
265

Preassigned parameters, 6
Precision points, 489
Predual function, 457
Pressure vessel, 53
Primal and dual problems, 461
Primal and dual programs, 466
Primal dual relations, 173–175, 458
Primal function, 457
Primal problem, 173, 458
Principle of optimality, 501, 503
Probabilistic programming, 575
Probability, definition, 575, 576
Probability density function, 576, 577
Probability distribution function, 577
Probability distributions, 585

continuous case, 585
discrete case, 585

Probability mass function, 577
Probability theory, 575
Problem of calculus of variations, 610
Problem of dimensionality, 523
Projected Lagrangian method, 388
Projection matrix, 371
Proportional damping, 710
Pseudo dual simplex method, 553

Q
Quadratically convergent method, 290
Quadratic convergence, 260, 277
Quadratic extended penalty function, 415
Quadratic form, 65, 81
Quadratic interpolation method, 248, 252

refitting scheme, 252
Quadratic programming, 3, 23, 208
Quadratic programming problem, 23
Quasi-Newton methods, 261, 276, 321
Queueing theory, 3

R
Railroad track, 43
Random jumping method, 280
Random search methods, 276, 280, 283
Random variable, 576
Random walk method, 282
Random walk with direction exploitation,

283
Rank 1 updates, 319
Rank 2 updates, 320
Rate of change of a function, 307
Rate of convergence, 276
Real valued programming problem, 27

Reanalysis, 700
Reciprocal approximation, 625
Recurrence relationship, 503
Reduced basis technique, 697
Reduction of size of optimization

problem, 697
Reduction ratio (in Fibonacci method),

241
Refitting, 251, 256
Reflection, 298
Reflection coefficient, 300
Reflection process, 299
Regression analysis, 3
Regular simplex, 298
Relative frequency of occurrence, 577
Relative maximum, 57
Relative minimum, 57
Reliability theory, 3
Renewal theory, 3
Reproduction, 637
Reservoir pump installation, 462
Reservoir system, 145
Return function, 499
Revised simplex method, 159

step-by-step procedure, 164
theoretical development, 160

Rigid frame, 111
Rocket in outer space, 16
Rosenbrock’s parabolic valley function,

330
Rosen’s gradient projection method, 369

algorithm, 374
determination of step length, 372
projection matrix, 371

Roulette-wheel selection scheme, 637
Runner-root algorithm, 678

S
Saddle point, 67
Salp swarm optimization, 675
Scaffolding system, 25, 52
Scaling of constraints, 770
Scaling of design variables, 277, 770
Search with accelerated step size, 232
Search with fixed step size, 231
Secant method, 229, 263
Second level problem, 724, 727
Second order methods, 276
Semidefinite case, 65, 67
Semidefinite matrix, 65, 67
Sensitivity analysis (LP), 187

addition of constraints, 197
addition of new variables, 194

�

� �

�

796 Index

Sensitivity analysis (LP) (continued)
changes in constraint coefficients, 195
changes in cost coefficients, 192
changes in right hand side constants,

188
Sensitivity equations, 712

using Kuhn–Tucker conditions, 712
using the concept of feasible direction,

714
Sensitivity of optimum solution, 712
Sensitivity to problem parameters, 712
Separability, 500
Separability of functions, 29
Separable function, 29
Separable programming, 3, 29
Sequential decision problem, 497
Sequential linear discrete programming,

561
Sequential linear integer programming,

561
Sequential linear programming, 353

geometric interpretation, 355
Sequential quadratic programming, 386

derivation, 386
solution procedure, 389

Sequential unconstrained minimization,
395

Serial multistage decision process, 497
Shadow prices, 84
Shell and tube heat exchanger, 46
Side constraints, 7
Sigmoid function, 665
Signum function, 465
Simplex, 298
Simplex algorithm, 128

degenerate solution, 130
flow chart, 131
identifying optimum point, 128
improving nonoptimal solution, 129
infinite number of solutions, 135
optimum solution, 131
unbounded solution, 130, 134

Simplex method, 109, 298
contraction, 301
contraction coefficient, 302
expansion, 301
expansion coefficient, 301
flow chart, 140
motivation, 127
phase I, 138
phase II, 139
reflection, 298

two phase, 137
Simplex multipliers, 161
Simply supported beam, 53
Simulated annealing, 3, 633, 641, 645,

674
Simulation methods, 3
Simultaneous equations, 122
Simultaneous search method, 233
Single stage decision problem, 499
Single variable optimization, 57

necessary condition, 57
sufficiency condition, 60

Slack variable, 112
Slider crank mechanism, 44
Solid body of revolution, 613
Solution by direct substitution, 69
Solution of GMP problem

using arithmetic-geometric inequality,
457

using differential calculus, 450
Solution of linear equations, 122
Solution of optimization problems using

MATLAB, 739
binary programming problems, 750
constrained optimization problems, 747
general NLP problems, 740
linear programming problems, 742
LP problems using interior point

method, 743
multiobjective optimization problems,

751
one-dimensional minimization

problems, 746
quadratic programming problems, 745
unconstrained optimization problems,

746
Spring-cart system, 65
Stamping of circular discs, 45
Standard deviation, 578
Standard form of LP problem, 112
Standard normal distribution, 586
Standard normal tables, 586, 587
Starting feasible point, 397
State inversion, 517
Statement of an optimization problem, 6
State transformation, 499
State variables, 15
State vector, 619
Statically determinate truss, 496
Static optimization problem, 15
Stationary point, 59
Stationary values of functionals, 610
Statistical decision theory, 3

�

� �

�

Index 797

Statistically independent events, 576
Statistical methods, 3
Steepest ascent direction, 304
Steepest descent method, 276, 308

convergence criteria, 310
Step-cone pulley, 18
Step length determination, 364, 372
Stochastic process techniques, 3
Stochastic programming, 3, 28, 38, 575,

594
constraints, 595
geometric programming, 600
linear programming, 589
nonlinear programming, 594
objective function, 594

Structural error, 489
Structural optimization, 34
Structural optimization packages, 770
Suboptimization, 506
Sufficiency conditions 458
SUMT, 395
Superlinear convergence, 277, 328
Surplus variable, 112
Survival of the fittest, 635
Symmetric primal-dual relations, 173
System of linear equations, 122

pivotal reduction, 123
pivot operation, 123
solution, 122

System reliability, 533

T
Tabular method of solution, 512
Tabu search, 678
Taylor’s series expansion, 62, 584
Teacher-learning-based optimization, 675
Tentative solution, 610
Termination criteria, 367
Test functions (unconstrained nonlinear

programming), 330
Beale’s function, 332
Brown’s badly scaled function, 332
Fletcher and Powell’s helical valley,

331
Freudenstein and Roth function, 331
Powell’s badly scaled function, 332
Powell’s quartic function, 330
Rosenbrock’s parabolic valley, 330
Wood’s function, 332

Testing for concavity, 761
Testing for convexity, 761
Testing Kuhn–Tucker conditions, 427

Test problems (constrained nonlinear
programming), 428

heat exchanger, 435
speed reducer (gear train), 433
three-bar truss, 429
25-bar space truss, 430
welded beam, 431

Thermal system optimization, 35
Trajectory optimization problem, 14
Transformation techniques, 392
Transformation of variables, 348, 392
Transportation array, 201
Transportation problem, 199
Transportation technique, 201
Transversality conditions, 622
Trapezoidal rule, 421
Travelling salesperson, 47
Trial, 230
Truss, 42, 50, 55, 226, 440, 443, 447, 528,

569, 626, 630, 631, 702, 706, 717,
724

Tubular column design, 10, 596
Two-bar truss, 42, 50, 447, 487, 724
Two degree of difficulty problem, 481
Two phases of simplex method, 137
Two stage compressor, 61
Types of multistage decision problems,

501

U
Unbounded solution, 116, 130, 134
Unconstrained minimization (GMP), 450

test functions, 330
Unconstrained optimization problem, 6,

273
Unconstrained optimization techniques,

273, 276
classification, 276
general approach, 276

Underachievement, 732
Under-reinforced beam, 29
Uniform distribution, 585
Unimodal function, 230
Union of fuzzy sets, 661
Univariate distribution, 581
Univariate method, 276, 285
Unrestricted search, 229, 231

with accelerated step size, 232
with fixed step size, 231

Usable direction, 89
Usable feasible direction, 360
Utility function method, 730

�

� �

�

798 Index

V
Valuation set, 660
Variable metric method, 321, 328
Variance, 581
Variation, 611
Variational operator, 611
Variation of a functional, 611
Vector minimization problem, 729
Vector of simplex multipliers, 162
Venn diagram, 661
Vertex, 117

W
Water evaporation optimization, 677
Water resource system, 217
Water tank design, 503
Weighting function method, 730

Weights, 457
Well conditioned matrix, 277
Wood’s function, 332

Z
Zero degree of difficulty problem, 468,

480, 486
Zero-one LP problem, 555
Zero-one polynomial programming, 555
Zero-one problem, 538, 555
Zero-one programming problems, 537,

551
Zeroth order methods, 276
Zoutendijk’s method, 348, 360

determination of step length, 364
direction finding problem, 362
termination criteria, 367

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	Preface
	Acknowledgment
	About the Author
	About the Companion Website
	Chapter 1 Introduction to Optimization
	1.1 Introduction
	1.2 Historical Development
	1.2.1 Modern Methods of Optimization

	1.3 Engineering Applications of Optimization
	1.4 Statement of An Optimization Problem
	1.4.1 Design Vector
	1.4.2 Design Constraints
	1.4.3 Constraint Surface
	1.4.4 Objective Function
	1.4.5 Objective Function Surfaces

	1.5 Classification of Optimization Problems
	1.5.1 Classification Based on the Existence of Constraints
	1.5.2 Classification Based on the Nature of the Design Variables
	1.5.3 Classification Based on the Physical Structure of the Problem
	1.5.4 Classification Based on the Nature of the Equations Involved
	1.5.5 Classification Based on the Permissible Values of the Design Variables
	1.5.6 Classification Based on the Deterministic Nature of the Variables
	1.5.7 Classification Based on the Separability of the Functions
	1.5.8 Classification Based on the Number of Objective Functions

	1.6 Optimization Techniques
	1.7 Engineering Optimization Literature
	1.8 Solutions Using MATLAB
	References and Bibliography
	Review Questions
	Problems

	Chapter 2 Classical Optimization Techniques
	2.1 Introduction
	2.2 Single‐Variable Optimization
	2.3 Multivariable Optimization with no Constraints
	2.3.1 Definition: rth Differential of f
	2.3.2 Semidefinite Case
	2.3.3 Saddle Point

	2.4 Multivariable Optimization with Equality Constraints
	2.4.1 Solution by Direct Substitution
	2.4.2 Solution by the Method of Constrained Variation
	2.4.3 Solution By the Method of Lagrange Multipliers

	2.5 Multivariable Optimization with Inequality Constraints
	2.5.1 Kuhn–Tucker Conditions
	2.5.2 Constraint Qualification

	2.6 Convex Programming Problem
	References and Bibliography
	Review Questions
	Problems

	Chapter 3 Linear Programming I: Simplex Method
	3.1 Introduction
	3.2 Applications of Linear Programming
	3.3 Standard form of a Linear Programming Problem
	3.3.1 Scalar Form
	3.3.2 Matrix Form

	3.4 Geometry of Linear Programming Problems
	3.5 Definitions and Theorems
	3.5.1 Definitions
	3.5.2 Theorems

	3.6 Solution of a System of Linear Simultaneous Equations
	3.7 Pivotal Reduction of a General System of Equations
	3.8 Motivation of the Simplex Method
	3.9 Simplex Algorithm
	3.9.1 Identifying an Optimal Point
	3.9.2 Improving a Nonoptimal Basic Feasible Solution

	3.10 Two Phases of the Simplex Method
	3.11 Solutions Using MATLAB
	References and Bibliography
	Review Questions
	3.11 Problems

	Chapter 4 Linear Programming II: Additional Topics and Extensions
	4.1 Introduction
	4.2 Revised Simplex Method
	4.3 Duality in Linear Programming
	4.3.1 Symmetric Primal–Dual Relations
	4.3.2 General Primal–Dual Relations
	4.3.3 Primal–Dual Relations when the Primal Is in Standard Form
	4.3.4 Duality Theorems
	4.3.5 Dual Simplex Method

	4.4 Decomposition Principle
	4.5 Sensitivity or Postoptimality Analysis
	4.5.1 Changes in the Right‐Hand‐Side Constants bi
	4.5.2 Changes in the Cost Coefficients cj
	4.5.3 Addition of New Variables
	4.5.4 Changes in the Constraint Coefficients aij
	4.5.5 Addition of Constraints

	4.6 Transportation Problem
	4.7 Karmarkar's Interior Method
	4.7.1 Statement of the Problem
	4.7.2 Conversion of an LP Problem into the Required Form
	4.7.3 Algorithm

	4.8 Quadratic Programming
	4.9 Solutions Using Matlab
	References and Bibliography
	Review Questions
	4.9 Problems

	Chapter 5 Nonlinear Programming I: One‐Dimensional Minimization Methods
	5.1 Introduction
	5.2 Unimodal Function
	Elimination Methods

	5.3 Unrestricted Search
	5.3.1 Search with Fixed Step Size
	5.3.2 Search with Accelerated Step Size

	5.4 Exhaustive Search
	5.5 Dichotomous Search
	5.6 Interval Halving Method
	5.7 Fibonacci Method
	5.8 Golden Section Method
	5.9 Comparison of Elimination Methods
	Interpolation Methods

	5.10 Quadratic Interpolation Method
	5.11 Cubic Interpolation Method
	5.12 Direct Root Methods
	5.12.1 Newton Method
	5.12.2 Quasi‐Newton Method
	5.12.3 Secant Method

	5.13 Practical Considerations
	5.13.1 How to Make the Methods Efficient and More Reliable
	5.13.2 Implementation in Multivariable Optimization Problems
	5.13.3 Comparison of Methods

	5.14 Solutions Using MATLAB
	References and Bibliography
	Review Questions
	5.14 Problems

	Chapter 6 Nonlinear Programming II: Unconstrained Optimization Techniques
	6.1 Introduction
	6.1.1 Classification of Unconstrained Minimization Methods
	6.1.2 General Approach
	6.1.3 Rate of Convergence
	6.1.4 Scaling of Design Variables
	Direct Search Methods

	6.2 Random Search Methods
	6.2.1 Random Jumping Method
	6.2.2 Random Walk Method
	6.2.3 Random Walk Method with Direction Exploitation
	6.2.4 Advantages of Random Search Methods

	6.3 Grid Search Method
	6.4 Univariate Method
	6.5 Pattern Directions
	6.6 Powell's Method
	6.6.1 Conjugate Directions
	6.6.2 Algorithm

	6.7 Simplex Method
	6.7.1 Reflection
	6.7.2 Expansion
	6.7.3 Contraction
	Indirect Search (Descent) Methods

	6.8 Gradient of a Function
	6.8.1 Evaluation of the Gradient
	6.8.2 Rate of Change of a Function Along a Direction

	6.9 Steepest Descent (CAuchy) Method
	6.10 Conjugate Gradient (FLetcher–REeves) Method
	6.10.1 Development of the Fletcher–Reeves Method
	6.10.2 Fletcher–Reeves Method

	6.11 Newton's Method
	6.12 MArquardt Method
	6.13 Quasi‐Newton Methods
	6.13.1 Computation of [Bi]
	6.13.2 Rank 1 Updates
	6.13.3 Rank 2 Updates

	6.14 DAvidon–FLetcher–POwell Method
	6.15 BRoyden–FLetcher–GOldfarb–SHanno Method
	6.16 Test Functions
	6.17 Solutions Using Matlab
	References and Bibliography
	Review Questions
	Problems

	Chapter 7 Nonlinear Programming III: Constrained Optimization Techniques
	7.1 Introduction
	7.2 Characteristics of a Constrained Problem
	Direct Methods

	7.3 Random Search Methods
	7.4 Complex Method
	7.5 Sequential Linear Programming
	7.6 Basic Approach in the Methods of Feasible Directions
	7.7 Zoutendijk's Method of Feasible Directions
	7.7.1 Direction‐Finding Problem
	7.7.2 Determination of Step Length
	7.7.3 Termination Criteria

	7.8 Rosen's Gradient Projection Method
	7.8.1 Determination of Step Length

	7.9 Generalized Reduced Gradient Method
	7.10 Sequential Quadratic Programming
	7.10.1 Derivation
	7.10.2 Solution Procedure
	Indirect Methods

	7.11 Transformation Techniques
	7.12 Basic Approach of the Penalty Function Method
	7.13 Interior Penalty Function Method
	7.14 Convex Programming Problem
	7.15 Exterior Penalty Function Method
	7.16 Extrapolation Techniques in the Interior Penalty Function Method
	7.16.1 Extrapolation of the Design Vector X
	7.16.2 Extrapolation of the Function f

	7.17 Extended Interior Penalty Function Methods
	7.17.1 Linear Extended Penalty Function Method
	7.17.2 Quadratic Extended Penalty Function Method

	7.18 Penalty Function Method for Problems with Mixed Equality and Inequality Constraints
	7.18.1 Interior Penalty Function Method
	7.18.2 Exterior Penalty Function Method

	7.19 Penalty Function Method for Parametric Constraints
	7.19.1 Parametric Constraint
	7.19.2 Handling Parametric Constraints

	7.20 Augmented Lagrange Multiplier Method
	7.20.1 Equality‐Constrained Problems
	7.20.2 Inequality‐Constrained Problems
	7.20.3 Mixed Equality–Inequality‐Constrained Problems

	7.21 Checking the Convergence of Constrained Optimization Problems
	7.21.1 Perturbing the Design Vector
	7.21.2 Testing the Kuhn–Tucker Conditions

	7.22 Test Problems
	7.22.1 Design of a Three‐Bar Truss
	7.22.2 Design of a Twenty‐Five‐Bar Space Truss
	7.22.3 Welded Beam Design
	7.22.4 Speed Reducer (Gear Train) Design
	7.22.5 Heat Exchanger Design

	7.23 Solutions Using MATLAB
	References and Bibliography
	Review Questions
	7.23 Problems

	Chapter 8 Geometric Programming
	8.1 Introduction
	8.2 Posynomial
	8.3 Unconstrained Minimization Problem
	8.4 Solution of an Unconstrained Geometric Programming Program using Differential Calculus
	8.4.1 Degree of Difficulty
	8.4.2 Sufficiency Condition
	8.4.3 Finding the Optimal Values of Design Variables

	8.5 Solution of an Unconstrained Geometric Programming Problem Using Arithmetic–Geometric Inequality
	8.6 Primal–dual Relationship and Sufficiency Conditions in the Unconstrained Case
	8.6.1 Primal and Dual Problems
	8.6.2 Computational Procedure

	8.7 Constrained Minimization
	8.8 Solution of a Constrained Geometric Programming Problem
	8.8.1 Optimum Design Variables

	8.9 Primal and Dual Programs in the Case of Less‐than Inequalities
	8.10 Geometric Programming with Mixed Inequality Constraints
	8.11 Complementary Geometric Programming
	8.11.1 Solution Procedure
	8.11.2 Degree of Difficulty

	8.12 Applications of Geometric Programming
	References and Bibliography
	Review Questions
	8.12 Problems

	Chapter 9 Dynamic Programming
	9.1 Introduction
	9.2 Multistage Decision Processes
	9.2.1 Definition and Examples
	9.2.2 Representation of a Multistage Decision Process
	9.2.3 Conversion of a Nonserial System to a Serial System
	9.2.4 Types of Multistage Decision Problems

	9.3 Concept of Suboptimization and Principle of Optimality
	9.4 Computational Procedure in Dynamic Programming
	9.5 Example Illustrating the Calculus Method of Solution
	9.6 Example Illustrating the Tabular Method of Solution
	9.6.1 Suboptimization of Stage 1 (Component 1)
	9.6.2 Suboptimization of Stages 2 and 1 (Components 2 and 1)
	9.6.3 Suboptimization of Stages 3, 2, and 1 (Components 3, 2, and 1)

	9.7 Conversion of a Final Value Problem into an Initial Value Problem
	9.8 Linear Programming as a Case of Dynamic Programming
	9.9 Continuous Dynamic Programming
	9.10 Additional Applications
	9.10.1 Design of Continuous Beams
	9.10.2 Optimal Layout (Geometry) of a Truss
	9.10.3 Optimal Design of a Gear Train
	9.10.4 Design of a Minimum‐Cost Drainage System

	References and Bibliography
	
	Review Questions
	9.10 Problems

	Chapter 10 Integer Programming
	10.1 Introduction
	Integer Linear Programming

	10.2 Graphical Representation
	10.3 Gomory's Cutting Plane Method
	10.3.1 Concept of a Cutting Plane
	10.3.2 Gomory's Method for All‐Integer Programming Problems
	10.3.3 Gomory's Method for Mixed‐Integer Programming Problems

	10.4 Balas' Algorithm for Zero–One Programming Problems
	Integer Nonlinear Programming

	10.5 Integer Polynomial Programming
	10.5.1 Representation of an Integer Variable by an Equivalent System of Binary Variables
	10.5.2 Conversion of a Zero–One Polynomial Programming Problem into a Zero–One LP Problem

	10.6 Branch‐and‐Bound Method
	10.7 Sequential Linear Discrete Programming
	10.8 Generalized Penalty Function Method
	10.9 Solutions Using MATLAB
	References and Bibliography
	Review Questions
	10.9 Problems

	Chapter 11 Stochastic Programming
	11.1 INTRODUCTION
	11.2 BASIC CONCEPTS OF PROBABILITY THEORY
	11.2.1 Definition of Probability
	11.2.2 Random Variables and Probability Density Functions
	11.2.3 Mean and Standard Deviation
	11.2.4 Function of a Random Variable
	11.2.5 Jointly Distributed Random Variables
	11.2.6 Covariance and Correlation
	11.2.7 Functions of Several Random Variables
	11.2.8 Probability Distributions
	11.2.9 Central Limit Theorem

	11.3 STOCHASTIC LINEAR PROGRAMMING
	11.4 STOCHASTIC NONLINEAR PROGRAMMING
	11.4.1 Objective Function
	11.4.2 Constraints

	11.5 STOCHASTIC GEOMETRIC PROGRAMMING
	References and Bibliography
	Review Questions
	Problems

	Chapter 12 Optimal Control and Optimality Criteria Methods
	12.1 Introduction
	12.2 Calculus of Variations
	12.2.1 Introduction
	12.2.2 Problem of Calculus of Variations
	12.2.3 Lagrange Multipliers and Constraints
	12.2.4 Generalization

	12.3 Optimal Control Theory
	12.3.1 Necessary Conditions for Optimal Control
	12.3.2 Necessary Conditions for a General Problem

	12.4 Optimality Criteria Methods
	12.4.1 Optimality Criteria with a Single Displacement Constraint
	12.4.2 Optimality Criteria with Multiple Displacement Constraints
	12.4.3 Reciprocal Approximations

	References and Bibliography
	Review Questions
	Problems

	Chapter 13 Modern Methods of Optimization
	13.1 Introduction
	13.2 Genetic Algorithms
	13.2.1 Introduction
	13.2.2 Representation of Design Variables
	13.2.3 Representation of Objective Function and Constraints
	13.2.4 Genetic Operators
	13.2.5 Algorithm
	13.2.6 Numerical Results

	13.3 Simulated Annealing
	13.3.1 Introduction
	13.3.2 Procedure
	13.3.3 Algorithm
	13.3.4 Features of the Method
	13.3.5 Numerical Results

	13.4 Particle Swarm Optimization
	13.4.1 Introduction
	13.4.2 Computational Implementation of PSO
	13.4.3 Improvement to the Particle Swarm Optimization Method
	13.4.4 Solution of the Constrained Optimization Problem

	13.5 Ant Colony Optimization
	13.5.1 Basic Concept
	13.5.2 Ant Searching Behavior
	13.5.3 Path Retracing and Pheromone Updating
	13.5.4 Pheromone Trail Evaporation
	13.5.5 Algorithm

	13.6 Optimization of Fuzzy Systems
	13.6.1 Fuzzy Set Theory
	13.6.2 Optimization of Fuzzy Systems
	13.6.3 Computational Procedure
	13.6.4 Numerical Results

	13.7 Neural‐Network‐Based Optimization
	References and Bibliography
	Review Questions
	Problems

	Chapter 14 Metaheuristic Optimization Methods
	14.1 Definitions
	14.2 Metaphors Associated with Metaheuristic Optimization Methods
	14.3 Details of Representative Metaheuristic Algorithms
	14.3.1 Crow Search Algorithm
	14.3.2 Firefly Optimization Algorithm (FA)
	14.3.3 Harmony Search Algorithm
	14.3.4 Teaching‐Learning‐Based Optimization (TLBO)
	14.3.5 Honey Bee Swarm Optimization Algorithm

	References and Bibliography
	Review Questions

	Chapter 15 Practical Aspects of Optimization
	15.1 INTRODUCTION
	15.2 REDUCTION OF SIZE OF AN OPTIMIZATION PROBLEM
	15.2.1 Reduced Basis Technique
	15.2.2 Design Variable Linking Technique

	15.3 FAST REANALYSIS TECHNIQUES
	15.3.1 Incremental Response Approach
	15.3.2 Basis Vector Approach

	15.4 DERIVATIVES OF STATIC DISPLACEMENTS AND STRESSES
	15.5 DERIVATIVES OF EIGENVALUES AND EIGENVECTORS
	15.5.1 Derivatives of λi
	15.5.2 Derivatives of Yi

	15.6 DERIVATIVES OF TRANSIENT RESPONSE
	15.7 SENSITIVITY OF OPTIMUM SOLUTION TO PROBLEM PARAMETERS
	15.7.1 Sensitivity Equations Using Kuhn–Tucker Conditions
	15.7.2 Sensitivity Equations Using the Concept of Feasible Direction

	References and Bibliography
	Review Questions
	15.7 Problems

	Chapter 16 Multilevel and Multiobjective Optimization
	16.1 INTRODUCTION
	16.2 MULTILEVEL OPTIMIZATION
	16.2.1 Basic Idea
	16.2.2 Method

	16.3 PARALLEL PROCESSING
	16.4 MULTIOBJECTIVE OPTIMIZATION
	16.4.1 Utility Function Method
	16.4.2 Inverted Utility Function Method
	16.4.3 Global Criterion Method
	16.4.4 Bounded Objective Function Method
	16.4.5 Lexicographic Method
	16.4.6 Goal Programming Method
	16.4.7 Goal Attainment Method
	16.4.8 Game Theory Approach

	16.5 SOLUTIONS USING MATLAB
	References and Bibliography
	Review Questions
	16.5 Problems

	Chapter 17 Solution of Optimization Problems Using MATLAB
	17.1 Introduction
	17.2 Solution of General Nonlinear Programming Problems
	17.3 Solution of Linear Programming Problems
	17.4 Solution of LP Problems Using Interior Point Method
	17.5 Solution of Quadratic Programming Problems
	17.6 Solution of One‐Dimensional Minimization Problems
	17.7 Solution of Unconstrained Optimization Problems
	17.8 Solution of Constrained Optimization Problems
	17.9 Solution of Binary Programming Problems
	17.10 Solution of Multiobjective Problems
	References and Bibliography
	Problems

	Appendix A Convex and Concave Functions
	Appendix B Some Computational Aspects of Optimization
	B.1 Choice of Method
	B.2 Comparison of Unconstrained Methods
	B.3 Comparison of Constrained Methods
	B.4 Availability of Computer Programs
	B.5 Scaling of Design Variables and Constraints
	B.6 Computer Programs for Modern Methods of Optimization
	References and Bibliography

	Appendix C Introduction to MATLAB®
	C.1 Features and Special Characters
	C.2 Defining Matrices in MATLAB
	C.3 Creating m‐Files
	C.4 Optimization Toolbox
	Using MATLAB Programs

	Answers to Selected Problems
	Index
	EULA

